CN111659339B - 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用 - Google Patents

负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用 Download PDF

Info

Publication number
CN111659339B
CN111659339B CN202010581100.3A CN202010581100A CN111659339B CN 111659339 B CN111659339 B CN 111659339B CN 202010581100 A CN202010581100 A CN 202010581100A CN 111659339 B CN111659339 B CN 111659339B
Authority
CN
China
Prior art keywords
nisio
ldhs
nialfe
adsorbent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010581100.3A
Other languages
English (en)
Other versions
CN111659339A (zh
Inventor
胡玉瑛
潘成
彭小明
胡锋平
戴红玲
郑晓环
刘苏苏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN202010581100.3A priority Critical patent/CN111659339B/zh
Publication of CN111659339A publication Critical patent/CN111659339A/zh
Application granted granted Critical
Publication of CN111659339B publication Critical patent/CN111659339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于复合材料技术领域,涉及LDHs类吸附剂,尤其涉及一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括:模板SiO2的制备,NiSiO空心球的制备,将NiSiO空心球、Ni(NO3)2·6H2O、Al(NO3)3·9H2O、Fe(NO3)3·9H2O以及尿素分散于水中成混合悬液,移至高压釜,120~140℃水热反应12~16 h,自然冷却至室温,沉积物分别用乙醇和超纯水冲洗三次,60~80℃干燥8~12 h后研磨成粉末,即得。本发明将所制得的吸附剂应用于放射性核素的吸附。本发明将NiAlFe‑LDHs嫁接在NiSiO空心微球上,可快速高效去除水中的Cs+。通过实验模拟去除含Cs+的废水,结果表明,加入50 mg所制备的吸附剂反应20 min,对Cs+的去除率可达89.73%,为实际应用提供了可靠的理论和实际支撑。

Description

负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方 法及其应用
技术领域
本发明属于复合材料技术领域,涉及层状复合金属氢氧化物(Layered DoubleHydroxides,LDHs)类吸附剂,尤其涉及一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其对放射性核素的应用。
背景技术
近年来,随着核工业技术领域快速发展,大量的放射性物质被排放到水体中,造成了严重的水体污染。大多数放射性核元素的半衰期长、毒性大,一旦进入人体,将会使人体的细胞组织和遗传物质发生癌变和变异。在过去的几十年里,光催化、吸附、萃取、反渗透和生物降解等技术都曾被应用于去除水中的放射性核元素。然而,这些方法大多具有适应pH值范围窄、对高盐浓度的耐受能力有限等局限性。吸附法由于其成本低、操作方便、通用性强等优点,已成为去除放射性核素最有效的方法之一。
目前应用于水溶液中放射性核素去除的功能材料,多存在吸附能力低或运行成本高的问题。硅酸盐在自然环境中十分丰富,具有价格便宜、易取得的特点。其中,具有典型的层状结构的硅酸镍在去除抗生素等污染物方面具有独特优势,但其对放射性核素的吸附能力较低,不能满足实际应用的需要。层状复合金属氢氧化物作为一种新型的无机吸附材料,具有独特的物理化学性质,具有分散快、表面积大、阴离子交换性能好等优点,但其具有易聚集特性,导致比表面积降低,吸附点位减少,吸附效果大幅下降,进而限制了LDHs材料在吸附中的运用。空心微球由纳米颗粒组成,含有中空腔体的多尺度多层次纳米结构,其尺寸在纳米到微米范围,具有低密度、高比表面积、高稳定性和高表面渗透性的特点。
发明内容
针对上述现有功能材料吸附能力低或运行成本高的问题,本发明的目的是公开一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法。
该材料是针对LDHs易聚集特性进行改良的一种纳米复合材料,将NiAlFe-LDHs嫁接在NiSiO空心微球上,所合成的材料对放射性核素具有极快的吸附速率和良好的吸附性能,可快速高效地去除水中放射性核素,能应用于核污染废水的处理处置以及核泄漏的应急处理之中。
技术方案:
一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括如下步骤:
a)模板SiO2的制备:将乙醇、氨水、正硅酸乙酯按100:100:9的体积比混合均匀,搅拌3~6h,优选5h后进行固液分离,过200目筛,得到白色的纳米球状SiO2粉体;
b)NiSiO空心球的制备:将纳米球状SiO2粉体超声分散于去离子水中,配制成质量浓度为0.5%的SiO2悬浮液,称之溶液A;将Ni(NO3)2·6H2O与NH4Cl加入超纯水中,使Ni(NO3)2与NH4Cl的浓度分别为67.5mmol/L与0.25mol/L,称之溶液B;将溶液A与溶液B等体积混合均匀后移入高压反应釜,120~140℃水热反应18~24h,优选120℃反应24h;自然冷却至室温,沉淀物分别用乙醇和超纯水冲洗3次,60~80℃干燥8~12h,优选60℃干燥12h,研磨并过200目筛,得NiSiO空心球;
c)NiSiO@NiAlFe LDHs的制备:将NiSiO空心球、Ni(NO3)2·6H2O、Al(NO3)3·9H2O、Fe(NO3)3·9H2O以及尿素分散于水中成混合悬液,移至高压釜,120~140℃水热反应12~16h,优选120℃反应14h,自然冷却至室温,沉积物分别用乙醇和超纯水冲洗三次,60~80℃干燥8~12h后研磨成粉末,其中所述固液比为1g NiSiO空心球:2~3mmol Ni(NO3)2·6H2O:2~3mmol Al(NO3)3·9H2O:2~3mmol Fe(NO3)3·9H2O:40mmol尿素:60mL水,优选3mmol Ni(NO3)2·6H2O:2mmol Al(NO3)3·9H2O:2mmol Fe(NO3)3·9H2O:40mmol尿素:60mL水。
根据本发明所述方法制得的负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂,呈空心球状,直径为400~500nm,颗粒均一,分散性好;将NiAlFe-LDHs嫁接在NiSiO纳米空心微球表面,使LDHs均匀分散在NiSiO纳米空心微球表面,有效解决了传统LDHs易聚集性,使其表面暴露出更多的离子交换位点,从而提高吸附效果。
实验室模拟吸附剂去除废水中放射性核素的试验如下(以Cs+为例):
以硝酸铯(CsNO3)模拟含Cs+废水,配制含Cs+的模拟废水(20mg/L),在聚丙烯试管中加入25mL含Cs+的模拟废水以及50mg所制备的吸附剂,随后将该聚丙烯试管置于气浴恒温震荡箱中,以200rpm的速率震荡20min,检测Cs+的去除率。
Cs+的去除率按如下公式计算:
Figure BDA0002552349880000021
不仅对Cs+的去除率高,且具有极快的吸附速率,20min对水中Cs+去除即可达80%以上,可快速吸附水中Cs+,具有广阔的应用前景。
有益效果
本发明公开负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,将NiAlFe-LDHs嫁接在NiSiO空心微球上,可快速高效去除水中的Cs+。通过实验模拟去除含Cs+的废水,结果表明,反应20min对Cs+的去除率可达89.73%为实际应用提供了可靠的理论和实际支撑。
附图说明
图1.NiSiO@NiAlFe分层纳米空心微球的SEM图;
图2.NiSiO@NiAlFe分层纳米空心微球的TEM图;
图3.NiSiO@NiAlFe分层纳米空心微球吸附剂对Cs+的去除率,其中,Cs+溶液浓度:20mg/L;Cs+溶液体积:25mL。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。
实施例1
一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括如下步骤:
a)模板SiO2的制备
在100mL无水乙醇中依次加入9mL正硅酸乙酯、4mL去离子水、100mL氨水,随后在室温下搅拌5h。混合液离心5min后,得到的固体用超纯水洗涤3次、60℃干燥12h,研磨后过200目筛,得到白色的纳米球状二氧化硅粉体。
b)NiSiO空心球的制备
将0.4g SiO2分散于80mL水中并超声10min,形成悬浮液A。5.4mmol Ni(NO3)2·6H2O,20mmol NH4Cl溶解于80mL超纯水中搅拌约15min,然后缓慢加入4mL NH3·H2O,形成溶液B。将溶液B滴加到悬浮液A中,形成混合溶液。最后,混合液在剧烈搅拌10min后,进入200mL的高压釜中,在120℃下保持24h。沉淀物分别用乙醇和超纯水冲洗3次,然后在60℃干燥12h后研磨成粉末(200目)。
c)NiSiO@NiAlFe LDHs的制备
采用水热法制备NiSiO@NiAlFe LDHs。分别将1g NiSiO空心球、2mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、2mmol Fe(NO3)3·9H2O以及40mmol尿素分散于60mL水中。随后将混合悬液移至高压釜中,在120℃下反应14h。沉积物分别用乙醇和超纯水冲洗三次。然后将得到的固体在60℃下干燥约12h后研磨成粉末(200目)。
实施例2
一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括如下步骤:
a)模板SiO2的制备
在100mL无水乙醇中依次加入9mL正硅酸乙酯、4mL去离子水、100mL氨水,随后在室温下搅拌5h。混合液离心5min后,得到的固体用超纯水洗涤3次、60℃下干燥12h,研磨后过200目筛,得到白色的纳米球状二氧化硅粉体。
b)NiSiO空心球的制备
将0.4g SiO2分散于80mL水中并超声10min,形成悬浮液A。5.4mmol Ni(NO3)2·6H2O,20mmol NH4Cl溶解于80mL超纯水中搅拌约15min,然后缓慢加入4mL NH3·H2O,形成溶液B。将溶液B滴加到悬浮液A中,形成混合溶液。最后,混合液在剧烈搅拌10min后,进入200mL的高压釜中,在120℃下保持24h。沉淀物分别用乙醇和超纯水冲洗3次,然后在60℃下干燥12h后研磨成粉末,过200目筛。
c)NiSiO@NiAlFe LDHs的制备
采用水热法制备NiSiO@NiAlFe LDHs。分别将1g NiSiO空心球、3mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、2mmol Fe(NO3)3·9H2O以及40mmol尿素分散于60mL水中。随后将混合悬液移至高压釜中,在120℃下反应14h。沉积物分别用乙醇和超纯水冲洗三次。然后将得到的固体在60℃下干燥约12h后研磨成粉末,过200目筛。
实施例3
一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括如下步骤:
a)模板SiO2的制备
在100mL无水乙醇中依次加入9mL正硅酸乙酯、4mL去离子水、100mL氨水,随后在室温下搅拌5h。混合液离心5min后,得到的固体用超纯水洗涤3次、60℃下干燥12h,研磨后过200目筛,得到白色的纳米球状SiO2粉体。
b)NiSiO空心球的制备
将0.4g SiO2分散于80mL水中并超声10min,形成悬浮液A。5.4mmol Ni(NO3)2·6H2O,20mmol NH4Cl溶解于80mL超纯水中搅拌约15min,然后缓慢加入4mL NH3·H2O,形成溶液B。将溶液B滴加到悬浮液A中,形成混合溶液。最后,混合液在剧烈搅拌10min后,进入200mL的高压釜中,在120℃下保持24h。沉淀物分别用乙醇和超纯水冲洗3次,然后在60℃下干燥12h后研磨成粉末,过200目筛。
c)NiSiO@NiAlFe LDHs的制备
采用水热法制备NiSiO@NiAlFe LDHs。分别将1g NiSiO空心球、2mmol Ni(NO3)2·6H2O、3mmol Al(NO3)3·9H2O、2mmol Fe(NO3)3·9H2O以及40mmol尿素分散于60mL水中。随后将混合悬液移至高压釜中,在120℃下反应14h。沉积物分别用乙醇和超纯水冲洗三次。然后将得到的固体在60℃下干燥约12h后研磨成粉末(200目)。
实施例4
一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,包括如下步骤:
a)模板SiO2的制备
在100mL无水乙醇中依次加入9mL正硅酸乙酯、4mL去离子水、100mL氨水,随后在室温下搅拌5h。混合液离心5min后,得到的固体用超纯水洗涤3次、60℃下干燥12h,研磨后过200目筛,得到白色的纳米球状SiO2粉体。
b)NiSiO空心球的制备
将0.4g SiO2分散于80mL水中并超声10min,形成悬浮液A。5.4mmol Ni(NO3)2·6H2O,20mmol NH4Cl溶解于80mL超纯水中搅拌约15min,然后缓慢加入4mL NH3·H2O,形成溶液B。将溶液B滴加到悬浮液A中,形成混合溶液。最后,混合液在剧烈搅拌10min后,进入200mL的高压釜中,在120℃下保持24h。沉淀物分别用乙醇和超纯水冲洗3次,然后在60℃下干燥12h后研磨成粉末,过200目筛。
c)NiSiO@NiAlFe LDHs的制备
采用水热法制备NiSiO@NiAlFe LDHs。分别将1g NiSiO空心球、2mmol Ni(NO3)2·6H2O、2mmol Al(NO3)3·9H2O、3mmol Fe(NO3)3·9H2O以及40mmol尿素分散于60mL水中。随后将混合悬液移至高压釜中,在120℃下反应14h。沉积物分别用乙醇和超纯水冲洗三次。然后将得到的固体在60℃下干燥约12h后研磨成粉末,过200目筛。
由图1可以看出,制备的NiSiO@NiAlFe为球状结构,球体直径约为400nm,分散性较好,其表面被垂直排列的片状团簇覆盖。由TEM图像可以看出,NiSiO@NiAlFe球体为空心结构,表面的片状结构高度为80~100nm。
以上实例所制备的吸附剂,对Cs+的去除率如图3所示,可以看出实例3所制备的吸附剂,吸附效果最佳。4种实例在吸附剂投加量达到0.03g/25mL时,对Cs+的去除率均可达到80%以上。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于,包括如下步骤:
a)将乙醇、氨水、正硅酸乙酯按100:100:9的体积比混合均匀,搅拌3~6h后进行固液分离,过200目筛,得到白色的纳米球状SiO2粉体;
b)将纳米球状SiO2粉体超声分散于去离子水中,配制成质量浓度为0.5%的SiO2悬浮液,称之溶液A;将Ni(NO3)2·6H2O与NH4Cl加入超纯水中,使Ni(NO3)2与NH4Cl的浓度分别为67.5mmol/L与0.25mol/L,称之溶液B;将溶液A与溶液B等体积混合均匀后移入高压反应釜,120~140℃水热反应18~24h;自然冷却至室温,沉淀物分别用乙醇和超纯水冲洗3次,60~80℃干燥8~12h,研磨并过200目筛,得NiSiO空心球;
c)将NiSiO空心球、Ni(NO3)2·6H2O、Al(NO3)3·9H2O、Fe(NO3)3·9H2O以及尿素分散于水中成混合悬液,移至高压釜,120~140℃水热反应12~16h,自然冷却至室温,沉积物分别用乙醇和超纯水冲洗三次,60~80℃干燥8~12h后研磨成粉末,其中固液比为1g NiSiO空心球:2~3mmol Ni(NO3)2·6H2O:2~3mmol Al(NO3)3·9H2O:2~3mmol Fe(NO3)3·9H2O:40mmol尿素:60mL水。
2.根据权利要求1所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于:步骤a)中所述将乙醇、氨水、正硅酸乙酯按100:100:9的体积比混合均匀,搅拌5h后进行固液分离。
3.根据权利要求1所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于:步骤b)中所述将溶液A与溶液B等体积混合均匀后移入高压反应釜,120℃水热反应24h。
4.根据权利要求1所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于:步骤b)中所述沉淀物分别用乙醇和超纯水冲洗3次,60℃干燥12h。
5.根据权利要求1所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于:步骤c)中所述移至高压釜,120℃水热反应14h。
6.根据权利要求1所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法,其特征在于:步骤c)中所述固液比为1g NiSiO空心球:3mmolNi(NO3)2·6H2O:2mmol Al(NO3)3·9H2O:2mmolFe(NO3)3·9H2O:40mmol尿素:60mL水。
7.根据权利要求1-6任一所述方法制得的负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂。
8.根据权利要求7所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂,其特征在于:其形貌呈空心球状,直径400~500nm。
9.一种权利要求7或8所述负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的应用,其特征在于:将其应用于放射性核素铯的去除。
CN202010581100.3A 2020-06-23 2020-06-23 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用 Active CN111659339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010581100.3A CN111659339B (zh) 2020-06-23 2020-06-23 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010581100.3A CN111659339B (zh) 2020-06-23 2020-06-23 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111659339A CN111659339A (zh) 2020-09-15
CN111659339B true CN111659339B (zh) 2022-10-21

Family

ID=72389578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010581100.3A Active CN111659339B (zh) 2020-06-23 2020-06-23 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111659339B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023730B (zh) * 2021-03-31 2022-04-05 山东大学 一种含硅层状双金属氢氧化物的制备方法
CN115518610A (zh) * 2022-10-25 2022-12-27 菏泽学院 一种基于层状双金属氢氧化物的空心花球状吸附剂的制备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624126A (zh) * 2014-12-01 2015-05-20 熊仁金 一种二氧化硅/硅酸镍锰空心微球的制备方法
CN105562001A (zh) * 2015-12-18 2016-05-11 河北大学 一种镍基核壳结构纳米催化材料及其制备方法和应用
CN106185965A (zh) * 2016-07-19 2016-12-07 中国工程物理研究院化工材料研究所 以二氧化硅为模板制备空心硅酸镍微球的方法
EP3251741A1 (en) * 2016-05-30 2017-12-06 Scg Chemicals Co. Ltd. Adsorbent for hydrocarbon purification
CN108993507A (zh) * 2018-08-16 2018-12-14 华东交通大学 碳铝核壳@SiO2@铜铁双金属氢氧化物微球降解氨氮材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624126A (zh) * 2014-12-01 2015-05-20 熊仁金 一种二氧化硅/硅酸镍锰空心微球的制备方法
CN105562001A (zh) * 2015-12-18 2016-05-11 河北大学 一种镍基核壳结构纳米催化材料及其制备方法和应用
EP3251741A1 (en) * 2016-05-30 2017-12-06 Scg Chemicals Co. Ltd. Adsorbent for hydrocarbon purification
CN106185965A (zh) * 2016-07-19 2016-12-07 中国工程物理研究院化工材料研究所 以二氧化硅为模板制备空心硅酸镍微球的方法
CN108993507A (zh) * 2018-08-16 2018-12-14 华东交通大学 碳铝核壳@SiO2@铜铁双金属氢氧化物微球降解氨氮材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Prediction and optimization of adsorption properties for Cs+ on NiSiO@NiAlFe LDHs hollow spheres from aqueous solution: Kinetics, isotherms, and BBD model;Yu-ying Hu et al.;《Journal of Hazardous Materials》;20200702;第401卷;第123374页 *

Also Published As

Publication number Publication date
CN111659339A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
Wu et al. Magnetic metal-organic frameworks (Fe3O4@ ZIF-8) composites for U (VI) and Eu (III) elimination: simultaneously achieve favorable stability and functionality
Xiong et al. Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel
Luo et al. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon
Wang et al. Enhanced removal of Cr (III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica
CN111659339B (zh) 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用
Zeng et al. Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability
CN105854744B (zh) 一种磁性纳米颗粒/SiO2气凝胶及其制备方法以及处理高放废液的方法
CN109569548B (zh) 一种用于海水提铀的磁性纳米功能材料及其制备方法
Dai et al. Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium
Du et al. Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger
CN107754867B (zh) 一种高机械强度磁性强碱阴离子交换树脂及其制备方法
CN111804930A (zh) 一种纳米零价铁锰双金属及其制备方法和应用
Xia et al. Efficiently remove of Cs (I) by metals hexacyanoferrate modified magnetic Fe3O4-chitosan nanoparticles
CN110026161B (zh) 一种聚合物基纳米水合氧化镧材料、晶型与结晶度调控方法、应用及再生方法
Rahmani et al. Removal of heavy metals from polluted water using magnetic adsorbent based on κ-carrageenan and N-doped carbon dots
Li et al. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd (II)-adsorption properties and mechanism
CN110124641A (zh) 一种放射性核素吸附材料及其制备方法和应用
Zhu et al. Fabrication of a magnetic porous hydrogel sphere for efficient enrichment of Rb+ and Cs+ from aqueous solution
Cui et al. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15
Chen et al. NiFe 2 O 4@ nitrogen-doped carbon hollow spheres with highly efficient and recyclable adsorption of tetracycline
Wang et al. Ammonium molybdophosphate/metal-organic framework composite as an effective adsorbent for capture of Rb+ and Cs+ from aqueous solution
Gomaa et al. Green extraction of uranium (238U) from natural radioactive resources
Wang et al. Synchronous gelation and lanthanum introduction using bentonite/PVA/SA as the matrix for efficient phosphate removal from aqueous media: Adsorptive behavior and mechanism study
Fu et al. Effective removal of cesium by ammonium molybdophosphate–polyethylene glycol magnetic nanoparticles
Luo et al. Lanthanum molybdate/magnetite for selective phosphate removal from wastewater: characterization, performance, and sorption mechanisms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant