CN111686256A - 基于抗菌肽c端连接的抗菌药物 - Google Patents

基于抗菌肽c端连接的抗菌药物 Download PDF

Info

Publication number
CN111686256A
CN111686256A CN202010588448.5A CN202010588448A CN111686256A CN 111686256 A CN111686256 A CN 111686256A CN 202010588448 A CN202010588448 A CN 202010588448A CN 111686256 A CN111686256 A CN 111686256A
Authority
CN
China
Prior art keywords
mel
antibacterial
polypeptide
pore
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010588448.5A
Other languages
English (en)
Other versions
CN111686256B (zh
Inventor
元冰
杨恺
邓智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010588448.5A priority Critical patent/CN111686256B/zh
Publication of CN111686256A publication Critical patent/CN111686256A/zh
Application granted granted Critical
Publication of CN111686256B publication Critical patent/CN111686256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1729Cationic antimicrobial peptides, e.g. defensins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1767Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

本发明公开了一种基于抗菌肽C端连接的抗菌药物,本发明的抗菌药物具有极强的破膜成孔能力,其中,四臂星形结构的多肽连接体S‑Mel表现出最高的成孔效率。单个S‑Mel分子就足以在极低的浓度下打孔,它也可以多个分子协作形成更大的孔洞。此外,S‑Mel有攻击特定环境下的细胞膜以及控制孔道大小的能力。本申请对于设计高效可控的多肽分子机器的研究有助于理解多肽与膜相互作用的分子机制,同时也为发展靶向性杀死特定细胞(比如细菌、肿瘤)的研究提供了有效的策略。

Description

基于抗菌肽C端连接的抗菌药物
技术领域
本发明涉及一种基于抗菌肽C端连接的抗菌药物,属于生物医药技术领域。
背景技术
细菌对于传统抗生素的耐药性问题正在严重威胁全球人类的健康。因此,我们迫切需要开发出一类新型的、不易产生耐药性的抗菌药物。抗菌肽(AMPs)是一类天然存在的、具有广谱抗菌功能的多肽。与传统抗生素的抗菌机制不同,抗菌肽是通过破坏细菌的细胞膜、导致内容物的泄漏而直接杀死细菌,这一杀菌方式很难被细菌克服。因此抗菌肽被认为是一类极具潜力的抗菌药物。目前,天然抗菌肽尚未应用于临床,主要是由于天然抗菌肽在抗菌过程中需要较高的浓度,而高浓度会带来生物毒性以及高成本;并且抗菌肽还面临易水解降解等缺点,限制了其临床应用。利用氨基酸序列设计或纳米技术来调制天然抗菌肽的分子结构,以提高其杀菌效率、降低生物毒性,是制备抗菌肽基新型杀菌药物、进而从根本上解决耐药菌问题的可能途径。
目前,人造抗菌分子设计开发主要分为三类:
(1)利用纳米工程学的手段,将抗菌肽或抗生素分子修饰到金、银、二氧化硅等微纳米粒子的表面,或将抗菌肽衍生物组装成微纳米结构,由此实现了其杀菌能力的提高。究其原因,应该是由于该修饰提高了抗菌肽分子的局部数密度。该方法的缺点:纳米粒子毕竟有其不可忽视的生物毒性,尤其是金、银等重金属粒子。我们课题组曾使用生物毒性较低的碳纳米材料(例如氧化石墨烯、富勒烯),并充分利用了它们与抗菌肽相似的、能够扰动细胞膜结构的性质(例如氧化石墨烯能够从脂膜中抽取脂质分子),将其与蜂毒肽分子化学修饰或物理混合。基于二者协同插膜的分子机制,该策略将天然蜂毒肽的杀菌能力提高了约20倍。但是,纳米材料的生物毒性始终不容忽视。
(2)基于对天然抗菌肽分子的氨基酸调制来提高它在低浓度下的膜作用活性,或基于对抗菌肽分子的修饰来提高其细胞膜作用选择性,从而降低对哺乳动物细胞的伤害,甚至实现靶向杀菌。例如,基于“提高α螺旋的双亲性”且“保持其扭结结构”的指导思想,W.C.Wimley课题组利用正交高通量检测的方法,检验了7776种蜂毒肽的变体分子,并从中筛选出十余种抗菌活性得到提高的变体种类。尤其是其中的Melp5分子,它只变化了5个氨基酸残基(T10A,R22A,K23A,R24Q,Q26L),导致脂质囊泡发生破膜成孔的临界作用浓度却比天然蜂毒肽低了20倍(P/L≤1/1000)。
(3)天然抗菌肽带正电的性质及其双亲结构是它们具有膜作用活性的主要原因,因此,科学工作者们模仿其结构特点、设计合成了大量不同种类的脂多肽(Lipopeptide)、阳离子聚合物分子、或聚碳酸酯(Polycarbonate)分子,并将其功能化(例如赋予其靶向性或环境响应性)、自组装成纳米结构(例如纳米球)。这些精心设计的人造纳米结构大都表现出了改进的杀菌效果。然而,人造分子不同于天然分子,必然会带来无法预料的生物副作用。
我们前期利用聚乙二醇(PEG)等柔性的亲水聚合物分子,共价修饰到抗菌肽的氨基上,构建了一系列不同结构的抗菌复合物分子,包括线性结构、多臂交叉结构、多分支结构。与原始抗菌肽相比,分子修饰增强了复合物的自组装能力,从而形成更大的聚集体,复合物聚集体中的抗菌肽部分在膜内形成“多肽通道”,促使亲水聚合物部分顺利通过膜并最终形成稳定的跨膜孔,从而提高了天然抗菌肽的抗菌活性。同时,致密的聚集体表现出脂质特异性结合行为,从而能够靶向作用于细菌而不会对哺乳动物细胞造成伤害,降低了药物的副作用。但是抗菌肽的抗菌活性还需进一步提高。
发明内容
为解决上述技术问题,本发明通过对多肽分子进行C端修饰,来提高其成孔活性,进一步提出四元连接分子,尤其是其中具有四臂星形结构的复合体分子,它表现出最强的成孔能力。
本发明的第一个目的是提供一种基于抗菌肽C端连接的抗菌药物,所述的抗菌药物包括抗菌肽,以及与所述抗菌肽C端连接的柔性亲水聚合物分子。
进一步地,所述的亲水聚合物分子为四臂结构、线性、双臂或多分支结构。
进一步地,所述的亲水聚合物分子为聚乙二醇、聚丙烯酸或聚乳酸。
进一步地,所述的四臂结构为星形、树状或环状结构。
进一步地,所述的亲水性聚合物分子为星形四臂结构的聚乙二醇。
进一步地,所述的聚乙二醇的分子量为500-12000。
进一步地,所述的抗菌肽为蜂毒肽、LL-37、Magainin或PGLa。
进一步地,所述的亲水聚合物分子通过化学键与抗菌肽C端连接。
进一步地,所述的化学键是对多肽C端预修饰氨基,聚合物分子预修饰马来酰亚胺,通过氨基与马来酰亚胺的键合;或是对多肽C端预修饰GC,聚合物分子预修饰硫醇,通过GC与硫醇的键合。
在本发明中,是基于对多肽分子进行C端修饰,来提高其成孔活性。因为N端是多肽的活性端,负责插膜成孔,而C端是非活性端;对N端进行亲水标记会在一定程度上限制其完成插膜;
本发明还提出了四元连接分子,尤其是其中具有四臂星形结构的复合体分子,它表现出最强的成孔能力。本发明研究发现,多肽发生聚集、形成“四聚体结构”才能够实现跨膜孔的形成。而天然多肽情况下、只有当多肽浓度足够大、才能自发形成四聚体。因此通过设计,人工构造四元连接分子,相当于提前构造好了“四聚体”。这样就可以在多肽链“绝对浓度”较低的情况下,实现插膜成孔。
本发明的有益效果:
本发明提供了具有极强成孔能力的抗菌药物,其中,四臂星形结构的多肽连接体S-Mel表现出极强的成孔能力。单个S-Mel分子就足以在极低的浓度下打孔,它也可以多个分子协作形成更大的孔洞。此外,S-Mel有攻击特定环境下的细胞膜以及控制孔道大小的能力。本申请对于设计高效可控的多肽分子机器的研究有助于理解多肽与膜相互作用的分子机制,同时也为发展杀死特定细胞(比如细菌、肿瘤)的研究提供了很好的策略。
附图说明
图1为不同设计结构的复合体及其在不同浓度(H/L比例)下的成孔效率;
图2为天然Mel以及P-Mel与D-Mel增强的多肽寡聚效果;
图3为(A)S-Mel与细胞膜相互作用、实现成孔的过程;(B-C)不同结构的四元连接复合体分子的成孔效率及寡聚效果对比;
图4为复合体中PEG链的刚性直接影响复合体的成孔活性,即刚性链情况下很难成孔(①),将其转变为柔性链后成孔现象很快发生(②-④)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
成孔能力:采用多肽能够成孔的最小螺旋与磷脂数量之比(H/L)来定义。与P/L是一致的。在复合体里多肽peptide作为helix存在,不再是独立的peptide。
本发明中PEG分子为柔性长链PEG分子,具有线性、双臂和四臂等不同结构。在实施例中,线性PEG分子量为1000,双臂PEG分子量为2000,四臂PEG分子量为4000。
在本发明中,C端修饰是通过:在PEG分子的活性端预修饰巯基基团,在多肽的C端预修饰GC基团,以与聚合物分子巯基基团相连接。
本发明的设计策略:一种天然成孔肽蜂毒肽(Mel)被选择作为多肽机器设计的基本单元,它是一种带正电且具有双亲性的α螺旋结构。Mel由26个氨基酸残基组成,其所带的六个正电荷中的四个位于C端。之前的实验表明当加入带有双层膜的水溶液中后,Mel倾向于吸附在膜表面且其螺旋取向平行于膜表面。即使Mel的浓度高于临界成孔浓度,也仅有一小部分多肽能够插入膜内形成跨膜态。这就表明多肽插入及成孔时分子间的协作是很重要的。我们采用分子动力学的方法模拟了在不同浓度下Mel与膜相互作用的过程。即使高于临界成孔浓度(图2),几乎所有的多肽都位于膜表面,而仅有一条多肽短暂地嵌入膜内,然后迅速回到膜表面。这些结果与之前实验上证明Mel的N端为活性端的结果吻合。然而,在整个模拟过程中,多肽主要以稳定的单体与二聚体的形式存在,三聚体以及四聚体很少出现且不能稳定存在。由于多肽所带的正电荷所导致的静电互斥可能是多肽彼此之间亲和力较弱的主要因素。这些结果说明多肽分子间的协作与聚集对于其插入膜内是非常重要的,但是却受到了C端带电残基的限制。基于这样的考虑,本发明通过对多肽进行设计的方法来增强其在膜上寡聚的能力,比如在Mel的C端修饰一小段聚合物链从而形成特殊结构的纳米连接体。实施例中选择了临床可用的聚乙二醇(PEG)作为连接部分。
连接方法:将250μM C端修饰了GC的多肽(Mel-GC),12.5mM巯基-PEG,以及0.1%二异丙基乙胺(dipea)混合于10%水、40%DMSO、50%甲醇的混合溶液中,57℃下过夜,之后以反向高效液相色谱纯化,即完成连接。
实施例1:通过PEG修饰来设计多肽机器
首先,本实施例设计了单臂(一条PEG短链连接在一个Mel的C端,P-Mel)和双臂(两倍长的PEG链连接两个Mel的C端,D-Mel)的Mel连接体,并模拟两种连接体与原生型Mel在膜上成孔的情况。与原生型Mel在H/L=1/43的浓度成孔相比(成孔概率为33%,图1B),P-Mel与D-Mel在此浓度下均能成孔(成孔概率为100%)。此外,原生型Mel在膜内形成的是短暂的孔,而P-Mel与D-Mel在膜内形成的非常稳定的孔道(多肽在膜内形成跨膜态)。这些结果表明Mel在经过PEG化修饰之后,其成孔能力得到了显著提升。并且与前期在N端修饰的多肽相比,在模拟中,N端修饰的分子活性远低于C端修饰的。
P-Mel与D-Mel成孔能力增强的原因主要在于PEG化修饰后可以增强Mel之间的组装与寡聚。分析了多肽成孔过程以及相应的寡聚程度,如图2所示,Mel在整个模拟过程中主要以单体与二聚体存在,偶尔会有Mel单体嵌入膜内,而单臂C端修饰PEG的P-Mel却倾向于形成四聚体然后插入膜内,从而形成稳定的跨膜孔道,此外双臂C端修饰PEG的D-Mel更是形成了更高的寡聚体(六聚体以及十二聚体),从而在膜上形成更大的孔道。这些结果证实了多肽寡聚对形成稳定的跨膜孔的贡献,更为重要的是,这表明了通过PEG修饰来增强多肽分子间的组装与聚集,从而增强其成孔能力的策略是成功的。
以上的结果说明稳定的四聚体(或者更高的寡聚体,比如六聚体、十二聚体)对于形成稳定的跨膜孔是必要的。在其它更低浓度的模拟中(比如1/128或者1/256),即使有稳定的二聚体与三聚体形成,但是并没有孔形成,这更加证实了四聚体对于成孔的必要性。
实施例2:
本实施例设计了一系列四聚体多肽机器,包括星形(S-Mel)、梳子状(C-Mel)、树状(T-Mel)和环状(R-Mel),如图1A。其中,S-Mel表现出最强的成孔能力,它可以在极低的浓度下(1/256)成孔。
为了了解S-Mel成孔的具体过程,计算在H\L=1\128的浓度下,每一条Mel的N端与膜质心距离的Z分量(如图3)。一开始,S-Mel中的四条Mel都吸附在膜表面,其中有两条Mel轻微嵌入膜上叶磷脂头部与尾部之间。这两条Mel随后快速插入到膜下叶形成跨膜通道。通过对S-Mel分子的回旋半径分析,我们发现S-Mel随着时间快速收缩,所有的Mel螺旋在成孔之前聚集在一起。更低浓度(1/256)下的结果与1/128的结果一致。这些结果表明,即使只有一个S-Mel分子在膜表面,但是分子内部Mel之间的组装和聚集激发了多肽链之间的协作,从而增强了S-Mel的成孔能力。基于这些结果,S-Mel实际上成为了成孔能力非常强的类似于蛋白的多肽分子机器。而在前期N端修饰的实验中,四臂的活性反而不如单臂的活性。
此外,测试了其它PEG链的四聚体连接体结构,比如C-Mel、T-Mel与R-Mel,结果表明连接体链的结构对分子机器的成孔性能有很大影响。如图3B所示,在相同的浓度下(1/128),T-Mel与R-Mel的成孔概率仅为S-Mel的二分之一,而C-Mel则降为0。
定量的回旋半径计算表明与S-Mel相比,其它的四聚连接体结构(T-Mel、R-Mel、C-Mel)的Rg值均增大。这些结果表明连接体结构内部Mel之间寡聚与成孔能力的关联性很大,可以通过控制PEG链的几何形状来调控分子机器内部螺旋之间的协作。
实施例3:
除了几何形状与长度,PEG链的其它性质也能影响S-Mel的成孔效率,比如刚度,它是最可能被外界的刺激(比如光照、溶济的改变或者盐浓度的改变等)所调控的。设计一个链刚性增强的S-Mel(计作S*-Mel),在同样的浓度下(1/128)模拟了它的成孔效率。如图4,结果表明当PEG链非常刚性时,连接体一直吸附在膜表面并呈现一个摊开的状态,然而,当PEG链重新变得柔性后,连接体内部的螺旋很快聚集起来然后形成跨膜孔洞。S-Mel对PEG链刚柔性的反应赋予了其在不同细胞环境中应用的潜力。通过调节PEG链的刚度,可以有效调节复合体的成孔效率。这意味着该复合物分子对不同细胞环境有着潜在的响应能力。
总之,本申请提供了通过影响分子内部螺旋之间的组装与协作,聚合物链的几何结构、长度以及刚度对多肽分子机器的成孔能力造成很大的影响。其中,四臂星形结构的多肽连接体S-Mel表现出极强的成孔能力。单个S-Mel分子就足以在极低的浓度下打孔,它也可以多个分子协作形成更大的孔洞。此外,S-Mel有攻击特定环境下的细胞膜以及控制孔道大小的能力。本申请对于设计高效可控的多肽分子机器的研究有助于理解多肽与膜相互作用的分子机制,同时也为发展杀死特定细胞(比如细菌、肿瘤)的研究提供了很好的策略。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

1.一种基于抗菌肽C端连接的抗菌药物,其特征在于,所述的抗菌药物包括抗菌肽,以及与所述抗菌肽C端连接的柔性亲水聚合物分子。
2.根据权利要求1所述的抗菌药物,其特征在于,所述的亲水聚合物分子为四臂结构、线性、双臂或多分支结构。
3.根据权利要求2所述的抗菌药物,其特征在于,所述的亲水聚合物分子为聚乙二醇、聚丙烯酸或聚乳酸。
4.根据权利要求2所述的抗菌药物,其特征在于,所述的四臂结构为星形、树状或环状结构。
5.根据权利要求4所述的抗菌药物,其特征在于,亲水性聚合物分子为星形四臂结构的聚乙二醇。
6.根据权利要求5所述的抗菌药物,其特征在于,所述的聚乙二醇的分子量为500-12000。
7.根据权利要求1所述的抗菌药物,其特征在于,所述的抗菌肽为蜂毒肽、LL-37、Magainin或PGLa。
8.根据权利要求1所述的抗菌药物,其特征在于,所述的亲水聚合物分子通过化学键与抗菌肽C端连接。
9.根据权利要求8所述的抗菌药物,其特征在于,所述的化学键是对多肽C端预修饰氨基,聚合物分子预修饰马来酰亚胺,通过氨基与马来酰亚胺的键合;或是对多肽C端预修饰GC,聚合物分子预修饰硫醇,通过GC与硫醇的键合。
CN202010588448.5A 2020-06-24 2020-06-24 基于抗菌肽c端连接的抗菌药物 Active CN111686256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010588448.5A CN111686256B (zh) 2020-06-24 2020-06-24 基于抗菌肽c端连接的抗菌药物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010588448.5A CN111686256B (zh) 2020-06-24 2020-06-24 基于抗菌肽c端连接的抗菌药物

Publications (2)

Publication Number Publication Date
CN111686256A true CN111686256A (zh) 2020-09-22
CN111686256B CN111686256B (zh) 2022-12-30

Family

ID=72483224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010588448.5A Active CN111686256B (zh) 2020-06-24 2020-06-24 基于抗菌肽c端连接的抗菌药物

Country Status (1)

Country Link
CN (1) CN111686256B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099640A (zh) * 2021-12-14 2022-03-01 立康荣健(北京)生物医药科技有限公司 用于抑杀幽门螺杆菌的抗菌肽组合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104984321A (zh) * 2015-07-24 2015-10-21 中国药科大学 人源抗菌肽ll-37在制备治疗或预防血栓性疾病药物中的应用
CN105012936A (zh) * 2015-07-30 2015-11-04 中国药科大学 抗菌肽bf-30在制备治疗或预防血栓性疾病药物中的应用
CN110498848A (zh) * 2019-09-10 2019-11-26 中国医学科学院基础医学研究所 一种新型蜂毒肽变体及其应用
CN111110856A (zh) * 2020-02-28 2020-05-08 苏州大学 一种基于抗菌肽和亲水聚合物的抗菌药物及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104984321A (zh) * 2015-07-24 2015-10-21 中国药科大学 人源抗菌肽ll-37在制备治疗或预防血栓性疾病药物中的应用
CN105012936A (zh) * 2015-07-30 2015-11-04 中国药科大学 抗菌肽bf-30在制备治疗或预防血栓性疾病药物中的应用
CN110498848A (zh) * 2019-09-10 2019-11-26 中国医学科学院基础医学研究所 一种新型蜂毒肽变体及其应用
CN111110856A (zh) * 2020-02-28 2020-05-08 苏州大学 一种基于抗菌肽和亲水聚合物的抗菌药物及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRASHANT KUMAR等: "Aurein-Derived Antimicrobial Peptides Formulated with Pegylated Phospholipid Micelles to Target Methicillin-Resistant Staphylococcus aureus Skin Infections", 《ACS INFECT. DIS. 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099640A (zh) * 2021-12-14 2022-03-01 立康荣健(北京)生物医药科技有限公司 用于抑杀幽门螺杆菌的抗菌肽组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111686256B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Raymond et al. Multicomponent peptide assemblies
Kalafatovic et al. Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity
Li et al. Antimicrobial macromolecules: synthesis methods and future applications
Tian et al. Role of peptide self‐assembly in antimicrobial peptides
Zhao et al. Molecular self-assembly and applications of designer peptide amphiphiles
Apostolovic et al. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials
Smeenk et al. Fibril formation by triblock copolymers of silklike β-sheet polypeptides and poly (ethylene glycol)
Xu et al. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels
Matsuura et al. Artificial viral capsid dressed up with human serum albumin
Hao et al. Membrane internalization mechanisms and design strategies of arginine-rich cell-penetrating peptides
Liu et al. Beyond amphiphilic balance: Changing subunit stereochemistry alters the pore-forming activity of nylon-3 polymers
US10336792B2 (en) Antimicrobial peptide dendrimers
Connolly et al. Submonomer synthesis of sequence defined peptoids with diverse side-chains
CN111686256B (zh) 基于抗菌肽c端连接的抗菌药物
Li et al. Selective capture and recovery of monoclonal antibodies by self-assembling supramolecular polymers of high affinity for protein binding
Lim et al. Nanostructures of β-sheet peptides: steps towards bioactive functional materials
Prakash Sharma et al. Self-assembled peptide nanoarchitectures: applications and future aspects
Mahajan et al. Structural modification of proteins and peptides
Li et al. Design of Stimuli‐Responsive Peptides and Proteins
Niu et al. Dual-mechanism glycolipidpeptide with high antimicrobial activity, immunomodulatory activity, and potential application for combined antibacterial therapy
Chen et al. Fabrication of supramolecular antibacterial nanofibers with membrane-disruptive mechanism
WO2009078820A1 (en) Cationic core-shell peptide nanoparticles
Boruah et al. Advances in hybrid peptide-based self-assembly systems and their applications
Adak et al. Self-assembly and antimicrobial activity of lipopeptides containing lysine-rich tripeptides
Halperin-Sternfeld et al. Advantages of self-assembled supramolecular polymers toward biological applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant