CN111681860B - 一种磁耦合谐振小车动态无线充电原边发射线圈 - Google Patents
一种磁耦合谐振小车动态无线充电原边发射线圈 Download PDFInfo
- Publication number
- CN111681860B CN111681860B CN202010416163.3A CN202010416163A CN111681860B CN 111681860 B CN111681860 B CN 111681860B CN 202010416163 A CN202010416163 A CN 202010416163A CN 111681860 B CN111681860 B CN 111681860B
- Authority
- CN
- China
- Prior art keywords
- coil
- transmitting coil
- primary side
- wireless charging
- side transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 19
- 238000010168 coupling process Methods 0.000 title claims abstract description 19
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 19
- 238000005728 strengthening Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 9
- 230000003313 weakening effect Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 claims 1
- 230000018109 developmental process Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 17
- 230000007547 defect Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 230000005404 monopole Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/346—Preventing or reducing leakage fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
本发明涉及一种磁耦合谐振小车动态无线充电原边发射线圈,包括DD型发射线圈,所述DD型发射线圈中的各组成线圈之间还设有多个用于加强磁场强度的补偿线圈。与现有技术相比,本发明具有磁场分布均匀,波动小,传输效率高,充电稳定等优点。
Description
技术领域
本发明涉及动态无线充电技术领域,尤其是涉及一种磁耦合谐振小车动态无线充电原边发射线圈。
背景技术
就目前在电动汽车领域来说动态电能传输系统较静态电能传输系统而言更具有现实意义。通过在地面铺设发射线圈轨道,实现对移动设备的动态充电,使车载电池浅充浅放,能显著降低对电池容量的要求,缩短停靠充电时间,是提高电动车辆行驶里程的有效途径之一。动态电能传输系统中发射线圈里程较长,如何设计发射线圈,提高传输效率,节约能源,提高系统输出功率的稳定性。
目前线圈的布局有长导轨式和分段式。单极型(圆形、方形)和双极型(DD型) 是分段式常用的线圈结构类型。
按照发射线圈的布局方式,动态电能传输系统可分为2类:长导轨式和分段式。长导轨式的一个发射线圈长度远长于拾取线圈,虽然轨道中间的互感基本维持不变,系统输出功率稳定,但是发射拾取之间耦合的磁场区域较小,其余的磁场没有被有效利用,线圈损耗和电磁辐射较大。还有研究学者提出了分段式轨,分段式的发射线圈由多个线圈组合,通过分段切换,将没有耦合的线圈断开,避免了这些线圈产生的电磁辐射,减小了线圈损耗。在线圈结构上,单极型(圆形、方形)和双极型(DD型)是分段式常用的线圈结构类型,双极型线圈相比于单极型线圈,磁场更加集中,耦合线圈的互感更大,轨道两侧漏磁更少,适合运用在动态电能传输系统系统中。然而双极型线圈组成的分段式结构中,线圈之间的过渡区域存在互感零点,移动中的互感变化使得输出功率呈现周期性波动。由此,又有人提出了一种重叠型双发射线圈结构,2个发射线圈在过渡区域的磁场相互补偿,线圈电流相位差被控制在90°,使得叠加产生的磁场分布均匀,功率输出稳定,不足之处在于发射线圈之间引入了无功功率,导致系统效率不高。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种磁耦合谐振小车动态无线充电原边发射线圈。
本发明的目的可以通过以下技术方案来实现:
一种磁耦合谐振小车动态无线充电原边发射线圈,包括DD型发射线圈,所述 DD型发射线圈中的各组成线圈之间还设有多个用于加强磁场强度的补偿线圈。
进一步地,所述的组成线圈的形状为矩形。
进一步地,所述的补偿线圈的个数至少为2个。
进一步地,所述的补偿线圈彼此平行设置于所述DD型发射线圈中的各组成线圈之间。
进一步地,所述的补偿线圈的形状为O字形。
进一步地,所述的组成线圈的匝数至少为3匝。
进一步地,所述的补偿线圈的匝数至少为3匝。
与现有技术相比,本发明具有以下优点:
(1)本发明是一种基于磁耦合谐振小车动态无线充电技术原边发射线圈的设计,DOOD线圈克服了常用到的DD型发射线圈两个矩形绕制线圈中的电流方向反,在两个线圈相邻处磁场减弱厉害,使得车载接收线圈接收到的能量减小,效率低。使得磁场在交界处波动小,系统输出功率稳定,传输效率高。
(2)本发明设计了一种基于磁耦合谐振小车动态无线充电技术原边发射线圈的设计,实现了对原边发射线圈电能传输方式的设计与改进,在高频及一定距离的时候,有效的减少漏磁弱磁的现象,大大提高系统输出功率稳定和传输效率,节约了资源。推动了电动汽车动态无线充电,和对电池的保护,提高电动车辆行驶里程的有效途径。
(3)本发明DOOD线圈克服了常用到的DD型发射线圈两个矩形绕制线圈中的电流方向反,在两个线圈相邻处磁场减弱的弊端,DOOD线圈能够相互补偿彼此在移动过程中的互感零点,有效的减少漏磁弱磁的现象,大大提高系统输出功率稳定和传输效率,节约了资源。
(4)电动汽车目前广泛普及,以及资源紧张的现代,如何提高传输效率,节约资源更是重中之重。电动汽车充电的稳定性保证了电动汽车的运行稳定,系统安全稳定运行、人身安全和经济都有着决定性的作用。本发明专利实现了电动汽车,供电系统的稳定运行,降低了故障所带来的经济损失和人身安全影响。
附图说明
图1为传统DD型线圈连接原理图;
图2为COMSOL仿真传统DD型发射线圈磁场分布图;
图3为本发明的DOOD型线圈连接原理图;
图4为COMSOL仿真补偿型DOOD型线圈磁场分布图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明设计了一种基于磁耦合谐振小车动态无线充电技术原边发射线圈的设计,与传统的DD型发射线圈结构相比,具有减少漏磁弱磁的现象,大大提高系统输出功率稳定,传输效率,节约了资源,提高电动车辆行驶里程的有效途径,系统输出功率稳定,传输效率高,使电动汽车充电更加稳定。
本设计在现有技术DD型线圈连接方法上,设计一种在两线圈交界处增加补偿线圈的方法,制造出实物,并通过COMSOL有限元仿真软件对这两种发射线圈进行磁场仿真,发挥了DD线圈的优点,同时弥补DD线圈的不足,使得磁场在交界处波动小,分布较均匀,电动汽车充电更加稳定,系统输出功率稳定,传输效率高。
1、主要思路
本发明是一种基于磁耦合谐振小车动态无线充电技术原边发射线圈的设计,当主电路将母线电压逆变成高频交流电能通过线圈传输到副边时,已有的所用到的 DD型发射线圈两个矩形绕制线圈中的电流方向反,这种线圈的绕制方法的缺点在于在两个线圈相邻处磁场减弱厉害,使得车载接收线圈接收到的能量减小,在现有技术方法上,分析接触点弱磁漏磁的原因,采用了补偿型DOOD发射线圈,通过 COMSOL有限元仿真软件对这两种发射线圈进行磁场仿真,验证了这种方法的可行性。
2、动态无线充电DOOD发射线圈的工作原理
本设计采用DD线圈之间与两个线圈相结合的DOOD线圈,根据DD接收线圈和两个O接收线圈的并联关系,得到两线圈的等效交流电阻关系表达。由图3 所示,位于原边侧的DD发射线圈与两O线圈之间的电流流向示意图和图1对比。当原边发射线圈仅有DD结构时候,由于两线圈匝数相等,相邻的两个DD电流大小相等,方向相反,由电生磁法拉第定律得到相邻处无磁场,加上两个OO线圈后完美克服了这一缺点,两个线圈的电流流向加强了和DD线圈磁场强度,不会出现电流做无用功浪费了电能。可使系统传输功率更大。通过如图2和图4中各自线圈的COMSOL仿真可以看出补偿型DOOD发射线圈相对于传统的发射线圈连接更加适用动态无线充电系统,磁场波动小,分布较均匀。对效率值进行计算,有所提高。
本设计在DD发射线圈基础上弥补DD发射线圈(如图1所示)的不足,命名图3结构为DOOD型的线圈绕制方式使得线圈间无互感存在,避免了两并联的线圈接触点无磁场。这样可以利用简单的电容参数配置方式实现系统的谐振。根据 DOOD型发射线圈是并联工作的,可以的得到其两线圈的等效交流电阻关系。系统能在整个动态供电过程中能保持系统输出功率稳定。DOOD发射线圈的互感补偿了与DD发射线圈的互补零点,使得在移动过程中输出的稳定,实验结果和仿真验证了理论分析的正确性和可行性。该动态电能传输系统,具有一下特点:1.该系统采用单发射DOOD结构,DOOD线圈能够相互补偿彼此在移动过程中的互感零点。2.原副边之间不需要建立通信,只需在副边进行控制,并且每个拾取之间的控制是相互独立的。3.具有良好的动态恒功率输出效果,波动率控制在±2.03%以内;不同负载情况下的电压波动率均控制在±1.02%以内。
本实施例中,各个线圈的匝数至少为3匝。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (6)
1.一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,用于耦合动态无线充电系统的车载接收线圈,所述车载接收线圈在水平面上的投影包含在所述原边发射线圈在水平面上的投影范围内,所述原边发射线圈包括DD型发射线圈,所述DD型发射线圈中的各组成线圈之间还设有多个用于加强磁场强度的补偿线圈,所述的补偿线圈彼此平行设置于所述DD型发射线圈中的各组成线圈之间,所述的补偿线圈与所述的DD型发射线圈处在同一平面,所述的DD型发射线圈中的各组成线圈与所述补偿线圈之间互不重叠,在移动过程中,通过相互补偿互感零点减少漏磁弱磁现象。
2.根据权利要求1所述的一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,所述的组成线圈的形状为矩形。
3.根据权利要求1所述的一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,所述的补偿线圈的个数至少为2个。
4.根据权利要求1所述的一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,所述的补偿线圈的形状为O字形。
5.根据权利要求1所述的一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,所述的组成线圈的匝数至少为3匝。
6.根据权利要求1所述的一种磁耦合谐振小车动态无线充电原边发射线圈,其特征在于,所述的补偿线圈的匝数至少为3匝。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010416163.3A CN111681860B (zh) | 2020-05-17 | 2020-05-17 | 一种磁耦合谐振小车动态无线充电原边发射线圈 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010416163.3A CN111681860B (zh) | 2020-05-17 | 2020-05-17 | 一种磁耦合谐振小车动态无线充电原边发射线圈 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111681860A CN111681860A (zh) | 2020-09-18 |
CN111681860B true CN111681860B (zh) | 2024-02-27 |
Family
ID=72451903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010416163.3A Active CN111681860B (zh) | 2020-05-17 | 2020-05-17 | 一种磁耦合谐振小车动态无线充电原边发射线圈 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111681860B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270948B (zh) * | 2021-05-26 | 2022-09-23 | 重庆大学 | 抑制功率波动的动态无线充电系统及其参数设计方法 |
CN113852210A (zh) * | 2021-09-29 | 2021-12-28 | 福州大学 | 一种可拓宽无线充电系统充电区域的立体线圈结构 |
CN114161952B (zh) * | 2021-12-14 | 2024-06-18 | 重庆大学 | 通过磁集成抑制功率波动的电动汽车动态无线充电系统 |
CN114285180A (zh) * | 2021-12-21 | 2022-04-05 | 中铁电气化局集团有限公司 | 分段越区磁耦合机构 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101460964A (zh) * | 2006-06-01 | 2009-06-17 | 株式会社村田制作所 | 无线ic器件和无线ic器件用复合元件 |
CN104753150A (zh) * | 2015-03-24 | 2015-07-01 | 华南理工大学 | 一种电动汽车行进式无线充电装置及其控制方法 |
CN104810933A (zh) * | 2015-04-30 | 2015-07-29 | 重庆大学 | 用于电动汽车动态无线供电的渗透型导轨结构 |
CN105262244A (zh) * | 2015-11-23 | 2016-01-20 | 哈尔滨工业大学 | 应用于移动设备无线供电系统的带有正交线圈的接收端 |
CN105429315A (zh) * | 2015-12-29 | 2016-03-23 | 哈尔滨工业大学 | 应用于移动运输设备无线供电的重叠线圈多相接收装置 |
CN106532980A (zh) * | 2016-12-13 | 2017-03-22 | 西南交通大学 | 一种轨道交通列车非接触式动态供电系统线圈 |
CN109560587A (zh) * | 2018-12-21 | 2019-04-02 | 北京理工大学 | 一种双边lcc无线补偿充电优化装置 |
CN109861402A (zh) * | 2019-03-27 | 2019-06-07 | 哈尔滨工业大学 | 一种应用于电动汽车无线供电系统的三极型磁耦合机构发射端及其磁耦合机构 |
CN109923755A (zh) * | 2016-11-04 | 2019-06-21 | 苹果公司 | 感应式功率发射器、接收器及操作方法 |
GB201915710D0 (en) * | 2019-10-30 | 2019-12-11 | Univ Liverpool | Network for and method of wireless power transfer |
CN110696642A (zh) * | 2019-09-27 | 2020-01-17 | 南京理工大学 | 基于电感集成式lcc补偿拓扑的无线充电耦合机构 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9698608B2 (en) * | 2014-12-29 | 2017-07-04 | Qualcomm Incorporated | System and method for multi-coil dual backbone dynamic inductive power transfer |
-
2020
- 2020-05-17 CN CN202010416163.3A patent/CN111681860B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101460964A (zh) * | 2006-06-01 | 2009-06-17 | 株式会社村田制作所 | 无线ic器件和无线ic器件用复合元件 |
CN104753150A (zh) * | 2015-03-24 | 2015-07-01 | 华南理工大学 | 一种电动汽车行进式无线充电装置及其控制方法 |
CN104810933A (zh) * | 2015-04-30 | 2015-07-29 | 重庆大学 | 用于电动汽车动态无线供电的渗透型导轨结构 |
CN105262244A (zh) * | 2015-11-23 | 2016-01-20 | 哈尔滨工业大学 | 应用于移动设备无线供电系统的带有正交线圈的接收端 |
CN105429315A (zh) * | 2015-12-29 | 2016-03-23 | 哈尔滨工业大学 | 应用于移动运输设备无线供电的重叠线圈多相接收装置 |
CN109923755A (zh) * | 2016-11-04 | 2019-06-21 | 苹果公司 | 感应式功率发射器、接收器及操作方法 |
CN106532980A (zh) * | 2016-12-13 | 2017-03-22 | 西南交通大学 | 一种轨道交通列车非接触式动态供电系统线圈 |
CN109560587A (zh) * | 2018-12-21 | 2019-04-02 | 北京理工大学 | 一种双边lcc无线补偿充电优化装置 |
CN109861402A (zh) * | 2019-03-27 | 2019-06-07 | 哈尔滨工业大学 | 一种应用于电动汽车无线供电系统的三极型磁耦合机构发射端及其磁耦合机构 |
CN110696642A (zh) * | 2019-09-27 | 2020-01-17 | 南京理工大学 | 基于电感集成式lcc补偿拓扑的无线充电耦合机构 |
GB201915710D0 (en) * | 2019-10-30 | 2019-12-11 | Univ Liverpool | Network for and method of wireless power transfer |
Non-Patent Citations (1)
Title |
---|
Nguyen Thi Diep ; Nguyen Kien Trung ; Tran Trong Minh.Design and Analysis of Coupling System in Electric Vehicle Dynamic Wireless Charging Applications.2019 IEEE Vehicle Power and Propulsion Conference (VPPC).2020,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN111681860A (zh) | 2020-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111681860B (zh) | 一种磁耦合谐振小车动态无线充电原边发射线圈 | |
CN106208420B (zh) | 一种接收功率低波动电动汽车分段动态无线供电系统 | |
CN103944243B (zh) | 一种电动汽车用带有精确对中功能的感应式非接触充电装置 | |
CN105048650A (zh) | 用于电动汽车行车充电的无线能量传输装置 | |
Xiang et al. | Design of crossed DD coil for dynamic wireless charging of electric vehicles | |
CN112277669A (zh) | 一种分段线圈式电动汽车动态无线充电系统及方法 | |
CN107623364A (zh) | 应用于电动汽车无线充电的双向空间磁场适应型电能接收端 | |
CN105835724A (zh) | 应用于移动设备动态无线供电的n型供电轨道 | |
Jeong et al. | DQ-quadrature power supply coil sets with large tolerances for wireless stationary EV chargers | |
CN104779686B (zh) | 提高基于电磁感应耦合原理的电动汽车非接触式充电效率方法 | |
CN116238355A (zh) | 一种谐振式电动汽车无线充电系统及其线圈的多参数目标优化方法 | |
CN104901400A (zh) | 一种无轨道定位装置的电动汽车路面动态高效感应充电系统 | |
Li et al. | A study of magnetic coupling characteristics of dual receiver coil for dynamic wireless power transfer | |
Purushothaman et al. | A comprehensive review on single-stage WPT converter topologies and power factor correction methodologies in EV charging | |
Xu et al. | Design considerations of an inductive power transfer system for rail application | |
Joseph et al. | Design and simulation of wireless power transfer for electric vehicle | |
CN114665535B (zh) | 恒流恒压输出自主切换的抗偏移无线充电系统 | |
Russer et al. | A system for wireless inductive power supply of electric vehicles while driving along the route | |
CN204858762U (zh) | 应用于电动汽车无线供电的桥臂绕制型平板磁芯接收端 | |
CN112977102A (zh) | 一种电动汽车动态谐振式磁耦合无线充电系统 | |
Chen et al. | Research on Improving the Interoperability of Electric Vehicle Wireless Power Transfer | |
Guidi et al. | Conditions for maximum energy transfer in inductive road-powered electric vehicle applications taking system limitations into account | |
Bingke et al. | A review of research on wireless charging technology for electric vehicles | |
HUYUT | FEM analysis and optimization of pad types and materials for dynamic wireless power transfer systems | |
Lee et al. | Aligned three-phase inductive coupled structure applied to contactless charging paddle system for electric vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |