CN111669201A - 一种利用Dantzig优化的PLC信号滤波方法和系统 - Google Patents
一种利用Dantzig优化的PLC信号滤波方法和系统 Download PDFInfo
- Publication number
- CN111669201A CN111669201A CN202010592965.XA CN202010592965A CN111669201A CN 111669201 A CN111669201 A CN 111669201A CN 202010592965 A CN202010592965 A CN 202010592965A CN 111669201 A CN111669201 A CN 111669201A
- Authority
- CN
- China
- Prior art keywords
- matrix
- eigenvalue
- normalized correlation
- signal sequence
- correlation matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000001914 filtration Methods 0.000 title claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 121
- 108010076504 Protein Sorting Signals Proteins 0.000 claims abstract description 58
- 238000005457 optimization Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 description 25
- 238000005516 engineering process Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/04—Control of transmission; Equalising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B15/00—Suppression or limitation of noise or interference
- H04B15/005—Reducing noise, e.g. humm, from the supply
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Image Processing (AREA)
Abstract
本发明的实施例公开一种利用Dantzig优化的PLC信号滤波方法和系统,所述方法包括:步骤101 获取按时间顺序采集的信号序列S;步骤102 求取Dantzig稀疏度p;步骤103 求取特征值加权和λp;步骤104 求取特征值矩阵Γ;步骤105 求取Dantzig稀疏度矩阵A;步骤106 求取滤除了噪声的信号序列Snew。
Description
技术领域
本发明涉及通信领域,尤其涉及一种PLC信号滤波方法和系统。
背景技术
电力线通信,相比各种有线通信技术,无需重新布线,易于组网等优点,具有广阔的应用前景。电力线通信技术分为窄带电力线通信(Narrowband over power line,NPL)和宽带电力线通信(Broadband over power line,BPL);窄带电力线通信是指带宽限定在3k至500kHz的电力线载波通信技术;电力线通信技术包括欧洲CENELEC的规定带宽(3148.5kHz),美国联邦通讯委员会(FCC)的规定带宽(9至490kHz),日本无线工业及商贸联合会(Association of Radio Industries and Businesses,ARIB)的规定带宽(9至450kHz),和中国的规定带宽(3至500kHz)。窄带电力线通信技术多采用单载波调制技术,如PSK技术,DSSS技术和线性调频Chirp等技术,通信速率小于1Mbits/s;宽带电力线通信技术指带宽限定在1.6至30MHz之间、通信速率通常在1Mbps以上的电力线载波通信技术,采用以OFDM为核心的多种扩频通信技术。
虽然电力线通信系统有着广泛的应用,且技术相对成熟,但是电力线通信系统中大量的分支和电气设备,会在电力线信道中产生大量的噪声;而其中随机脉冲噪声具有很大的随机性,噪声强度高,对电力线通信系统造成严重破坏,因此,针对随机脉冲噪声的抑制技术,一直是国内外学者研究的重点;而且噪声模型并不符合高斯分布。因此,传统的针对高斯噪声设计的通信系统不再适用于电力线载波通信系统,必须研究相应的噪声抑制技术,以提高电力线通信系统信噪比,降低误码率,保证电力线通信系统质量。
在实际应用中,一些简单的非线性技术经常被应用于消除电力线信道噪声,如Clip-ping、Blanking和Clipping/Blanking技术,但是这些研究方法都必须在一定的信噪比情况下才能良好工作,仅仅考虑了冲击噪声的消除,在电力线通信系统中,某些商用电力线发送器的特征是低发射功率,在一些特殊情况,发射功率甚至可能会低于18w,因此,在某些特殊情况,信号将会淹没在大量噪声中,导致电力线通信系统低信噪比情况。
发明内容
随着非线性电器的应用和普及,中低压输配电网络中背景噪声呈现出较为明显的非平稳性和非高斯特性,常用的低通滤波器在非平稳和非高斯噪声环境中难以达到理想的滤波效果,很难滤除非平稳非高斯噪声,严重影响了PLC通信系统的性能。。
本发明的目的是提供一种利用Dantzig优化的PLC信号滤波方法和系统,所提出的方法利用了PLC调制信号、脉冲噪声和背景噪声在信号混合表示领域中的差异,通过Dantzig优化性质区分PLC调制信号、脉冲噪声和背景噪声。所提出的方法具有较好的噪声滤除性能,计算也非常简单。
为实现上述目的,本发明提供了如下方案:
一种利用Dantzig优化的PLC信号滤波方法,包括:
步骤101获取按时间顺序采集的信号序列S:
步骤102求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
步骤103求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
步骤104求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0 ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
步骤105求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
步骤106求取滤除了噪声的信号序列Snew,具体为:所述滤除了噪声的信号序列Snew的第n个元素为:其中,(AS)n表示矩阵AS为第n个元素,n为元素第二序号,所述元素第二序号n的取值范围为n=1,2,···,N;sgn表示符号函数。
一种利用Dantzig优化的PLC信号滤波系统,包括:
模块201获取按时间顺序采集的信号序列S;
模块202求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
模块203求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
模块204求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0 ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
模块205求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
模块206求取滤除了噪声的信号序列Snew,具体为:所述滤除了噪声的信号序列Snew的第n个元素为:其中,(AS)n表示矩阵AS为第n个元素,n为元素第二序号,所述元素第二序号n的取值范围为n=1,2,···,N;sgn表示符号函数。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
随着非线性电器的应用和普及,中低压输配电网络中背景噪声呈现出较为明显的非平稳性和非高斯特性,常用的低通滤波器在非平稳和非高斯噪声环境中难以达到理想的滤波效果,很难滤除非平稳非高斯噪声,严重影响了PLC通信系统的性能。。
本发明的目的是提供一种利用Dantzig优化的PLC信号滤波方法和系统,所提出的方法利用了PLC调制信号、脉冲噪声和背景噪声在信号混合表示领域中的差异,通过Dantzig优化性质区分PLC调制信号、脉冲噪声和背景噪声。所提出的方法具有较好的噪声滤除性能,计算也非常简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的方法流程示意图;
图2为本发明的系统流程示意图;
图3为本发明的具体实施案例流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1一种利用Dantzig优化的PLC信号滤波方法的流程示意图
图1为本发明一种利用Dantzig优化的PLC信号滤波方法的流程示意图。如图1所示,所述的一种利用Dantzig优化的PLC信号滤波方法具体包括以下步骤:
步骤101获取按时间顺序采集的信号序列S;
步骤102求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
步骤103求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
步骤104求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0 ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
步骤105求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
步骤106求取滤除了噪声的信号序列Snew,具体为:所述滤除了噪声的信号序列Snew的第n个元素为:其中,(AS)n表示矩阵AS为第n个元素,n为元素第二序号,所述元素第二序号n的取值范围为n=1,2,···,N;sgn表示符号函数。
图2一种利用Dantzig优化的PLC信号滤波系统的结构意图
图2为本发明一种利用Dantzig优化的PLC信号滤波系统的结构示意图。如图2所示,所述一种利用Dantzig优化的PLC信号滤波系统包括以下结构:
模块201获取按时间顺序采集的信号序列S;
模块202求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
模块203求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
模块204求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0 ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
模块205求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
模块206求取滤除了噪声的信号序列Snew,具体为:所述滤除了噪声的信号序列Snew的第n个元素为:其中,(AS)n表示矩阵AS为第n个元素,n为元素第二序号,所述元素第二序号n的取值范围为n=1,2,···,N;sgn表示符号函数。
下面提供一个具体实施案例,进一步说明本发明的方案
图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
步骤301获取按时间顺序采集的信号序列S;
步骤302求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
步骤303求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
步骤304求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0 ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0 ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
步骤305求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
步骤306求取滤除了噪声的信号序列Snew,具体为:所述滤除了噪声的信号序列Snew的第n个元素为:其中,(AS)n表示矩阵AS为第n个元素,n为元素第二序号,所述元素第二序号n的取值范围为n=1,2,···,N;sgn表示符号函数。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (2)
1.一种利用Dantzig优化的PLC信号滤波方法,其特征在于,包括:
步骤101获取按时间顺序采集的信号序列S;
步骤102求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
步骤103求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
步骤104求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
步骤105求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
2.一种利用Dantzig优化的PLC信号滤波系统,其特征在于,包括:
模块201获取按时间顺序采集的信号序列S;
模块202求取Dantzig稀疏度p,具体为:所述Dantzig稀疏度p的求取公式为:其中,snr为所述信号序列S的信噪比;λmin为归一化相关矩阵B的非零最小特征值;λmax为所述归一化相关矩阵B的最大特征值;所述归一化相关矩阵B的计算公式为 为下取整运算;m0为所述信号序列S的均值;σ0为所述信号序列S的均方差;
模块203求取特征值加权和λp,具体为:其中,为所述归一化相关矩阵B的第i个特征值;i为特征值序号;所述特征值序号i的取值范围为i=1,2,···,p;ωi为第i个权重,所述第i个权重ωi的计算公式为:mi为第i段均值,所述第i段均值mi的计算公式为:j为元素第一序号,所述元素第一序号j的取值范围为:j=1,2,···,i;sj为所述信号序列S的第j个元素;
模块204求取特征值矩阵Γ,具体为:判断所述归一化相关矩阵B的第k个特征值是否大于或者等于σ0ln(snr+1),得到第一判断结果。如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值大于或者等于σ0ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:如果所述第一判断结果显示所述归一化相关矩阵B的第k个特征值小于σ0ln(snr+1),则所述特征值矩阵Γ对角线第k个特征值γk为:γk=0。其中,k为对角线元素序号,所述对角线元素序号k的取值范围为:k=1,2,···,N;N为所述信号序列S的长度;
模块205求取Dantzig稀疏度矩阵A,具体为:所述Dantzig稀疏度矩阵A的计算公式为:A=UΓV。其中,U为所述归一化相关矩阵B的左特征矢量矩阵;V为所述归一化相关矩阵B的右特征矢量矩阵;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010592965.XA CN111669201A (zh) | 2020-06-25 | 2020-06-25 | 一种利用Dantzig优化的PLC信号滤波方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010592965.XA CN111669201A (zh) | 2020-06-25 | 2020-06-25 | 一种利用Dantzig优化的PLC信号滤波方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111669201A true CN111669201A (zh) | 2020-09-15 |
Family
ID=72389812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010592965.XA Withdrawn CN111669201A (zh) | 2020-06-25 | 2020-06-25 | 一种利用Dantzig优化的PLC信号滤波方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111669201A (zh) |
-
2020
- 2020-06-25 CN CN202010592965.XA patent/CN111669201A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111756405B (zh) | 一种利用f平方模的plc信道脉冲噪声检测方法和系统 | |
CN111628804A (zh) | 一种利用Gilbert优化的PLC信号滤波方法和系统 | |
CN111641435A (zh) | 一种利用Fenchel共轭的PLC信号滤波方法和系统 | |
CN110719121A (zh) | 一种利用平方指数核的plc信道脉冲噪声检测方法和系统 | |
CN111756456A (zh) | 一种利用偏移量的plc信道脉冲噪声检测方法和系统 | |
CN110336591B (zh) | 一种利用信号分离的plc信号滤波方法和系统 | |
CN111641434A (zh) | 一种利用完全矢量的plc信号滤波方法和系统 | |
CN111641436A (zh) | 一种利用lp优化的plc信号滤波方法和系统 | |
CN111934716B (zh) | 一种电力线通信信号滤波方法及系统 | |
CN110635824B (zh) | 一种利用分类回归树的plc信道脉冲噪声检测方法和系统 | |
CN111800165A (zh) | 一种利用奇异值矩阵的plc信号滤波方法和系统 | |
CN109117807A (zh) | 一种plc通信信号自适应时频峰值滤波方法及系统 | |
CN111756408B (zh) | 一种利用模型预测的plc信号重构方法和系统 | |
CN110739986B (zh) | 一种利用投影累积量的plc信道脉冲噪声检测方法和系统 | |
CN111669201A (zh) | 一种利用Dantzig优化的PLC信号滤波方法和系统 | |
CN111541635A (zh) | 一种利用t分布的PLC信号滤波方法和系统 | |
CN110572189A (zh) | 一种利用Fermal理论的PLC信号滤波方法和系统 | |
CN112104392B (zh) | 一种利用状态矩阵的plc信道脉冲噪声检测方法和系统 | |
CN112165342B (zh) | 一种利用模式特征矢量的噪声检测方法和系统 | |
CN112350747B (zh) | 一种利用状态估计的plc信道脉冲噪声检测方法和系统 | |
CN112187319A (zh) | 一种利用Dantzig选择器的PLC信号重构方法和系统 | |
CN112350748B (zh) | 一种利用卡方分布的plc信道脉冲噪声检测方法和系统 | |
CN112383326B (zh) | 一种利用谱模阈值的plc信号滤波方法和系统 | |
CN111610747A (zh) | 一种利用残差相关的plc信号重构方法和系统 | |
CN110855324A (zh) | 一种利用字典恢复矩阵的plc信号滤波方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200915 |
|
WW01 | Invention patent application withdrawn after publication |