CN111678430B - 一种道路几何线型和路面三维结构重构系统及重构方法 - Google Patents

一种道路几何线型和路面三维结构重构系统及重构方法 Download PDF

Info

Publication number
CN111678430B
CN111678430B CN202010312390.1A CN202010312390A CN111678430B CN 111678430 B CN111678430 B CN 111678430B CN 202010312390 A CN202010312390 A CN 202010312390A CN 111678430 B CN111678430 B CN 111678430B
Authority
CN
China
Prior art keywords
road surface
road
vehicle
dimensional
geometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010312390.1A
Other languages
English (en)
Other versions
CN111678430A (zh
Inventor
彭崇梅
韦学健
杨昆
操莉
张枢文
张香
马明雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Municipal Maintenance & Management Co ltd
Shanghai Urban Construction City Operation Group Co ltd
Original Assignee
Shanghai Municipal Maintenance & Management Co ltd
Shanghai Urban Construction City Operation Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Municipal Maintenance & Management Co ltd, Shanghai Urban Construction City Operation Group Co ltd filed Critical Shanghai Municipal Maintenance & Management Co ltd
Priority to CN202010312390.1A priority Critical patent/CN111678430B/zh
Publication of CN111678430A publication Critical patent/CN111678430A/zh
Application granted granted Critical
Publication of CN111678430B publication Critical patent/CN111678430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Navigation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

发明提供一种道路几何线型和路面三维结构重构系统及重构方法。该系统包括纵向距离传感器、两个线激光测距仪、几何测量系统、采集卡和中央处理计算机系统。所述纵向距离传感器记录车辆行驶里程。所述线激光测距仪在车辆行进过程中等间隔获取路面横断面的高程信息。所述几何测量系统实时获取车辆所在位置的地理坐标信息和车辆姿态信息。所述中央处理计算机系统建立道路路面立体三维模型。该重构方法包括转换坐标、形成路面点云、建立道路路面立体三维模型和识别立体病害等步骤。该系统通过路面三维重构技术将路面的立体模型重新生成,并且利用颜色来区分不同深度信息,增加了路面立体变形病害的辨识度。

Description

一种道路几何线型和路面三维结构重构系统及重构方法
技术领域
本发明涉及道路检测技术领域,特别涉及路面立体病害检测和定位方法。
背景技术
路面的立体变形病害不仅影响到行车的舒适性,甚至对行车的安全性产生极大影响,例如路面坑塘可能会造成高速行驶的车辆爆胎,较深的车辙可能导致车辆失稳,因此快速、准确检测路面立体病害是病害整治的前提和基础,是道路安全运行的重要保障。
现有技术中通常采用二维图片分析和线激光测距仪检测的方法对路面病害进行识别。然而,基于二维图片的路面病害识别技术受到道路阴影和油污等噪声因素的影响,检测结果需要人为纠正。利用激光测距仪对路面三维表观进行检测和重构的方法在横断面的采样间隔较大,不利于宽度较小的立体病害辨识。横断面扫描点的平面坐标位置具有一定的偏差。同时,GPS和陀螺仪独立工作不利于提高几何线型数据的精度。对养护维修的指导性不足。
因此,亟需开发一种可靠的路面立体病害检测和定位方法。
发明内容
本发明的目的是提供一种道路几何线型和路面三维结构重构系统及重构方法,以解决现有技术中存在的问题。
为实现本发明目的而采用的技术方案是这样的,一种道路几何线型和路面三维结构重构系统,包括纵向距离传感器、两个线激光测距仪、几何测量系统、采集卡和中央处理计算机系统。
所述纵向距离传感器记录车辆行驶里程。所述线激光测距仪在车辆行进过程中等间隔获取路面横断面的高程信息。所述几何测量系统实时获取车辆所在位置的地理坐标信息和车辆姿态信息。所述中央处理计算机系统实时获取纵向距离传感器、线激光测距仪和几何系统的参数,计算并储存包含道路线型的路面三维点云坐标。所述中央处理计算机系统通过路面三维点云坐标建立道路路面立体三维模型。
进一步,所述几何测量系统集成有GPS和陀螺仪。
进一步,所述线激光测距仪采用非接触式3D线激光距离扫描仪。所述线激光测距仪对路面宏观纹理进行扫描,获得反应路面横断面高程信息的点云数据。其中,每个横断面上的采样点数不少于1500 个。
进一步,所述线激光测距仪每间隔20cm采集一个横断面的高程信息。
进一步,GPS外接天线安装在车辆中轴线位置处。所述两个线激光测距仪分别布置在GPS外接天线的两侧。
本发明还公开一种采用上述系统的道路几何线型和路面三维结构重构方法,包括以下步骤:
1)在车辆上部署检测系统。
2)启动车辆和检测系统。车辆行进过程中,纵向距离测量传感器测量累积行驶里程。线激光测距仪按照等间隔获取路面横断面高程信息。几何系统实时采集车辆行驶路径下的地理位置坐标信息和车辆姿态信息。
3)将行车轨迹下经纬度坐标转换为空间直角坐标。
4)将路面高程信息与平面坐标进行叠加,形成路面高密度点云。
5)将步骤4)所得三维点云坐标绘制为空间曲面,建立道路路面立体三维模型。
进一步,步骤5)中,根据深度信息对三维模型图像进行着色。
进一步,步骤5)之后,还具有对模型进行浏览,识别立体病害并记录桩号位置的相关步骤。
本发明的技术效果是毋庸置疑的:
A.通过路面三维重构技术将路面的立体模型重新生成,并且利用颜色来区分不同深度信息,增加了路面立体变形病害的辨识度;
B.通过将线激光测距仪、几何测量单元、纵向距离测量传感器等整合成同一个系统,实现道路三维检测的自动化、高效化以及精细化目标;
C.通过在使用的嵌入式全球导航卫星系统中GPS、GLONASS、 GALILEO卫星信号相互补充,同时结合动态差分技术和陀螺仪,显著提高了车辆位置信息的精度和稳定性。
附图说明
图1为重构系统结构示意图;
图2为重构方法流程图;
图3为坐标变换示意图;
图4为试验路段立体病害示意图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
参见图1,本实施例针对现有道路三维重构技术手段的检测数据采样点少以及精度不高的现状,公开一种道路几何线型和路面三维结构重构系统,包括纵向距离传感器、两个线激光测距仪、几何测量系统、采集卡和中央处理计算机系统。
所述纵向距离传感器记录车辆行驶里程。所述纵向距离传感器采集的数据可以共享给激光扫描系统,用于控制扫描间隔。
所述线激光测距仪采用非接触式3D线激光距离扫描仪。所述线激光测距仪每间隔20cm采集一个横断面的高程信息。所述线激光测距仪可检测路面横向4米宽度范围内断面高程,采样点数为1536个,高程方向分辨率为0.1mm。所述线激光测距仪对路面宏观纹理进行扫描,获得反应路面横断面高程信息的点云数据。所述线激光测距仪以纵向距离传感器记录的车辆行驶里程为参考触发扫描。几何系统实时获取车辆所在位置的地理坐标信息,同时可根据几何系统获取车辆的车头朝向、车辆俯仰角以及横坡角。在后期数据处理上,以GPS导出的地理坐标位置为基础恢复行驶轨迹下道路的几何线型,同时每一个横断面高程对应一个地理坐标信息。
所述几何测量系统集成有GPS和陀螺仪。所述陀螺仪在行驶方向精确度为0.02°,在旋转和俯仰方向精确度为0.005°,水平精确度为0.02m,竖直精确度为0.05m。GPS外接天线安装在车辆中轴线位置处。所述两个线激光测距仪分别布置在GPS外接天线的两侧。所述几何测量系统实时获取车辆所在位置的地理坐标信息和车辆姿态信息。在检测过程中,几何系统实时采集车辆所在地理位置信息以及车辆的姿态信息,并且陀螺仪可以在卫星失锁的条件下维持车辆定位30s。
所述中央处理计算机系统实时获取纵向距离传感器、线激光测距仪和几何系统的参数,计算并储存包含道路线型的路面三维点云坐标。
随着车在不断前进,线激光扫描器将以20cm为间隔对路面进行扫描,同时结合GPS采集的地理坐标信息,由此可以获得包含道路线型的高密度路面三维点云坐标。所述中央处理计算机系统根据路面三维点云坐标利用图像处理软件建立道路路面立体三维模型,实现路面三维重构。
本实施例通过使用线激光测距仪可缩短道路横断面采样间隔,增加采样点数。一方面引入动态差分技术提高GPS精度,同时将GPS、陀螺仪进行集成,在提升数据精度的同时可保证在卫星信号丢失的情况下30s内继续输出高精度的GPS坐标,并且提升了线激光测距仪扫描点在平面投影坐标的精度。
实施例2:
本实施例公开一种基础的道路几何线型和路面三维结构重构系统,包括纵向距离传感器、两个线激光测距仪、几何测量系统、采集卡和中央处理计算机系统。
所述纵向距离传感器记录车辆行驶里程。
所述线激光测距仪采用非接触式3D线激光距离扫描仪。所述线激光测距仪每间隔20cm采集一个横断面的高程信息。每个横断面上的采样点数不少于1500个。所述线激光测距仪对路面宏观纹理进行扫描,获得反应路面横断面高程信息的点云数据。
所述几何测量系统集成有GPS和陀螺仪。GPS外接天线安装在车辆中轴线位置处。所述两个线激光测距仪分别布置在GPS外接天线的两侧。所述几何测量系统实时获取车辆所在位置的地理坐标信息和车辆姿态信息。
所述中央处理计算机系统实时获取纵向距离传感器、线激光测距仪和几何系统的参数,计算并储存包含道路线型的路面三维点云坐标。所述中央处理计算机系统通过路面三维点云坐标建立道路路面立体三维模型。
实施例3:
参见图2,本实施例公开一种采用实施例2所述系统的道路几何线型和路面三维结构重构方法,包括以下步骤:
1)在车辆上部署检测系统。
2)启动车辆和检测系统。车辆行进过程中,纵向距离测量传感器测量累积行驶里程。线激光测距仪按照等间隔获取路面横断面高程信息。几何系统实时采集车辆行驶路径下的地理位置坐标信息和车辆姿态信息。
3)参见图3,将行车轨迹下经纬度坐标转换为空间直角坐标。采样时GPS经纬度换算的平面直角坐标为(X0,Y0,Z0)。线激光测距仪瞬时扫描横断面上第i个点的空间坐标为(Xi,Yi,Zi)。
Figure GDA0003579070430000051
Figure GDA0003579070430000052
Zi=Z0-h+Hi。
式中,N为3D线激光测距仪在一次扫描中扫描点的个数。Hi为第i个点的高程。L为扫描总宽度,m。h为GPS外接天线距离轮胎底部安装高度,m。α为陀螺仪瞬时车头指向角。
4)将路面高程信息与平面坐标进行叠加,形成路面高密度点云。
5)利用matlab软件surf功能将步骤4)所得三维点云坐标绘制为空间曲面,建立道路路面立体三维模型。根据深度信息对三维模型图像进行着色。为了使得绘制的曲面平顺光滑,本实施例在制图时使用小波变换函数进行插值。
6)对模型进行浏览,识别立体病害并记录桩号位置供后续养护维修时参考。检测一段试验路辨识出的识别路面坑槽、拥包以及车辙等立体病害如图4所示。
本实施例能够构建行车轨迹下道路的几何线型,同时能够将路面的坑塘、拥包以及车辙等立体病害利用颜色进行直观标识和定量检测,为路面立体病害检测和定位提供了一种新方法。

Claims (4)

1.一种道路几何线型和路面三维结构重构方法,其特征在于,采用的道路几何线型和路面三维结构重构系统包括纵向距离传感器、两个线激光测距仪、几何测量系统、采集卡和中央处理计算机系统;
所述纵向距离传感器记录车辆行驶里程;所述线激光测距仪在车辆行进过程中等间隔获取路面横断面的高程信息;所述线激光测距仪以纵向距离传感器记录的车辆行驶里程为参考触发扫描;所述几何测量系统集成有GPS和陀螺仪;所述几何测量系统实时获取车辆所在位置的地理坐标信息和车辆姿态信息;所述车辆姿态信息包括车头朝向、车辆俯仰角以及横坡角;所述中央处理计算机系统实时获取纵向距离传感器、线激光测距仪和几何系统的参数;所述中央处理计算机系统以GPS导出的地理坐标位置为基础恢复行驶轨迹下道路的几何线型,同时每一个横断面高程对应一个地理坐标信息;所述中央处理计算机系统计算并储存包含道路线型的路面三维点云坐标;所述中央处理计算机系统通过路面三维点云坐标建立道路路面立体三维模型,实现路面三维重构;道路几何线型和路面三维结构重构方法包括以下步骤:
1)在车辆上部署道路几何线型和路面三维结构重构系统;
2)启动车辆和检测系统;车辆行进过程中,纵向距离测量传感器测量累积行驶里程;线激光测距仪按照等间隔获取路面横断面高程信息;几何系统实时采集车辆行驶路径下的地理位置坐标信息和车辆姿态信息;
3)将行车轨迹下经纬度坐标转换为空间直角坐标;采样时GPS经纬度换算的平面直角坐标为(X0,Y0,Z0);线激光测距仪瞬时扫描横断面上第i个点的空间坐标为(Xi,Yi,Zi);
Figure FDA0003579070420000011
Figure FDA0003579070420000012
Zi=Z0-h+Hi
式中,N为3D线激光测距仪在一次扫描中扫描点的个数;Hi为第i个点的高程;L为扫描总宽度,m;h为GPS外接天线距离轮胎底部安装高度,m;α为陀螺仪瞬时车头指向角;
4)将路面高程信息与平面坐标进行叠加,形成路面高密度点云;
5)将步骤4)所得三维点云坐标绘制为空间曲面,建立道路路面立体三维模型;根据深度信息对三维模型图像进行着色;其中,在绘制空间曲面时使用小波变换函数进行插值;
6)对模型进行浏览,识别立体病害并记录桩号位置;所述立体病害包括路面坑槽、拥包以及车辙。
2.根据权利要求1所述的一种道路几何线型和路面三维结构重构方法,其特征在于:所述线激光测距仪采用非接触式3D线激光距离扫描仪;所述线激光测距仪对路面宏观纹理进行扫描,获得反应路面横断面高程信息的点云数据;其中,每个横断面上的采样点数不少于1500个。
3.根据权利要求1所述的一种道路几何线型和路面三维结构重构方法,其特征在于:所述线激光测距仪每间隔20cm采集一个横断面的高程信息。
4.根据权利要求1所述的一种道路几何线型和路面三维结构重构方法,其特征在于:GPS外接天线安装在车辆中轴线位置处;所述两个线激光测距仪分别布置在GPS外接天线的两侧。
CN202010312390.1A 2020-04-20 2020-04-20 一种道路几何线型和路面三维结构重构系统及重构方法 Active CN111678430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010312390.1A CN111678430B (zh) 2020-04-20 2020-04-20 一种道路几何线型和路面三维结构重构系统及重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010312390.1A CN111678430B (zh) 2020-04-20 2020-04-20 一种道路几何线型和路面三维结构重构系统及重构方法

Publications (2)

Publication Number Publication Date
CN111678430A CN111678430A (zh) 2020-09-18
CN111678430B true CN111678430B (zh) 2022-05-24

Family

ID=72451710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010312390.1A Active CN111678430B (zh) 2020-04-20 2020-04-20 一种道路几何线型和路面三维结构重构系统及重构方法

Country Status (1)

Country Link
CN (1) CN111678430B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115272177B (zh) * 2022-06-15 2023-07-14 成都理工大学 一种非接触式路面断面信息提取与分析方法
CN117853682A (zh) * 2024-03-07 2024-04-09 苏州魔视智能科技有限公司 基于隐式特征的路面三维重建方法、装置、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089548B (zh) * 2007-07-06 2010-05-26 哈尔滨工业大学 路面车辙三维信息检测方法
CN201576094U (zh) * 2009-12-25 2010-09-08 樊涛 汽车安全行驶定位系统
US9267792B2 (en) * 2013-01-21 2016-02-23 Systèmes Pavemetrics Inc. Method and apparatus for compensating lateral displacements and low speed variations in the measure of a longitudinal profile of a surface
CN103835212B (zh) * 2014-02-21 2015-11-25 哈尔滨工业大学 一种公路路面三维检测系统
CN110864696A (zh) * 2019-09-19 2020-03-06 福建农林大学 一种基于车载激光惯导数据的三维高精地图绘制方法

Also Published As

Publication number Publication date
CN111678430A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US10816347B2 (en) Tunnel mapping system and methods
CN111457902B (zh) 基于激光slam定位的水域测量方法及系统
CN106123908B (zh) 车辆导航方法和系统
EP2356584B1 (en) Method of generating a geodetic reference database product
CN111678430B (zh) 一种道路几何线型和路面三维结构重构系统及重构方法
CN112415536B (zh) 一种自动获取车载激光点云行车轨迹异常区域的方法
CN111547084B (zh) 基于自移动式轨道交通移动三维扫描系统的数据处理方法
CN110986878A (zh) 基于移动测量系统自动化提取铁轨断面的方法
DK2588882T3 (en) A method of producing a digital photo, wherein at least some of the pixels comprise position information and such a digital photo
CN104005325A (zh) 基于深度和灰度图像的路面裂缝检测装置和方法
CN112455502B (zh) 基于激光雷达的列车定位方法及装置
Abuhadrous et al. Digitizing and 3D modeling of urban environments and roads using vehicle-borne laser scanner system
CN112105541B (zh) 在铁路轨道上定位感兴趣点或线、在铁路轨道上定位和驱动干预机器的方法
CN107402006A (zh) 基于轨道几何特征信息匹配的列车精密定位方法和系统
US11551411B2 (en) Data processor, data processing method, and data processing program for determining correspondence relationships between laser scanning point clouds
CN1959430A (zh) 一种中低轨卫星的精密定轨系统及其实现方法
CN114719884A (zh) 一种惯导系统姿态测量精度评估方法及应用
CN111455787B (zh) 一种基于路面三维数字化的路面检测系统
KR102137043B1 (ko) 환경센서와 정밀지도를 이용한 측위 정확도 개선 시스템
CN113608225B (zh) 一种基于合成孔径声纳的水底目标埋深深度计算方法
WO2010068185A1 (en) Method of generating a geodetic reference database product
KR102198195B1 (ko) 편의성이 향상된 mms를 이용한 맵 데이터 제작 방법
CN114966793A (zh) 三维测量系统、方法及gnss系统
Toyama et al. Structure gauge measuring equipment using laser range scanners and structure gauge management system
Wei et al. Application of intelligent UAV onboard LiDAR measurement technology in topographic mapping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant