CN111676010A - Preparation method of perovskite quantum dots/Eu-MOF composite light-emitting material - Google Patents
Preparation method of perovskite quantum dots/Eu-MOF composite light-emitting material Download PDFInfo
- Publication number
- CN111676010A CN111676010A CN202010576406.XA CN202010576406A CN111676010A CN 111676010 A CN111676010 A CN 111676010A CN 202010576406 A CN202010576406 A CN 202010576406A CN 111676010 A CN111676010 A CN 111676010A
- Authority
- CN
- China
- Prior art keywords
- mof
- perovskite quantum
- preparation
- solution
- quantum dots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 66
- 239000000463 material Substances 0.000 title claims abstract description 53
- 239000012924 metal-organic framework composite Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000000243 solution Substances 0.000 claims abstract description 60
- 239000012621 metal-organic framework Substances 0.000 claims abstract description 36
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 33
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims abstract description 28
- 239000012917 MOF crystal Substances 0.000 claims abstract description 22
- 238000003756 stirring Methods 0.000 claims abstract description 19
- 239000002243 precursor Substances 0.000 claims abstract description 17
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims abstract description 14
- JVYYYCWKSSSCEI-UHFFFAOYSA-N europium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Eu+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JVYYYCWKSSSCEI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- QAIHWMZHLIBAFX-QZOPMXJLSA-N (z)-octadec-9-en-1-amine;(z)-octadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCN.CCCCCCCC\C=C/CCCCCCCC(O)=O QAIHWMZHLIBAFX-QZOPMXJLSA-N 0.000 claims abstract description 4
- 239000002244 precipitate Substances 0.000 claims description 6
- 239000000047 product Substances 0.000 claims description 6
- 238000001291 vacuum drying Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000001723 curing Methods 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 238000000967 suction filtration Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- -1 rare earth ions Chemical class 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/664—Halogenides
- C09K11/665—Halogenides with alkali or alkaline earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种钙钛矿量子点/Eu‑MOF复合发光材料的制备方法,包括步骤有:S1.将六水硝酸铕和联苯四甲酸加入DMF和水的混合溶液中加热并冷却,除去残留的DMF,真空干燥得到Eu‑MOF晶体;S2.将干燥后的Eu‑MOF晶体与PbBr2的DMF溶液混合得到PbBr2@Eu‑MOF的前驱体溶液;S3.加入CsBr,搅拌至澄清后加入油酸油胺;然后转移至甲苯中初步制得钙钛矿量子点/Eu‑MOF复合发光材料;S4.上述材料离心分散在正己烷溶液中,搅拌并滤出沉淀等步骤,制得高纯度的钙钛矿量子点/Eu‑MOF复合发光材料,解决了钙钛矿量子点稳定性差的问题,及目前白光LED存在的红光区缺失的问题。
The invention discloses a preparation method of a perovskite quantum dot/Eu-MOF composite light-emitting material, comprising the following steps: S1. adding europium nitrate hexahydrate and biphenyltetracarboxylic acid into a mixed solution of DMF and water for heating and cooling, Remove residual DMF, and vacuum dry to obtain Eu-MOF crystals; S2. Mix the dried Eu-MOF crystals with the DMF solution of PbBr 2 to obtain a precursor solution of PbBr 2 @Eu-MOF; S3. Add CsBr and stir until it becomes clear Then add oleyl amine oleate; then transfer to toluene to prepare perovskite quantum dots/Eu-MOF composite luminescent material; S4. The above materials are centrifugally dispersed in n-hexane solution, stirred and filtered out of the precipitation and other steps to prepare The high-purity perovskite quantum dots/Eu-MOF composite light-emitting material solves the problem of poor stability of perovskite quantum dots and the lack of the red light region of the current white light LEDs.
Description
技术领域technical field
本发明涉及复合发光材料领域,尤其涉及一种钙钛矿量子点/Eu-MOF复合发光材料的制备方法。The invention relates to the field of composite light-emitting materials, in particular to a preparation method of a perovskite quantum dot/Eu-MOF composite light-emitting material.
背景技术Background technique
全无机钙钛矿量子点CsPbX3(X=Cl,Br,I)具有高量子产率,发光可调,窄的发射光谱和广泛的色域等优点,在光电子器件方面展现出了巨大的潜力。然而,钙钛矿量子点由于其离子特性,在环境条件下化学稳定性差,对湿度、光照和温度非常敏感。此外,内部键合的高度离子化导致其极易发生离子交换反应。如何解决钙钛矿量子点的稳定性问题,成为急需解决的难题。All-inorganic perovskite quantum dots CsPbX 3 (X=Cl, Br, I) have the advantages of high quantum yield, tunable luminescence, narrow emission spectrum and wide color gamut, etc., showing great potential in optoelectronic devices . However, due to their ionic properties, perovskite quantum dots suffer from poor chemical stability under ambient conditions and are very sensitive to humidity, light, and temperature. In addition, the high ionization of the internal bond makes it highly susceptible to ion exchange reactions. How to solve the stability problem of perovskite quantum dots has become an urgent problem to be solved.
MOFs材料具有多孔性、高比表面积、不饱和的金属位点以及结构的多样性等特点,使其具有一些特殊的物理化学性能。近年来受到了研究者的广泛关注,在气体储存和分离、分子识别、光电磁材料、药物输送等多个领域显示出应用前景。MOFs可以作为主体材料接受多种客体材料而实现新型功能材料的组装。如前所述,钙钛矿量子点也是近年来研究的焦点。因此,二者复合必将实现性能的调控与协同提升,各种各样的新型量子点@MOFs复合材料应运而生,其应用领域也不断扩展。MOFs are characterized by porosity, high specific surface area, unsaturated metal sites, and structural diversity, which endow them with some special physicochemical properties. In recent years, it has received extensive attention from researchers and has shown application prospects in many fields such as gas storage and separation, molecular recognition, opto-electromagnetic materials, and drug delivery. MOFs can be used as host materials to accept a variety of guest materials to realize the assembly of novel functional materials. As mentioned earlier, perovskite quantum dots have also been the focus of research in recent years. Therefore, the combination of the two is bound to realize the regulation and synergistic improvement of performance, and various new quantum dots@MOFs composite materials have emerged as the times require, and their application fields have also continued to expand.
目前白光LED主要是采用蓝光芯片+蓝光能有效激发的黄色荧光粉的器件结构,但是这种结构存在很明显的缺点就是缺少红光组分,光谱没有全部覆盖可见光范围,因而所形成的白光显色指数较低。为了解决红光缺失的问题,有大量研究通过稀土离子掺杂的方式实现钙钛矿量子点和稀土离子的组合发光,但是这种方式还是不可避免钙钛矿量子点本事稳定性较差的问题,以及稀土离子掺杂量受到限制,无法实现大剂量掺杂,稀土离子的发光较钙钛矿量子点弱很多。At present, the white light LED mainly adopts the device structure of blue light chip + yellow phosphor that can be effectively excited by blue light, but this structure has the obvious disadvantage that it lacks the red light component, and the spectrum does not fully cover the visible light range. Color index is low. In order to solve the problem of lack of red light, there are a lot of studies to realize the combined luminescence of perovskite quantum dots and rare earth ions by doping with rare earth ions, but this method still inevitably has the problem of poor stability of perovskite quantum dots. , and the doping amount of rare earth ions is limited, so large dose doping cannot be achieved, and the luminescence of rare earth ions is much weaker than that of perovskite quantum dots.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种钙钛矿量子点/Eu-MOF复合发光材料的制备方法,用Eu-MOF来稳定钙钛矿量子点,解决了钙钛矿量子点稳定性差的问题,以及解决目前白光LED存在的红光区缺失的问题。The purpose of the present invention is to provide a preparation method of perovskite quantum dots/Eu-MOF composite light-emitting material, use Eu-MOF to stabilize perovskite quantum dots, solve the problem of poor stability of perovskite quantum dots, and solve At present, the problem of missing red light region in white light LED exists.
为了达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
本发明提供了一种钙钛矿量子点/Eu-MOF复合发光材料的制备方法,包括如下步骤:The invention provides a preparation method of a perovskite quantum dot/Eu-MOF composite light-emitting material, comprising the following steps:
S1.将六水硝酸铕和联苯四甲酸加入DMF和水的混合溶液中,所述六水硝酸铕和联苯四甲酸的摩尔比为1︰(0.2-1);S1. Europium nitrate hexahydrate and biphenyltetracarboxylic acid are added in the mixed solution of DMF and water, and the mol ratio of described europium nitrate hexahydrate and biphenyltetracarboxylic acid is 1:(0.2-1);
将混合后的溶液放入反应釜中加热至100-150℃反应10-48h;自然冷却至室温,抽滤提纯生成物,除去残留的DMF,并通过真空干燥后得到Eu-MOF晶体;Put the mixed solution into the reaction kettle and heat it to 100-150℃ for 10-48h; naturally cool to room temperature, purify the product by suction filtration, remove the residual DMF, and obtain Eu-MOF crystal after vacuum drying;
S2.将干燥后的Eu-MOF晶体与PbBr2的DMF溶液混合搅拌一定时间后,得到PbBr2@Eu-MOF的前驱体溶液;S2. After mixing and stirring the dried Eu-MOF crystal with the DMF solution of PbBr 2 for a certain period of time, a precursor solution of PbBr 2 @Eu-MOF is obtained;
S3.在PbBr2@Eu-MOF的前驱体溶液中加入CsBr,搅拌至澄清后加入油酸油胺;然后转移至甲苯中初步制得钙钛矿量子点/Eu-MOF复合发光材料;S3. Add CsBr to the precursor solution of PbBr 2 @Eu-MOF, stir until it becomes clear, then add oleylamine oleate; then transfer to toluene to prepare perovskite quantum dots/Eu-MOF composite luminescent material;
S4.将步骤S3初步制得的钙钛矿量子点/Eu-MOF复合发光材料离心分散在正己烷溶液中,搅拌均匀,滤出沉淀,除去表面残留的钙钛矿量子点,真空干燥,制得高纯度的钙钛矿量子点/Eu-MOF复合发光材料。S4. Centrifugally disperse the perovskite quantum dots/Eu-MOF composite luminescent material preliminarily obtained in step S3 in a n-hexane solution, stir evenly, filter out the precipitate, remove the remaining perovskite quantum dots on the surface, vacuum dry, and prepare A high-purity perovskite quantum dot/Eu-MOF composite luminescent material was obtained.
进一步的,所述步骤S1中的六水硝酸铕、联苯四甲酸的摩尔比为1︰0.6。Further, the molar ratio of europium nitrate hexahydrate and biphenyltetracarboxylic acid in the step S1 is 1:0.6.
进一步的,所述步骤S1中,DMF和水的体积比为5︰(0.5-2)。Further, in the step S1, the volume ratio of DMF and water is 5:(0.5-2).
进一步的,所述步骤S1中,Eu-MOF晶体在50-80℃的温度下真空干燥5-10h制得。Further, in the step S1, the Eu-MOF crystal is obtained by vacuum drying at a temperature of 50-80° C. for 5-10 hours.
进一步的,所述步骤S2中,DMF溶液的体积为5-20ml,Eu-MOF晶体与PbBr2的DMF溶液搅拌时间为6-24h。Further, in the step S2, the volume of the DMF solution is 5-20ml, and the stirring time of the Eu-MOF crystal and the DMF solution of PbBr 2 is 6-24h.
进一步的,所述步骤S2中,CsBr与PbBr2的摩尔比为1:1。Further, in the step S2, the molar ratio of CsBr to PbBr 2 is 1:1.
进一步的,所述步骤S3中,制得的CsBr和PbBr2@Eu-MOF的混合前驱体溶液与甲苯的体积比为(0.1-2):10。Further, in the step S3, the volume ratio of the prepared mixed precursor solution of CsBr and PbBr 2 @Eu-MOF to toluene is (0.1-2):10.
进一步的,利用该制备方法制得的钙钛矿量子点/Eu-MOF复合发光材料,应用于LED中。Further, the perovskite quantum dot/Eu-MOF composite light-emitting material prepared by the preparation method is used in LEDs.
进一步的,将钙钛矿量子点/Eu-MOF复合发光材料与紫外固化胶混合,滴涂到蓝光LED芯片上,在紫外光下固化后,得到白光LED。Further, the perovskite quantum dots/Eu-MOF composite luminescent material is mixed with UV curing glue, drop-coated on the blue LED chip, and cured under UV light to obtain a white LED.
采用上述技术方案,本申请提供的钙钛矿量子点/Eu-MOF复合发光材料的制备方法,具有的技术效果有:Using the above technical solution, the preparation method of the perovskite quantum dot/Eu-MOF composite light-emitting material provided by the present application has the following technical effects:
1)本申请采用了MOF先跟PbBr2进行混合的步骤,可以使MOF对Pb2+离子进行吸附,有利于下一步的复合材料合成,使钙钛矿量子点和MOF更好的结合,且钙钛矿量子点在MOF中分散性更好,在提高了钙钛矿量子点稳定性的同时,有效的保留了钙钛矿量子点的优异的光学特性;1) This application adopts the step of mixing MOF with PbBr 2 first, which can make the MOF adsorb Pb 2+ ions, which is beneficial to the next step of composite material synthesis, so that the perovskite quantum dots and MOF are better combined, and Perovskite quantum dots have better dispersion in MOF, which improves the stability of perovskite quantum dots and effectively retains the excellent optical properties of perovskite quantum dots;
2)通过调整钙钛矿量子点成分,可以获得覆盖可见光范围内的钙钛矿量子点CsPbX3/Eu-MOF复合发光材料;2) By adjusting the composition of perovskite quantum dots, the perovskite quantum dots CsPbX 3 /Eu-MOF composite luminescent material covering the visible light range can be obtained;
3)利用钙钛矿量子点的绿色发光性能和稀土MOF发红光的性能,合成一种能够同时发出绿光和红光的复合发光材料,该复合发光材料解决了钙钛矿量子点在LED应用上的难题,使钙钛矿量子点在LED方面的应用得到提升;3) Utilizing the green light-emitting properties of perovskite quantum dots and the red light-emitting properties of rare-earth MOFs, a composite light-emitting material capable of emitting green light and red light at the same time is synthesized. The composite light-emitting material solves the problem of perovskite quantum dots in LEDs. The application problems have improved the application of perovskite quantum dots in LEDs;
4)本申请中的原材料简单,反应条件温和、操作简单、高效。4) The raw materials in this application are simple, the reaction conditions are mild, and the operation is simple and efficient.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1是实施例1制得的CsPbBr3/Eu-MOF复合发光材料的透射电子显微镜(TEM)图。FIG. 1 is a transmission electron microscope (TEM) image of the CsPbBr 3 /Eu-MOF composite light-emitting material prepared in Example 1. FIG.
图2是实施例1制得的CsPbBr3/Eu-MOF复合发光材料的发射光谱图。FIG. 2 is an emission spectrum diagram of the CsPbBr 3 /Eu-MOF composite light-emitting material prepared in Example 1. FIG.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
下面通过具体的实施例并结合附图对本发明做进一步的详细描述。The present invention will be further described in detail below through specific embodiments and in conjunction with the accompanying drawings.
本申请提供了的钙钛矿量子点/Eu-MOF复合发光材料的制备方法,该制备方法包括如下步骤:The present application provides a preparation method of perovskite quantum dots/Eu-MOF composite light-emitting material, and the preparation method includes the following steps:
S1.将六水硝酸铕和联苯四甲酸加入DMF(N,N-二甲基甲酰胺)的水溶液中,所述六水硝酸铕和联苯四甲酸的摩尔比为1︰(0.2-1);S1. adding europium nitrate hexahydrate and biphenyl tetracarboxylic acid to the aqueous solution of DMF (N,N-dimethylformamide), the mol ratio of europium nitrate hexahydrate and biphenyl tetracarboxylic acid is 1: (0.2-1 );
将上述混合溶液放入反应釜中加热至100-150℃反应10-48h;自然冷却至室温,抽滤提纯生成物,除去残留的DMF(N,N-二甲基甲酰胺),并通过真空干燥后得到Eu-MOF晶体;The above mixed solution was put into the reactor and heated to 100-150°C for 10-48h; naturally cooled to room temperature, the product was purified by suction filtration, the residual DMF (N,N-dimethylformamide) was removed, and the vacuum After drying, Eu-MOF crystals were obtained;
上述方案中,以刚性和高度对称的联苯四甲酸用来制备Eu-MOF晶体,具有更优异的传能效果,进而获得荧光性能优秀的MOF材料;In the above scheme, the rigid and highly symmetrical biphenyltetracarboxylic acid is used to prepare Eu-MOF crystals, which has a more excellent energy transfer effect, thereby obtaining MOF materials with excellent fluorescence properties;
S2.将干燥后的Eu-MOF晶体与PbBr2的DMF溶液混合搅拌一定时间后,得到PbBr2@Eu-MOF的前驱体溶液;S2. After mixing and stirring the dried Eu-MOF crystal with the DMF solution of PbBr 2 for a certain period of time, a precursor solution of PbBr 2 @Eu-MOF is obtained;
S3.在PbBr2@Eu-MOF的前驱体溶液中加入CsBr,搅拌至澄清后加入油酸油胺;然后转移至甲苯中初步制得钙钛矿量子点/Eu-MOF复合发光材料;S3. Add CsBr to the precursor solution of PbBr 2 @Eu-MOF, stir until it becomes clear, then add oleylamine oleate; then transfer to toluene to prepare perovskite quantum dots/Eu-MOF composite luminescent material;
S4.将上述步骤S3中初步制得的钙钛矿量子点/Eu-MOF复合发光材料离心分散在正己烷溶液中,搅拌均匀,滤出沉淀,除去表面残留的钙钛矿量子点,真空干燥,制得高纯度的钙钛矿量子点/Eu-MOF复合发光材料。S4. Centrifugally disperse the perovskite quantum dots/Eu-MOF composite luminescent material preliminarily prepared in the above step S3 in a n-hexane solution, stir evenly, filter out the precipitate, remove the residual perovskite quantum dots on the surface, and vacuum dry , a high-purity perovskite quantum dot/Eu-MOF composite luminescent material was prepared.
一个优选实施方案中,所述步骤S1中的六水硝酸铕、联苯四甲酸的摩尔比为1︰0.6。In a preferred embodiment, the molar ratio of europium nitrate hexahydrate and biphenyltetracarboxylic acid in the step S1 is 1:0.6.
一个优选实施方案中,所述步骤S1中,DMF和水的体积比为5︰(0.5-2),实际应用时,DMF和水的体积比可以采用5︰0.5,5︰1,或者5:2等比例。In a preferred embodiment, in the step S1, the volume ratio of DMF and water is 5:(0.5-2), and in practical application, the volume ratio of DMF and water can be 5:0.5, 5:1, or 5: 2 equal proportions.
一个优选实施方案中,所述步骤S1中,Eu-MOF晶体在50-80℃的温度下真空干燥5-10h制得,可选地,Eu-MOF晶体在60℃的温度下真空干燥8h制得。In a preferred embodiment, in the step S1, the Eu-MOF crystals are prepared by vacuum drying at a temperature of 50-80 °C for 5-10 hours. Alternatively, the Eu-MOF crystals are prepared by vacuum drying at a temperature of 60 °C for 8 hours. have to.
一个优选实施方案中,所述步骤S2中,DMF溶液的体积为5-20ml,Eu-MOF晶体与PbBr2的DMF溶液搅拌时间为6-24h。In a preferred embodiment, in the step S2, the volume of the DMF solution is 5-20ml, and the stirring time of the Eu-MOF crystal and the DMF solution of PbBr 2 is 6-24h.
一个优选实施方案中,所述步骤S2中,CsBr与PbBr2的摩尔比为1:1。In a preferred embodiment, in the step S2, the molar ratio of CsBr to PbBr 2 is 1:1.
一个优选实施方案中,所述步骤S3中,制得的CsBr和PbBr2@Eu-MOF的混合前驱体溶液与甲苯的体积比为(0.1-2):10,例如,应用时,CsBr和PbBr2@Eu-MOF的混合前驱体溶液与甲苯的体积比可以采用0.1:10,1:10,或者2:10等比例。In a preferred embodiment, in the step S3, the volume ratio of the prepared mixed precursor solution of CsBr and PbBr 2 @Eu-MOF to toluene is (0.1-2): 10, for example, when applied, CsBr and PbBr 2 The volume ratio of the mixed precursor solution of @Eu-MOF to toluene can be 0.1:10, 1:10, or 2:10.
本申请提供的上述钙钛矿量子点/Eu-MOF复合发光材料的制备方法:The preparation method of the above-mentioned perovskite quantum dots/Eu-MOF composite luminescent material provided in this application:
使用的是溶剂热的方法在室温下合成,并且可以在室温没有任何惰性气氛保护的条件下制备,具有制备方法简单的优点;The solvothermal method is used to synthesize at room temperature, and can be prepared at room temperature without any inert atmosphere protection, which has the advantage of a simple preparation method;
在钙钛矿量子点和MOF进行复合的过程中,本申请采用了MOF首先与PbBr2进行混合的步骤,该步骤可以使MOF对Pb2+离子进行吸附,有利于下一步的复合材料合成,使钙钛矿量子点和MOF更好的结合,且钙钛矿量子点在MOF中分散性更好;In the process of compounding perovskite quantum dots and MOF, the present application adopts the step of mixing MOF with PbBr 2 first, which can make MOF adsorb Pb 2+ ions, which is beneficial to the synthesis of composite materials in the next step. Better combination of perovskite quantum dots and MOF, and better dispersion of perovskite quantum dots in MOF;
另外,利用钙钛矿量子点的绿色发光性能和稀土MOF发红光的性能,合成一种能够同时发出绿光和红光的复合发光材料,且稀土MOF起到保护钙钛矿量子点的作用。In addition, using the green light-emitting properties of perovskite quantum dots and the red light-emitting properties of rare-earth MOFs, a composite light-emitting material that can emit green and red light at the same time is synthesized, and the rare-earth MOF plays the role of protecting the perovskite quantum dots. .
下面结合具体的实施例对本申请的制备方法进行说明。The preparation method of the present application will be described below with reference to specific examples.
实施例1Example 1
称取1.784g(4mmol)的Eu(NO3)3·6H2O、0.6605g(2mmol)的联苯四甲酸,在搅拌下加入7.5ml的N,N-二甲基甲酰胺(DMF)和2.5ml的H2O溶液中;Weigh 1.784 g (4 mmol) of Eu(NO 3 ) 3 .6H 2 O, 0.6605 g (2 mmol) of biphenyltetracarboxylic acid, add 7.5 ml of N,N-dimethylformamide (DMF) and 2.5ml of H 2 O solution;
然后将上述的混合溶液置于容积50ml的特氟隆高压釜内衬中,在120℃温度环境中加热48小时;冷却后,将所得粉末滤出并用DMF洗涤,然后再利用三氯甲烷溶液洗涤,以除去残留的DMF;Then the above mixed solution was placed in the lining of a Teflon autoclave with a volume of 50ml, and heated at 120°C for 48 hours; after cooling, the obtained powder was filtered out and washed with DMF, and then washed with chloroform solution , to remove residual DMF;
将得到的产物在80℃下真空干燥2小时,得Eu-MOF晶体。The obtained product was vacuum dried at 80°C for 2 hours to obtain Eu-MOF crystals.
将干燥后的上述Eu-MOF晶体0.4g与0.1468g的PbBr2在10ml的DMF溶液中混合搅拌一段时间,得到PbBr2@Eu-MOF的前驱体溶液;Mix and stir 0.4 g of the dried Eu-MOF crystal and 0.1468 g of PbBr 2 in 10 ml of DMF solution for a period of time to obtain a precursor solution of PbBr 2 @Eu-MOF;
再向PbBr2@Eu-MOF的前驱体溶液中加入0.085g的CsBr溶液,搅拌至澄清后,加入1ml的油酸和0.5ml的油胺;Add 0.085g of CsBr solution to the precursor solution of PbBr 2 @Eu-MOF, stir until it becomes clear, then add 1ml of oleic acid and 0.5ml of oleylamine;
将制得溶液取1ml转移至10ml的甲苯溶液中初步获得钙钛矿量子点/Eu-MOF复合发光材料;Transfer 1 ml of the prepared solution to 10 ml of toluene solution to initially obtain perovskite quantum dots/Eu-MOF composite light-emitting materials;
将初步制得的钙钛矿量子点/Eu-MOF复合发光材料在8000-10000r/min下进行离心沉淀分散在正己烷溶液中,再离心滤出沉淀,真空干燥,制得高纯度的钙钛矿量子点/Eu-MOF复合发光材料。The preliminarily prepared perovskite quantum dot/Eu-MOF composite luminescent material was centrifuged and dispersed in n-hexane solution at 8000-10000 r/min, and then the precipitate was filtered out by centrifugation and vacuum dried to obtain high-purity perovskite. Ore quantum dot/Eu-MOF composite luminescent material.
实施例2Example 2
称取1.784g(4mmol)的Eu(NO3)3·6H2O、0.6605g(2mmol)的联苯四甲酸,在搅拌下加入7.5ml的N,N-二甲基甲酰胺(DMF)和2.5ml的H2O溶液中;Weigh 1.784 g (4 mmol) of Eu(NO 3 ) 3 .6H 2 O, 0.6605 g (2 mmol) of biphenyltetracarboxylic acid, add 7.5 ml of N,N-dimethylformamide (DMF) and 2.5ml of H 2 O solution;
然后将上述的混合溶液置于容积50ml的特氟隆高压釜内衬中,在100℃温度环境中加热48小时;冷却后,将所得粉末滤出并用DMF洗涤,然后再利用三氯甲烷溶液洗涤,以除去残留的DMF;Then the above-mentioned mixed solution was placed in a Teflon autoclave liner with a volume of 50 ml, and heated in a temperature environment of 100 ° C for 48 hours; after cooling, the obtained powder was filtered out and washed with DMF, and then washed with chloroform solution , to remove residual DMF;
将得到的产物在80℃下真空干燥2小时,得Eu-MOF晶体。The obtained product was vacuum dried at 80°C for 2 hours to obtain Eu-MOF crystals.
将干燥后的上述Eu-MOF晶体0.4g与0.1468g的PbBr2在10ml的DMF溶液中混合搅拌一段时间,得到PbBr2@Eu-MOF的前驱体溶液;Mix and stir 0.4 g of the dried Eu-MOF crystal and 0.1468 g of PbBr 2 in 10 ml of DMF solution for a period of time to obtain a precursor solution of PbBr 2 @Eu-MOF;
再向PbBr2@Eu-MOF的前驱体溶液中加入0.085g的CsBr溶液,搅拌至澄清后,加入1ml的油酸和0.5ml的油胺;Add 0.085g of CsBr solution to the precursor solution of PbBr 2 @Eu-MOF, stir until it becomes clear, then add 1ml of oleic acid and 0.5ml of oleylamine;
将制得溶液取1ml转移至10ml的甲苯溶液中初步获得钙钛矿量子点/Eu-MOF复合发光材料;Transfer 1 ml of the prepared solution to 10 ml of toluene solution to initially obtain perovskite quantum dots/Eu-MOF composite light-emitting materials;
将初步制得的钙钛矿量子点/Eu-MOF复合发光材料在8000-10000r/min下进行离心沉淀分散在正己烷溶液中,再离心滤出沉淀,真空干燥,制得高纯度的钙钛矿量子点/Eu-MOF复合发光材料。The preliminarily prepared perovskite quantum dot/Eu-MOF composite luminescent material was centrifuged and dispersed in n-hexane solution at 8000-10000 r/min, and then the precipitate was filtered out by centrifugation and vacuum dried to obtain high-purity perovskite. Ore quantum dot/Eu-MOF composite luminescent material.
实施例3Example 3
称取1.784g(4mmol)的Eu(NO3)3·6H2O、0.6605g(2mmol)的联苯四甲酸,在搅拌下加入7.5ml的N,N-二甲基甲酰胺(DMF)和2.5ml的H2O溶液中;Weigh 1.784 g (4 mmol) of Eu(NO 3 ) 3 .6H 2 O, 0.6605 g (2 mmol) of biphenyltetracarboxylic acid, add 7.5 ml of N,N-dimethylformamide (DMF) and 2.5ml of H 2 O solution;
然后将上述的混合溶液置于容积50ml的特氟隆高压釜内衬中,在120℃温度环境中加热48小时;冷却后,将所得粉末滤出并用DMF洗涤,然后再利用三氯甲烷溶液洗涤,以除去残留的DMF;Then the above mixed solution was placed in the lining of a Teflon autoclave with a volume of 50ml, and heated at 120°C for 48 hours; after cooling, the obtained powder was filtered out and washed with DMF, and then washed with chloroform solution , to remove residual DMF;
将得到的产物在80℃下真空干燥2小时,得Eu-MOF晶体。The obtained product was vacuum dried at 80°C for 2 hours to obtain Eu-MOF crystals.
将干燥后的上述Eu-MOF晶体0.4g与0.28g的PbBr2在10ml的DMF溶液中混合搅拌一段时间,得到PbBr2@Eu-MOF的前驱体溶液;Mix 0.4 g of the dried Eu-MOF crystal with 0.28 g of PbBr 2 in 10 ml of DMF solution and stir for a period of time to obtain a precursor solution of PbBr 2 @Eu-MOF;
再向PbBr2@Eu-MOF的前驱体溶液中加入0.16g的CsBr溶液,搅拌至澄清后,加入1ml的油酸和0.5ml的油胺;Add 0.16g of CsBr solution to the precursor solution of PbBr 2 @Eu-MOF, stir until it becomes clear, then add 1ml of oleic acid and 0.5ml of oleylamine;
将制得溶液取1ml转移至10ml的甲苯溶液中初步获得钙钛矿量子点/Eu-MOF复合发光材料;Transfer 1 ml of the prepared solution to 10 ml of toluene solution to initially obtain perovskite quantum dots/Eu-MOF composite light-emitting materials;
将初步制得的钙钛矿量子点/Eu-MOF复合发光材料在8000-10000r/min下进行离心沉淀分散在正己烷溶液中,再离心滤出沉淀,真空干燥,制得高纯度的钙钛矿量子点/Eu-MOF复合发光材料。The preliminarily prepared perovskite quantum dot/Eu-MOF composite luminescent material was centrifuged and dispersed in n-hexane solution at 8000-10000 r/min, and then the precipitate was filtered out by centrifugation and vacuum dried to obtain high-purity perovskite. Ore quantum dot/Eu-MOF composite luminescent material.
如图1所示,为实施例1中制得CsPbBr3/Eu-MOF复合发光材料的透射电子显微镜(TEM)图。从图1中可以看出,CsPbBr3与Eu-MOF成功进行复合。As shown in FIG. 1 , it is a transmission electron microscope (TEM) image of the CsPbBr 3 /Eu-MOF composite light-emitting material prepared in Example 1. From Figure 1, it can be seen that CsPbBr3 is successfully recombined with Eu-MOF.
实施例1中制得的钙钛矿量子点CsPbBr3/Eu-MOF复合发光材料的发射光谱图如图2所示,从图中可以看出,CsPbBr3/Eu-MOF复合发光材料实现了绿光和红光的组合发光。The emission spectrum of the perovskite quantum dot CsPbBr 3 /Eu-MOF composite light-emitting material prepared in Example 1 is shown in Figure 2. It can be seen from the figure that the CsPbBr 3 /Eu-MOF composite light-emitting material achieves green A combination of light and red light glows.
另外,本申请实施例中还提供了一种钙钛矿量子点/Eu-MOF复合发光材料,该复合发光材料利用上述的制备方法制得,该复合发光材料可以应用于LED中。In addition, the embodiments of the present application also provide a perovskite quantum dot/Eu-MOF composite light-emitting material, the composite light-emitting material is prepared by the above-mentioned preparation method, and the composite light-emitting material can be used in LEDs.
优选地,具体应用时,将钙钛矿量子点/Eu-MOF复合发光材料与紫外固化胶混合,滴涂到蓝光LED芯片上,在紫外光下固化后,得到白光LED。Preferably, in a specific application, the perovskite quantum dot/Eu-MOF composite luminescent material is mixed with an ultraviolet curing glue, and drop-coated on a blue LED chip, and after curing under ultraviolet light, a white light LED is obtained.
需要说明的是,目前的主流白光LED都是采用蓝光和黄光的组合方式,所以缺乏了红光部分,本申请技术方案是利用发绿光的CsPbBr3钙钛矿量子点和发红光的稀土EU-MOF组成复合发光材料,然后再与蓝光芯片组合,可以获得白光LED;且Eu-MOF对钙钛矿量子点也可以起到保护作用。It should be noted that the current mainstream white light LEDs all use a combination of blue light and yellow light, so the red light part is lacking. The technical solution of the present application is to use CsPbBr 3 perovskite quantum dots that emit green light and Rare earth EU-MOF is composed of composite light-emitting materials, and then combined with blue light chips to obtain white LEDs; and Eu-MOF can also play a protective role on perovskite quantum dots.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010576406.XA CN111676010B (en) | 2020-06-22 | 2020-06-22 | Preparation method of perovskite quantum dot/Eu-MOF composite luminescent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010576406.XA CN111676010B (en) | 2020-06-22 | 2020-06-22 | Preparation method of perovskite quantum dot/Eu-MOF composite luminescent material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111676010A true CN111676010A (en) | 2020-09-18 |
CN111676010B CN111676010B (en) | 2023-07-18 |
Family
ID=72456147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010576406.XA Active CN111676010B (en) | 2020-06-22 | 2020-06-22 | Preparation method of perovskite quantum dot/Eu-MOF composite luminescent material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111676010B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113201326A (en) * | 2021-04-22 | 2021-08-03 | 浙江大学 | Dye/perovskite quantum dot loaded metal-organic framework material and preparation method thereof |
CN113621368A (en) * | 2021-07-20 | 2021-11-09 | 上海大学 | Lead-cesium-halide perovskite quantum dot and metal organic framework compounded moulding ultrafast scintillator and preparation method thereof |
CN116162456A (en) * | 2023-02-21 | 2023-05-26 | 山东大学 | Preparation method of narrow-band green fluorescent powder of cesium lead bromine perovskite quantum dot embedded metal organic framework material ZIF-8 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107298978A (en) * | 2017-07-03 | 2017-10-27 | 中山大学 | A kind of preparation method of the leaded halide perovskite quantum dot fluorescence powder of full-inorganic |
CN108774511A (en) * | 2018-05-31 | 2018-11-09 | 兰州大学 | The preparation of full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent materials and application in the led |
WO2019041505A1 (en) * | 2017-09-01 | 2019-03-07 | 李良 | Fluorescent perovskite nanocrystal and confidential information security application thereof |
CN110041915A (en) * | 2019-04-24 | 2019-07-23 | 深圳大学 | The preparation method of perovskite quantum dot and metal organic frame composite luminescent material |
KR20190103040A (en) * | 2018-02-26 | 2019-09-04 | 숙명여자대학교산학협력단 | Perovskite solar cell using nanocrystalline metal-organic frameworks and method for manufacturing the same |
EP3581568A1 (en) * | 2018-06-15 | 2019-12-18 | Centre National de la Recherche Scientifique | Low-dimensional hybrid post-perovskites for high efficiency white-light emission |
-
2020
- 2020-06-22 CN CN202010576406.XA patent/CN111676010B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107298978A (en) * | 2017-07-03 | 2017-10-27 | 中山大学 | A kind of preparation method of the leaded halide perovskite quantum dot fluorescence powder of full-inorganic |
WO2019041505A1 (en) * | 2017-09-01 | 2019-03-07 | 李良 | Fluorescent perovskite nanocrystal and confidential information security application thereof |
KR20190103040A (en) * | 2018-02-26 | 2019-09-04 | 숙명여자대학교산학협력단 | Perovskite solar cell using nanocrystalline metal-organic frameworks and method for manufacturing the same |
CN108774511A (en) * | 2018-05-31 | 2018-11-09 | 兰州大学 | The preparation of full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent materials and application in the led |
EP3581568A1 (en) * | 2018-06-15 | 2019-12-18 | Centre National de la Recherche Scientifique | Low-dimensional hybrid post-perovskites for high efficiency white-light emission |
CN110041915A (en) * | 2019-04-24 | 2019-07-23 | 深圳大学 | The preparation method of perovskite quantum dot and metal organic frame composite luminescent material |
Non-Patent Citations (2)
Title |
---|
ZHENXING LI,等: "MOF-Confined Sub-2 nm Stable CsPbX3 Perovskite Quantum Dots", vol. 09, no. 08, pages 1 - 13 * |
张春雨,等: "基于CsPbBr3量子点与C8-BTBT复合薄膜光学稳定性的研究", vol. 38, no. 05, pages 360 - 366 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113201326A (en) * | 2021-04-22 | 2021-08-03 | 浙江大学 | Dye/perovskite quantum dot loaded metal-organic framework material and preparation method thereof |
CN113621368A (en) * | 2021-07-20 | 2021-11-09 | 上海大学 | Lead-cesium-halide perovskite quantum dot and metal organic framework compounded moulding ultrafast scintillator and preparation method thereof |
CN116162456A (en) * | 2023-02-21 | 2023-05-26 | 山东大学 | Preparation method of narrow-band green fluorescent powder of cesium lead bromine perovskite quantum dot embedded metal organic framework material ZIF-8 |
CN116162456B (en) * | 2023-02-21 | 2024-05-24 | 山东大学 | Preparation method of narrow-band green phosphor with cesium lead bromide perovskite quantum dots embedded in metal organic framework material ZIF-8 |
Also Published As
Publication number | Publication date |
---|---|
CN111676010B (en) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108774511B (en) | Preparation of all-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent material and application of composite luminescent material in LED | |
CN111676010B (en) | Preparation method of perovskite quantum dot/Eu-MOF composite luminescent material | |
CN108865126A (en) | A kind of preparation method that the tunable double light emitting additive Mn perovskites of luminous band gap are nanocrystalline | |
He et al. | Ultrastable PVB films-protected CsPbBr3/Cs4PbBr6 perovskites with high color purity for nearing Rec. 2020 standard | |
Li et al. | Novel single component tri-rare-earth emitting MOF for warm white light LEDs | |
CN112745839B (en) | TS-1 molecular sieve coated CsPbX 3 Quantum dot powder and preparation and application thereof | |
Zhang et al. | Multidentate ligand passivation enabled enhanced photoluminescence and stability of CsPbBr3 nanocrystals for white light-emitting diodes | |
WO2023039716A1 (en) | Composite material of perovskite and molecular sieve, preparation method therefor and application thereof | |
CN105542751B (en) | A kind of metal-organic framework material for launching white light and its synthetic method and application | |
CN111961467A (en) | Perovskite composite luminescent material, preparation method, product and application thereof | |
CN110003900A (en) | A kind of high quantum yield zero-dimensional perovskite structure pure phase Cs4PbBr6 material and synthesis method | |
CN112680213A (en) | Preparation method of perovskite nanocrystalline coated by ethyl orthosilicate | |
CN113072928A (en) | Preparation method of zero-dimensional manganese-based metal halide by ultrafast self-assembly | |
CN105950143A (en) | Red phosphor, preparation method thereof and light emitting device using red phosphor | |
CN108676022A (en) | A kind of four core rare-earth europium (III) complexs and preparation method thereof and application as luminescent material | |
CN115820240A (en) | A preparation method and application of high-brightness SBA-15 loaded CsPbBr3 quantum dot luminescent material | |
KR20030060697A (en) | Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof | |
Yuan et al. | Eco-friendly all-inorganic CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals in pyrophyllite for bright white light-emitting diodes | |
CN116333334B (en) | Porous MOF non-rare earth light conversion material, preparation method thereof and application thereof in preparation of red light-near infrared light device | |
CN114686219B (en) | A high thermal stability indium-doped perovskite quantum dot luminescent material and its preparation | |
CN115806814B (en) | A composite material of perovskite and molecular sieve and its preparation method and application | |
CN110527508A (en) | A kind of nitride red fluorescent powder for white light LED and preparation method thereof | |
CN116143809A (en) | High stability rare earth nano-fluorine clusters for LED lighting and methods and applications thereof | |
CN108822830A (en) | A kind of preparation method and products thereof of rare earth aluminic acid alkali composite red color luminescent material | |
CN114316944A (en) | Method for preparing high-stability zirconium oxide coated quantum dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |