CN111693040A - 基于串联弹性驱动器的机械臂碰撞检测方法 - Google Patents

基于串联弹性驱动器的机械臂碰撞检测方法 Download PDF

Info

Publication number
CN111693040A
CN111693040A CN202010552177.8A CN202010552177A CN111693040A CN 111693040 A CN111693040 A CN 111693040A CN 202010552177 A CN202010552177 A CN 202010552177A CN 111693040 A CN111693040 A CN 111693040A
Authority
CN
China
Prior art keywords
mechanical arm
output end
pose
gear box
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010552177.8A
Other languages
English (en)
Other versions
CN111693040B (zh
Inventor
王曰英
郎世珍
胡陟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Henghui Technology Co ltd
Original Assignee
Suzhou Henghui Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Henghui Technology Co ltd filed Critical Suzhou Henghui Technology Co ltd
Priority to CN202010552177.8A priority Critical patent/CN111693040B/zh
Publication of CN111693040A publication Critical patent/CN111693040A/zh
Application granted granted Critical
Publication of CN111693040B publication Critical patent/CN111693040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1464Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving screws and nuts, screw-gears or cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了基于串联弹性驱动器的机械臂碰撞检测方法,测量输出端的机械臂与外界接触时的位姿,替代直接测量接触力矩,然后对机械臂进行动力学建模时,只需要得到机械臂末端的位姿以及电机输出端的位姿,即可求得机械臂与环境的接触力矩。本发明使用串联弹性驱动器进行协作机器人机械臂改进与碰撞检测,在减速器增加位姿编码器以确保能准确计算机器人实时位姿状态;在动力学建模时结合机器人实时位姿分析,消除了难以计算的摩擦力影响,提高了碰撞检测的精确性。

Description

基于串联弹性驱动器的机械臂碰撞检测方法
技术领域
本发明涉及消除减速器摩擦力影响的建模方法,属于机械臂动力学建模与碰撞检测技术领域,具体涉及一种基于串联弹性驱动器的机械臂碰撞检测方法。
背景技术
工业机器人可以工作在复杂的工作环境中,高效、高精度地执行重复性的作业。在其工作过程中,很可能与周围环境发生碰撞,造成周围环境或者工件损坏。此外,在现代生产中,很多复杂的工作,需要机器人与工作人员处于同一工作空间中并通常需要在操作上相互配合。在这种情况下,机器人的安全性将显得更为重要,若机器人不采取必要的防撞措施,将对人造成严重伤害,因此,必须首先解决机器人的碰撞安全性问题。为了保证机器人的安全性,需要对碰撞进行检测,并及时采取必要的控制策略,避免发生严重碰撞,并控制碰撞接触力在完全可承受的范围内。
对协作机器人进行碰撞检测研究时,一般将整个机器人进行动力学建模,分析输出力矩、外力矩与机器人位姿之间的关系。当前在获取外力大小与动力学建模过程中存在以下几个问题:
1、传统力传感器测量接触力具有局限性
通常力传感器安装在机械臂关节处和末端。安装在关节处的力传感器,通常只需要其能测一维力矩即可,关节处的力传感器可以获得更加精确的力矩值。然而使用关节力传感器需要估计外力、精确的动力学模型以及机械臂的动力学参数。且如果需要估计末端力,还要考虑雅克比矩阵的转置是否良态,是否出现奇异等诸多问题。安装在机械臂末端的力传感器可以直接获取到外界作用在机械臂末端的力作用,相对于关节处安装传感器估测外力,此方案可以实现更精确的力控效果,但无法做全身的碰撞检测。
2、动力学模型中摩擦力项没有通用且权威的模型
摩擦力只能通过辨识获取,所以整个动力学公式会因为减速器摩擦力的存在误差。而且由于减速器摩擦力,需要较大的外力,才能使电流环检测到。静摩擦力状态未知(静摩擦力是由外力决定的),无法确定这个“较大的外力”到底是多大。
发明内容
为解决现有技术的缺陷,本发明提供一种基于串联弹性驱动器的机械臂碰撞检测方法,所述机械臂的关节驱动器采用串联弹性驱动器(SEA),所述串联弹性驱动器包括依次设置的输出端、弹性体、谐波减速器、电机和驱动电路;
测量输出端的机械臂与外界接触时的位姿,替代直接测量接触力矩,然后对机械臂进行动力学建模时,只需要得到机械臂末端的位姿以及电机输出端的位姿,即可求得机械臂与环境的接触力矩。
优选的,驱动器中的力矩通过安装在弹性体两个平面的位置传感器测量,该两个平面通过一个扭力杆(Torsion Bar)连接,该两个平面一端连接着输出端(Output Link),另外一段连接在谐波减速器端(Harmonic Drive);当输出端驱动机器人关节运动时,该两个平面会在轴向(Axial)扭转产生一个偏角:δ;位置传感器通过偏角测出力矩τ,公式如下:τ=Kδ;其中K为材料的抗扭截面系数,弹性体材料为17-4PH。
优选的,在动力学模型的基础上,采用双位姿传感器测量机器人位姿,在动力学模型中消除摩擦力影响,提高整个动态模型的精度。
优选的,根据碰撞要求设定合适的阈值,当残差值超过阈值时则说明机器人与外界发生了碰撞。
本发明的优点和有益效果在于:
本发明在谐波减速器输出端设计弹性体,一方面通过弹性体的形变测量扭矩,另一方面则降低了系统的刚度保护减速箱;通过电磁传感器测量弹性体偏角,从而计算测量扭矩;该设计方案旨在测量输出端的机械臂与外界接触时的位姿,替代直接测量接触力矩,能够解决与机械臂不同部位接触时无法精确测量力的问题,提高了协作机器人操作时的安全性;
然后对机械臂进行动力学建模时,只需要得到机械臂末端的位姿以及电机输出端的位姿,即可求得机械臂与环境的接触力矩;不必考虑传统建模中摩擦力的影响,极大的减少了建模难度;与电流环测力矩做碰撞检测的方法相比较,验证了基于SEA结构的碰撞检测方法的准确性。
本发明在减速器两侧用两个位姿传感器测量机器人的位姿,无需考虑减速器与电机之间的摩擦力,从而避免摩擦力不稳定性对碰撞检测的影响,提高整个动态模型的精度。根据碰撞要求设定合适的阈值,当残差值超过阈值时则说明机器人与外界发生了碰撞。本发明碰撞检测算法只需测量机器人关节编码器的位置信息,可以在没有任何力传感器的情况下进行实时检测。
跟传统电流环做碰撞检测的方法不同,本发明使用SEA进行协作机器人机械臂改进与碰撞检测,在减速器增加位姿编码器以确保能准确计算机器人实时位姿状态;在动力学建模时结合机器人实时位姿分析,消除了难以计算的摩擦力影响,提高了碰撞检测的精确性。
附图说明
图1是串联弹性驱动器的物理模型。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种基于串联弹性驱动器的机械臂碰撞检测方法,所述机械臂的关节驱动器采用串联弹性驱动器,所述串联弹性驱动器包括依次设置的输出端、弹性体、谐波减速器、电机和驱动电路;
测量输出端的机械臂与外界接触时的位姿,替代直接测量接触力矩,然后对机械臂进行动力学建模时,只需要得到机械臂末端的位姿以及电机输出端的位姿,即可求得机械臂与环境的接触力矩。
驱动器中的力矩通过安装在弹性体两个平面的位置传感器测量,该两个平面通过一个扭力杆(Torsion Bar)连接,该两个平面一端连接着输出端(Output Link),另外一段连接在谐波减速器端(Harmonic Drive);当输出端驱动机器人关节运动时,该两个平面会在轴向(Axial)扭转产生一个偏角:δ;位置传感器通过偏角测出力矩τ,公式如下:τ=Kδ;其中K为材料的抗扭截面系数,弹性体材料为17-4PH。
在动力学模型的基础上,采用双位姿传感器测量机器人位姿,在动力学模型中消除摩擦力影响,提高整个动态模型的精度。
可根据碰撞要求设定合适的阈值,当残差值超过阈值时则说明机器人与外界发生了碰撞。
测量原理:驱动器中的力矩通过安装在弹性体两个平面的位置传感器测量,该两个平面通过一个扭力杆(Torsion Bar)连接,该两个平面一端连接着输出端(OutputLink),另外一段连接在谐波减速器端(Harmonic Drive);当输出端驱动机器人关节运动时,该两个平面会在轴向(Axial)扭转产生一个偏角:δ;位置传感器通过偏角测出力矩τ,公式如下:τ=Kδ;其中K为材料的抗扭截面系数,弹性体材料为17-4PH。
串联弹性驱动器(SEA)的物理模型如图1所示,其中①为:电机转子(MotorRotor);②为:减速箱(Gearbox);③为:输出端(Load);其中减速箱端与输出端串联关键的弹性体,具体符号含义如下:
Im为电机转子惯量;Ig为齿轮箱惯量;Il为输出端惯量;
kg,dmg分别为齿轮箱端与电机端之间的刚度与阻尼;
kb,dgl分别为输出端与齿轮箱端之间的刚度与阻尼;
qm,qg,ql分别为电机端,齿轮箱端,输出端的绝对位置;
τm为电机端输出扭矩(电机线圈产生),τe为输出端扭矩(与外部环境交互产生);
dm,dg,dl分别为电机、齿轮箱与输出端与驱动器外壳间的粘滞阻尼;
Δ=qg-ql,Δ为输出端与齿轮箱端绝对位置偏角(重要参数);
线性动力学的模型的核心其实就是各个模块上的扭矩平衡,如下:
电机端扭矩平衡:
Imqm=τm-dmqm+dmg(qg-qm)+kg(qg-qm) (1)
齿轮箱端扭矩平衡:
Igqg=-dgqg-dmg(qg-qm)-kg(qg-qm)+dgl(ql-qg)+kb(ql-qg) (2)
输出端扭矩平衡:
Ilql=τe-dlql-dgl(ql-qg)-kb(ql-qg) (3)
公式(3)中的最后两项可以写成如下形式的公式(4):
-dlql-dgl(ql-qg)-kb(ql-qg)=kbΔ+dglΔ=τ (4)
τ在这里是齿轮箱向输出端传递的力矩,当处于输出平衡状态时,有如下等式:
e=τ-dlql (5)
一般齿轮箱与输出端的弹性体都是金属材料,其阻尼系数可以忽略不计,即dgl≈0,公式(4)可以简化如下:
τ≈kbΔ (6)
对于大部分SEA驱动器而言,谐波减速器的刚度都远远大于柔性传动元件,因此我们可以将谐波减速器考虑成刚体(Rigid Body),
即qm≡qg,qm≡qg,qm≡qg
所以对公式(1),(2)进行简化成如下形式:
(Im+Ig)qm=τm+kb(ql-qm)+dgl(ql-qm)-(dm+dg)qm (7)
对公式(3)改写成如下形式:
Ilql=τe-dlql-dgl(ql-qm)-kb(ql-qm) (8)
公式(7),(8)分别为SEA电机端动力学模型和输出端动力学模型。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.基于串联弹性驱动器的机械臂碰撞检测方法,其特征在于:
所述机械臂的关节驱动器采用串联弹性驱动器,所述串联弹性驱动器包括依次设置的输出端、弹性体、谐波减速器、电机和驱动电路;
测量输出端的机械臂与外界接触时的位姿,替代直接测量接触力矩,然后对机械臂进行动力学建模时,只需要得到机械臂末端的位姿以及电机输出端的位姿,即可求得机械臂与环境的接触力矩。
2.根据权利要求1所述的基于串联弹性驱动器的机械臂碰撞检测方法,其特征在于,驱动器中的力矩通过安装在弹性体两个平面的位置传感器测量,该两个平面通过一个扭力杆连接,该两个平面一端连接着输出端,另外一段连接在谐波减速器端;当输出端驱动机器人关节运动时,该两个平面会在轴向扭转产生一个偏角:δ;位置传感器通过偏角测出力矩τ,公式如下:τ=Kδ;其中K为材料的抗扭截面系数,弹性体材料为17-4PH。
3.根据权利要求2所述的基于串联弹性驱动器的机械臂碰撞检测方法,其特征在于,线性动力学模型的各个模块上的扭矩平衡,如下:
电机端扭矩平衡:
Imqm=τm-dmqm+dmg(qg-qm)+kg(qg-qm) (1)
齿轮箱端扭矩平衡:
Igqg=-dgqg-dmg(qg-qm)-kg(qg-qm)+dgl(ql-qg)+kb(ql-qg) (2)
输出端扭矩平衡:
Ilql=τe-dlql-dgl(ql-qg)-kb(ql-qg) (3)
公式(3)中的最后两项可以写成如下形式的公式(4):
-dlql-dgl(ql-qg)-kb(ql-qg)=kbΔ+dglΔ=τ (4)
τ为齿轮箱向输出端传递的力矩,当处于输出平衡状态时,有如下等式:
e=τ-dlql (5)
齿轮箱与输出端的弹性体都是金属材料,其阻尼系数可以忽略不计,即dgl≈0,公式(4)可以简化如下:
τ≈kbΔ (6)
串联弹性驱动器中,谐波减速器的刚度远大于柔性传动元件,因此谐波减速器为刚体,
即qm≡qg,qm≡qg,qm≡qg
所以对公式(1),(2)进行简化成如下形式:
(Im+Ig)qm=τm+kb(ql-qm)+dgl(ql-qm)-(dm+dg)qm (7)
对公式(3)改写成如下形式:
Ilql=τe-dlql-dgl(ql-qm)-kb(ql-qm) (8)
公式(7),(8)分别为SEA电机端动力学模型和输出端动力学模型;
其中,
Im为电机转子惯量;Ig为齿轮箱惯量;Il为输出端惯量;
kg,dmg分别为齿轮箱端与电机端之间的刚度与阻尼;
kb,dgl分别为输出端与齿轮箱端之间的刚度与阻尼;
qm,qg,ql分别为电机端,齿轮箱端,输出端的绝对位置;
τm为电机端输出扭矩,τe为输出端扭矩;
dm,dg,dl分别为电机、齿轮箱与输出端与驱动器外壳间的粘滞阻尼;
Δ=qg-ql,Δ为输出端与齿轮箱端绝对位置偏角。
4.根据权利要求3所述的基于串联弹性驱动器的机械臂碰撞检测方法,其特征在于,在动力学模型的基础上,采用双位姿传感器测量机器人位姿,在动力学模型中消除摩擦力影响,提高整个动态模型的精度。
5.根据权利要求4所述的基于串联弹性驱动器的机械臂碰撞检测方法,其特征在于,根据碰撞要求设定合适的阈值,当残差值超过阈值时则说明机器人与外界发生了碰撞。
CN202010552177.8A 2020-06-17 2020-06-17 基于串联弹性驱动器的机械臂碰撞检测方法 Active CN111693040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010552177.8A CN111693040B (zh) 2020-06-17 2020-06-17 基于串联弹性驱动器的机械臂碰撞检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010552177.8A CN111693040B (zh) 2020-06-17 2020-06-17 基于串联弹性驱动器的机械臂碰撞检测方法

Publications (2)

Publication Number Publication Date
CN111693040A true CN111693040A (zh) 2020-09-22
CN111693040B CN111693040B (zh) 2023-08-11

Family

ID=72481473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010552177.8A Active CN111693040B (zh) 2020-06-17 2020-06-17 基于串联弹性驱动器的机械臂碰撞检测方法

Country Status (1)

Country Link
CN (1) CN111693040B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536330A (zh) * 2022-02-16 2022-05-27 中国医学科学院北京协和医院 基于多个位姿标识确定可形变机械臂的外部受力的方法及机器人系统
CN114536331A (zh) * 2022-02-16 2022-05-27 中国医学科学院北京协和医院 基于关联标识确定可形变机械臂的外部受力的方法及机器人系统
CN117325183A (zh) * 2023-11-21 2024-01-02 深圳职业技术大学 基于位姿传杆的模块化机械臂控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522302A (zh) * 2013-11-12 2014-01-22 哈尔滨工业大学 一种基于重力蓄能的大出力机器人柔性储能关节
CN107962591A (zh) * 2017-11-23 2018-04-27 哈尔滨工业大学 一种用于柔性机器人关节上能测力矩的被动减振弹性元件
KR101901168B1 (ko) * 2017-05-02 2018-09-27 주식회사 레인보우로보틱스 직렬 탄성 액추에이터 제어 방법 및 그를 이용한 시스템
CN108772838A (zh) * 2018-06-19 2018-11-09 河北工业大学 一种基于外力观测器的机械臂安全碰撞策略
CN109202956A (zh) * 2018-11-09 2019-01-15 山东大学 一种基于串联弹性驱动器的柔顺关节机械臂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522302A (zh) * 2013-11-12 2014-01-22 哈尔滨工业大学 一种基于重力蓄能的大出力机器人柔性储能关节
KR101901168B1 (ko) * 2017-05-02 2018-09-27 주식회사 레인보우로보틱스 직렬 탄성 액추에이터 제어 방법 및 그를 이용한 시스템
CN107962591A (zh) * 2017-11-23 2018-04-27 哈尔滨工业大学 一种用于柔性机器人关节上能测力矩的被动减振弹性元件
CN108772838A (zh) * 2018-06-19 2018-11-09 河北工业大学 一种基于外力观测器的机械臂安全碰撞策略
CN109202956A (zh) * 2018-11-09 2019-01-15 山东大学 一种基于串联弹性驱动器的柔顺关节机械臂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任颐宇: "一种带扭矩、位置传感器的柔性机器人关节驱动器实现方案——串联弹性驱动器(SEA)" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536330A (zh) * 2022-02-16 2022-05-27 中国医学科学院北京协和医院 基于多个位姿标识确定可形变机械臂的外部受力的方法及机器人系统
CN114536331A (zh) * 2022-02-16 2022-05-27 中国医学科学院北京协和医院 基于关联标识确定可形变机械臂的外部受力的方法及机器人系统
CN114536330B (zh) * 2022-02-16 2023-10-20 中国医学科学院北京协和医院 基于多个位姿标识确定可形变机械臂的外部受力的方法及机器人系统
CN114536331B (zh) * 2022-02-16 2023-10-20 中国医学科学院北京协和医院 基于关联标识确定可形变机械臂的外部受力的方法及机器人系统
CN117325183A (zh) * 2023-11-21 2024-01-02 深圳职业技术大学 基于位姿传杆的模块化机械臂控制方法

Also Published As

Publication number Publication date
CN111693040B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN111693040A (zh) 基于串联弹性驱动器的机械臂碰撞检测方法
US4989161A (en) Control unit for a multi-degree-of freedom manipulator
US20220105628A1 (en) Obtaining the gear stiffness of a robot joint gear of a robot arm
JP2020101541A (ja) トルク推定のための方法および装置
CN113977578B (zh) 一种液压机械臂末端力软测量方法
JP3933158B2 (ja) ロボットの衝突検出方法
KR20110048870A (ko) 4축 팔레타이징 로봇용 부하 추정 방법
JP4054984B2 (ja) ロボットの制御装置および制御方法
KR101050229B1 (ko) 토크 센서를 갖는 로봇 손
CN113021353B (zh) 机器人碰撞检测方法
CN112959217B (zh) 一种减小磨抛振动的力控制方法及装置
Kim et al. High stiffness capacitive type torque sensor with flexure structure for cooperative industrial robots
CN108242906B (zh) 电机控制系统
Xu et al. Back-drivability improvement of geared system based on disturbance observer and load-side disturbance observer
Zhang et al. Torque estimation technique of robotic joint with harmonic drive transmission
CN110871456B (zh) 机器人
Lee et al. Torque sensor calibration using virtual load for a manipulator
CN109773792B (zh) 串联弹性驱动器的位置控制装置及方法、存储介质、设备
CN111683796A (zh) 机械臂和机器人
Lee et al. A two-staged residual for resilient external torque estimation with series elastic actuators
CN112512758B (zh) 挠曲量推断装置、机器人控制装置以及挠曲量推断方法
US20210237267A1 (en) Robot teaching system
Shimamoto et al. Performance evaluation of force control and reaction force estimation in force sensorless hybrid control for workspace based controller
Lee et al. Integrated transmission force estimation method for series elastic actuators
Du et al. A review of powered backdrivability of robot actuators for human-robot interaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant