CN111694541B - Base 32 operation circuit for number theory transformation multiplication - Google Patents
Base 32 operation circuit for number theory transformation multiplication Download PDFInfo
- Publication number
- CN111694541B CN111694541B CN202010371312.9A CN202010371312A CN111694541B CN 111694541 B CN111694541 B CN 111694541B CN 202010371312 A CN202010371312 A CN 202010371312A CN 111694541 B CN111694541 B CN 111694541B
- Authority
- CN
- China
- Prior art keywords
- operands
- operand
- bit
- circuit
- csa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
- G06F7/501—Half or full adders, i.e. basic adder cells for one denomination
- G06F7/503—Half or full adders, i.e. basic adder cells for one denomination using carry switching, i.e. the incoming carry being connected directly, or only via an inverter, to the carry output under control of a carry propagate signal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/57—Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Complex Calculations (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010371312.9A CN111694541B (en) | 2020-05-06 | 2020-05-06 | Base 32 operation circuit for number theory transformation multiplication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010371312.9A CN111694541B (en) | 2020-05-06 | 2020-05-06 | Base 32 operation circuit for number theory transformation multiplication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111694541A CN111694541A (en) | 2020-09-22 |
CN111694541B true CN111694541B (en) | 2023-04-21 |
Family
ID=72476909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010371312.9A Active CN111694541B (en) | 2020-05-06 | 2020-05-06 | Base 32 operation circuit for number theory transformation multiplication |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111694541B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103870438A (en) * | 2014-02-25 | 2014-06-18 | 复旦大学 | Circuit structure using number theoretic transform for calculating cyclic convolution |
CN106027227A (en) * | 2016-07-01 | 2016-10-12 | 浙江工业大学 | Fermat number number-theoretic transform and SAFER (Secure And Fast Encryption Routine) cipher algorithm combined block encryption method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8028015B2 (en) * | 2007-08-10 | 2011-09-27 | Inside Contactless S.A. | Method and system for large number multiplication |
US8549264B2 (en) * | 2009-12-22 | 2013-10-01 | Intel Corporation | Add instructions to add three source operands |
US20130332707A1 (en) * | 2012-06-07 | 2013-12-12 | Intel Corporation | Speed up big-number multiplication using single instruction multiple data (simd) architectures |
CN102866875B (en) * | 2012-10-05 | 2016-03-02 | 刘杰 | Multioperand adder |
KR102614616B1 (en) * | 2017-04-11 | 2023-12-15 | 더 가버닝 카운슬 오브 더 유니버시티 오브 토론토 | Homomorphic Processing Unit (HPU) for accelerating secure computations by homomorphic encryption |
US10853034B2 (en) * | 2018-03-30 | 2020-12-01 | Intel Corporation | Common factor mass multiplication circuitry |
-
2020
- 2020-05-06 CN CN202010371312.9A patent/CN111694541B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103870438A (en) * | 2014-02-25 | 2014-06-18 | 复旦大学 | Circuit structure using number theoretic transform for calculating cyclic convolution |
CN106027227A (en) * | 2016-07-01 | 2016-10-12 | 浙江工业大学 | Fermat number number-theoretic transform and SAFER (Secure And Fast Encryption Routine) cipher algorithm combined block encryption method |
Also Published As
Publication number | Publication date |
---|---|
CN111694541A (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Berg | Introduction to the operational calculus | |
CN100388630C (en) | CRC computing method and system having matrix conversion technology | |
JPH076161A (en) | Method and apparatus for conversion of frequency into time region | |
JP4290202B2 (en) | Booth multiplication apparatus and method | |
CN101902228B (en) | Rapid cyclic redundancy check encoding method and device | |
Schmidt | On cosets of the generalized first-order Reed-Muller code with low PMEPR | |
US20040225705A1 (en) | Method and device for performing operations involving multiplication of selectively partitioned binary inputs using booth encoding | |
CN108008932A (en) | Division synthesizes | |
CN101295237B (en) | High-speed divider for quotient and balance | |
CN110543291A (en) | Finite field large integer multiplier and implementation method of large integer multiplication based on SSA algorithm | |
CN115238863A (en) | Hardware acceleration method, system and application of convolutional neural network convolutional layer | |
Premkumar | A formal framework for conversion from binary to residue numbers | |
CN111694541B (en) | Base 32 operation circuit for number theory transformation multiplication | |
JPS6382546A (en) | Apparatus for calculating discrete conversion | |
CN111694540B (en) | Base 64 operation circuit for number theory transformation multiplication | |
CN111694542B (en) | Base 16 arithmetic circuit for number theory conversion multiplication | |
CN1801079A (en) | Canonical signed digit (CSD) coefficient multiplier with optimization | |
da Rosa et al. | The Radix-2 m Squared Multiplier | |
EP1481319B1 (en) | Method and apparatus for parallel access to multiple memory modules | |
JP2002149399A (en) | Instruction set for processor | |
Elango et al. | Hardware implementation of residue multipliers based signed RNS processor for cryptosystems | |
KR100329914B1 (en) | Dissipation device | |
Kojima | Hadamard-type matrices on finite fields and complete complementary codes | |
Muscedere et al. | On efficient techniques for difficult operations in one and two-digit DBNS index calculus | |
JP3913921B2 (en) | Circuit for reciprocal of arbitrary element in finite field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Hua Siliang Inventor after: Zhang Huiguo Inventor after: Liu Yushen Inventor after: Xu Jian Inventor after: Bian Jiuhui Inventor after: Zhang Jingya Inventor before: Hua Siliang Inventor before: Zhang Huiguo Inventor before: Liu Yushen Inventor before: Xu Jian Inventor before: Bian Jiuhui Inventor before: Zhang Jingya |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |