CN111657889A - 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法 - Google Patents

一种基于毫米波雷达的非接触式驾驶员疲劳检测方法 Download PDF

Info

Publication number
CN111657889A
CN111657889A CN202010493804.5A CN202010493804A CN111657889A CN 111657889 A CN111657889 A CN 111657889A CN 202010493804 A CN202010493804 A CN 202010493804A CN 111657889 A CN111657889 A CN 111657889A
Authority
CN
China
Prior art keywords
frequency
heart rate
fatigue
value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010493804.5A
Other languages
English (en)
Inventor
高俊杰
侯宛伶
岳明
王强
林家乐
赵鹏
杨成昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010493804.5A priority Critical patent/CN111657889A/zh
Publication of CN111657889A publication Critical patent/CN111657889A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains

Abstract

一种基于毫米波雷达的非接触式驾驶员疲劳检测方法,用毫米波雷达采集驾驶员在驾驶过程中的胸腔震动信号;通过对其进行预处理后,将不同频段的心率信号和呼吸信号分离;对分离后的心率和呼吸信号采取小波变换法计算心跳频率和呼吸频率,并计算七种衍生的生理特征;通过探究生理特征随时间的变化规律,发现生理特征随驾驶时间累积呈现良好的线性变化趋势;基于贝叶斯优化的随机森林算法有效判别疲劳时刻的发生,相比于原始随机森林模型可以提高算法精确度。本发明解决了因佩戴繁多设备进行生理信号检测时给驾驶员带来的不适感,并降低了检验成本,能准确预测出驾驶员产生疲劳的时刻,向驾驶员发出疲劳预警,减少因疲劳引起的交通事故发生率。

Description

一种基于毫米波雷达的非接触式驾驶员疲劳检测方法
技术领域
本发明涉及人体健康检测技术领域,特别是涉及一种基于毫米波雷达的非接触式驾驶员疲劳检测方法。
背景技术
近年来,中国经济飞速发展,国民出行的交通方式由公共交通逐步衍变成私家车,与之伴随的是高居不下的交通事故发生率。造成交通事故发生的起因中,驾驶员人为因素不可小觑。据相关人士调查发现,高达30%的事故是由疲劳驾驶导致。倘若能有效检测出驾驶员发生困倦状态并向其发出预警,将会大大降低疲劳因素导致的交通事故。
现阶段智能识别驾驶员疲劳研究主要集中于驾驶员行为和车辆行为层面实现,但这类研究要考虑的如光照、天气等客观因素较多,方法缺少鲁棒性。解析驾驶员的生理信息受之前技术条件的限制,检测过程中需在驾驶员身上粘贴数量繁多的电极,由于车体狭窄,驾驶员舒适程度较低等因素,尽管此方法准确度较高,却难以在实车上应用。使用毫米波雷达无接触采集驾驶过程中驾驶员的生理信息后再后续解析,不仅可以实现生理信号的检测精度,还能灵活运用在车体上,打造便利的检查环境,在达到较高准确率的同时满足安全性和非接触性。
人体胸腔的震动是由于心脏和呼吸功能共同调节的,故毫米波雷达通过检测驾驶员的胸腔震动信息,可以从中解析出心跳频率与呼吸频率。由心跳变异性和呼吸频率可计算衍生的心率特征值和呼吸特征值,作为可靠的研究变量。后续运用当下效果较好的机器学习方法建立有效的疲劳状态检测模型,即可较好的预测出疲劳发生的时刻。
发明内容
本发明的目的是运用毫米波雷达采集人体生理信息,然后建立有效通用的疲劳状态检测模型,解决普通仪器在检测时带来的高昂成本与人体不适性,灵活运用在车体上,通过使用改进的随机森林算法有效判定驾驶员疲劳发生时间并向其发出预警而降低交通事故发生率,保护人身安全与财产。
本发明的技术方案:
一种基于毫米波雷达的非接触式驾驶员疲劳检测方法,包括毫米波采集的数据处理、生理特征选取与分析、基于贝叶斯优化算法的改进随机森林算法判定疲劳状态;
所述的毫米波采集的数据处理,设计并开展疲劳驾驶模拟实验,实验过程中采集驾驶员的生理信息;对采集到的胸腔振动信号采取感兴趣相位跟踪并提取、解卷绕、带通滤波流程将心率信号与呼吸信号分离开,进而使用小波变换的方法计算两个生理信号各自的时频域值,由此得到心跳频率和呼吸频率;
所述的生理特征选取与分析:由分离出的心跳信号计算出心跳频率与心率变异性,进而根据心率变异性计算衍生的多样性参数;根据分离出的呼吸信号计算出呼吸频率,进而得到呼吸频率衍生的多样性参数;其次,确定选取的生理特征,找寻参数与时间的规律性;最后,使用统计学方法判断疲劳出现的时间;
所述的基于贝叶斯优化算法的改进随机森林算法:以贝叶斯优化算法作为超参数调优的算法,在维持随机森林算法查找全局最优解的速度下,提升随机森林算法的精确度;将采集到的生理数据按4:1划分成训练数据和测试数据,以判定出的驾驶员产生疲劳的时间给数据贴上标签,将数据输入随机森林算法中训练,保存训练好的模型,再以测试数据检验最终的测试结果;
具体步骤如下:
步骤一、选取15名22~25岁年龄层的实验人员开展疲劳驾驶模拟实验;实验开始前和实验结束后让实验人员填写疲劳调查问卷,验证长途驾驶前后人体的疲劳程度是否加深;实验过程中毫米波雷达不断向PC端传输采集到的数据,保存毫米波采集到的生理信息;首先将模拟信号转为数字信号,并对数字信号展开快速傅里叶变换,提取频段信息,在获取的频段范围内找寻最大阈值从而确定感兴趣的频段范围;77GHz毫米波雷达工作释放的波长已经达到由呼吸引起的波长3倍;为了更准确地测量出结果,防止相位跳变,对相位进行解卷绕处理;当连续相位的差值处于(-∞,-π)或(+π,+∞)时,需将其差值恢复为原始默认值(-π,+π)。采用两个不同频率的串联带通滤波器分别提取胸腔信号包含的心率和呼吸频域信息;由于人体静息心率在0.83~1.5Hz(每分钟50至90次心跳)之间,故将分离心率信号的带通滤波频段设置为0.80-2.0Hz,分离呼吸信号的带通滤波频段设置为0.1-1.0Hz;求得分离心率信号的椭圆滤波器阶数为16阶,分离呼吸信号的椭圆滤波器阶数为10阶;分离出心率和呼吸各自的频谱后,采取谱估计方式计算心率和呼吸频率;谱估计方式采用小波变换,小波变换考虑信号的时域信息和频域信息;由于胸腔运动是连续曲线变化,所以采用连续小波变换,变换原理如下:
Figure BDA0002522039170000031
其中,w(t)为小波,f(t)为原始信号,平移长度设定为τ,a为尺度因子,ψ(t)为小波母函数。小波基采用Morlet复小波(Complex Morlet,cmor)对心跳信号进行分析;根据采样频率设置cmor小波中的fb-fc数值为7-7,得出心率和呼吸频率后,可计算出每分钟的心跳次数与呼吸次数;
步骤二、人体心脏跳动是以接连的QRS波组成的,故由心跳频率计算出心跳间隔RR,计算公式如下:
Figure BDA0002522039170000032
心跳间隔又名心跳变异性,计算由其衍生出的许多特征值;以5分钟为一节点,划分全部时长的生理数据;选取心率平均值、心率均方根差值rMSSD、心率低频值LF、心率高频值HF、心率低频与高频的比值LF/HF、呼吸频率、心率与呼吸频率的比值七种特征值作为后续机器学习算法的输入,心率均方根差值rMSSD的计算方法如下:
Figure BDA0002522039170000041
其中,N为正常心跳间隔数,RRi+1为第i+1个RR间期,RRi为第i个RR间期。频率范围在0.04-0.15Hz的数据为心率低频值LF,频率范围在0.15-0.4Hz的数据为心率高频值HF;为寻求七种生理特征随驾驶时间累积呈现的变化规律,对七种参数做线性回归,线性回归表达式为y=aX+b,回归结果得出拟合优度、截距、斜率和相关系数;使用学生T检验方法判别生理指标是否与疲劳具有显著判别性。样本T检验统计量计算方法如下:
Figure BDA0002522039170000042
Figure BDA0002522039170000043
其中,
Figure BDA0002522039170000044
是两个样本各自的平均值,Sp为样本标准偏差,n1,n2为两个样本容量,
Figure BDA0002522039170000045
为两个样本方差。根据计算得到的T值查表寻找对应的p值,p值代表原假设成立的可能性,根据p值决定是否接受原假设。以本发明为例,p>0.05时,接受原假设H0,两者的差别无统计学意义;p<0.05时,拒绝原假设,两者的差别具有统计学意义。本发明以开始驾驶的第一个5分钟时间段为参考值,比对其他时间段的样本值差异度,以此作为判断疲劳时刻发生的依据。
步骤三、将此分类问题看做二分类问题,设置类别为正常和疲劳,根据步骤二中学生T检验结果为训练数据与测试数据贴上对应标签;训练初始的随机森林模型,根据训练误差的收敛趋势图与不断调试随机森林参数mtry,设置决策树数量为150,mtry值为8,完成初始模型的训练;应用贝叶斯优化算法需要指定需要优化参数与其初始范围值,随机森林算法中需要优化的四个参数为Max_depth:决策树的最大深度;Max_features:寻求每个节点最佳分割时考虑的特征数;Min_samples_split:分割每个节点时所需的最少样本数;N_estimators:决策树数量。指定N_estimators初始范围为10~150,Min_samples_split为2~10,Max_features为0.1~0.999,Max_depth为5~20;设置贝叶斯优化算法使用的采集函数为上置信边界,以AUC(Area Under Curve,ROC曲线与坐标轴围成的面积)结果为评价指标依据不断优化,通过迭代方式选取出最优超参数,得出最终优化参数结果。最后以优化后的参数结果重新开始训练随机森林模型,并保存调试。
本发明的有益效果:
1.通过使用毫米波雷达可以达到无接触式采集驾驶员的生理信号,在满足精度要求的情况下可以为驾驶员营造舒适安全的正常行驶环境。
2.深入探究毫米波雷达工作原理,并制定适合的数据处理方案,成功将ADC数据转换成所需求的频域信息,进一步求得心率信号与呼吸信号。
3.探究生理信号随时间的变化规律,证明了随驾驶时间的累积,人体的生理信号会呈现线性变化,也就是说,生理信号是可以直观反映出驾驶员疲劳的产生。
4.通过运用机器学习方法对疲劳和非疲劳的生理数据进行判别,可以实现较高的准确率,后续使用贝叶斯优化算法,提升超参数寻优的性能,提高算法检测的准确性,为他人超参数寻优提供新的思路。
附图说明
图1为本发明所述的一种基于毫米波雷达的非接触式驾驶员疲劳检测方法的流程图。
图2为本发明所述的毫米波采集数据预处理流程图。
图3为本发明所述的生理特征计算流程图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
参照图1,当进行毫米波雷达采集生理信号的实验时,进入步骤S100,开始。
步骤S100:将毫米波雷达布置在驾驶员身后座椅上或其他合适位置,将毫米波雷达与PC端进行连接,行车过程中不断向PC端传输数据。
步骤S101:获取毫米波雷达采集好的胸腔震动数据。
步骤S102:通过对获取的胸腔震动数据进行预处理。
步骤S103:从原始信号中滤波分离出心率信号和呼吸信号,
步骤S104:使用公式计算心率信号的衍生时域特征值。
步骤S105:使用小波变换法计算心率信号的衍生频域特征值。
步骤S106:使用公式计算呼吸信号的衍生时域特征值。
步骤S107:确定贝叶斯优化算法需要优化的随机森林超参数,并指定超参数所处范围。
步骤S108:使用预先标注好的同一驾驶员生理数据输入进随机森林算法,对训练好的随机森林模型加以保存。
步骤S109:对实时采集到的驾驶员生理数据不断传输进随机森林算法中进行判别当前驾驶员的疲劳程度。
步骤S110:结束毫米波雷达工作进程。
参照图2,数据预处理具体过程如下:
步骤S200:对毫米波雷达采集的原始信号做距离傅里叶变换range FFT。
步骤S201:找到并计算跟踪峰值的相位。
步骤S202:提取胸腔震动信号的主要相位范围值,滤去多余噪声相位。
步骤S203:对感兴趣频段的相位值进行解卷绕处理。连续相位的差值大于或小于±π时,对应相位值需±2π。
步骤S204:采用两个椭圆带通滤波器串联的方式分离心率和呼吸信号。
步骤S205:提取呼吸信号的带通滤波器频段设置成0.10-1.0Hz。
步骤S206:完整的呼吸波形提取出来后,使用谱估计方式即可转换到呼吸信号的频域,从而计算呼吸频率。
步骤S207:提取心率信号的带通滤波频段设置成0.80-2.0Hz。
步骤S208:完整的心跳波形提取出来后,使用谱估计方式即可转换到心跳信号的频域,从而计算心跳频率。
参照图3,生理特征获取具体过程如下:
步骤S300:获取毫米波雷达的原始数据。
步骤S301:对获得的原始数据进行解卷绕和带通滤波处理,将心率信号与呼吸信号进行分离。
步骤S302:使用相应公式计算心率信号的时域特征值——心率平均值和心率均方根差值rMSSD。
步骤S303:使用小波变换方法计算心率信号的频域特征值——心率低频值LF、心率高频值HF、心率低频与高频的比值LF/HF。
步骤S304:使用相应公式计算呼吸信号的时域特征值——呼吸频率平均值和心率与呼吸频率的比值。
步骤S305:应用数学统计方法——学生T检验判定驾驶员产生疲劳的时间,进而对特征值划定标签。
显然,上述方法仅仅是为清楚地说明本发明涉及的案例,而并非对全部计算方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举,而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (1)

1.一种基于毫米波雷达的非接触式驾驶员疲劳检测方法,其特征在于,该方法包括毫米波采集的数据处理、生理特征选取与分析、基于贝叶斯优化算法的改进随机森林算法判定疲劳状态;
所述的毫米波采集的数据处理,设计并开展疲劳驾驶模拟实验,实验过程中采集驾驶员的生理信息;对采集到的胸腔振动信号采取感兴趣相位跟踪并提取、解卷绕、带通滤波流程将心率信号与呼吸信号分离开,进而使用小波变换的方法计算两个生理信号各自的时频域值,由此得到心跳频率和呼吸频率;
所述的生理特征选取与分析:由分离出的心跳信号计算出心跳频率与心率变异性,进而根据心率变异性计算衍生的多样性参数;根据分离出的呼吸信号计算出呼吸频率,进而得到呼吸频率衍生的多样性参数;其次,确定选取的生理特征,找寻参数与时间的规律性;最后,使用统计学方法判断疲劳出现的时间;
所述的基于贝叶斯优化算法的改进随机森林算法:以贝叶斯优化算法作为超参数调优的算法,在维持随机森林算法查找全局最优解的速度下,提升随机森林算法的精确度;将采集到的生理数据按4:1划分成训练数据和测试数据,以判定出的驾驶员产生疲劳的时间给数据贴上标签,将数据输入随机森林算法中训练,保存训练好的模型,再以测试数据检验最终的测试结果;
具体步骤如下:
步骤一、选取15名22~25岁年龄层的实验人员开展疲劳驾驶模拟实验;实验开始前和实验结束后让实验人员填写疲劳调查问卷,验证长途驾驶前后人体的疲劳程度是否加深;实验过程中毫米波雷达不断向PC端传输采集到的数据,保存毫米波采集到的生理信息;首先将模拟信号转为数字信号,并对数字信号展开快速傅里叶变换,提取频段信息,在获取的频段范围内找寻最大阈值从而确定感兴趣的频段范围;77GHz毫米波雷达工作释放的波长已经达到由呼吸引起的波长3倍;为了更准确地测量出结果,防止相位跳变,对相位进行解卷绕处理;当连续相位的差值处于(-∞,-π)或(+π,+∞)时,需将其差值恢复为原始默认值(-π,+π);采用两个不同频率的串联带通滤波器分别提取胸腔信号包含的心率和呼吸频域信息;由于人体静息心率在0.83~1.5Hz之间,故将分离心率信号的带通滤波频段设置为0.80-2.0Hz,分离呼吸信号的带通滤波频段设置为0.1-1.0Hz;求得分离心率信号的椭圆滤波器阶数为16阶,分离呼吸信号的椭圆滤波器阶数为10阶;分离出心率和呼吸各自的频谱后,采取谱估计方式计算心率和呼吸频率;谱估计方式采用小波变换,小波变换考虑信号的时域信息和频域信息;由于胸腔运动是连续曲线变化,所以采用连续小波变换,变换原理如下:
Figure FDA0002522039160000021
其中,w(t)为小波,f(t)为原始信号,平移长度设定为τ,a为尺度因子,ψ(t)为小波母函数;小波基采用Morlet复小波对心跳信号进行分析;根据采样频率设置cmor小波中的fb-fc数值为7-7,得出心率和呼吸频率后,计算出每分钟的心跳次数与呼吸次数;
步骤二、人体心脏跳动是以接连的QRS波组成的,故由心跳频率计算出心跳间隔RR,计算公式如下:
Figure FDA0002522039160000022
心跳间隔又名心跳变异性,计算由其衍生出的许多特征值;以5分钟为一节点,划分全部时长的生理数据;选取心率平均值、心率均方根差值rMSSD、心率低频值LF、心率高频值HF、心率低频与高频的比值LF/HF、呼吸频率、心率与呼吸频率的比值七种特征值作为后续机器学习算法的输入,心率均方根差值rMSSD的计算方法如下:
Figure FDA0002522039160000023
其中,N为正常心跳间隔数,RRi+1为第i+1个RR间期,RRi为第i个RR间期;频率范围在0.04-0.15Hz的数据为心率低频值LF,频率范围在0.15-0.4Hz的数据为心率高频值HF;为寻求七种生理特征随驾驶时间累积呈现的变化规律,对七种参数做线性回归,线性回归表达式为y=aX+b,回归结果得出拟合优度、截距、斜率和相关系数;使用学生T检验方法判别生理指标是否与疲劳具有显著判别性;样本T检验统计量计算方法如下:
Figure FDA0002522039160000031
Figure FDA0002522039160000032
其中,
Figure FDA0002522039160000033
是两个样本各自的平均值,Sp为样本标准偏差,n1,n2为两个样本容量,
Figure FDA0002522039160000034
为两个样本方差;根据计算得到的T值查表寻找对应的p值,p值代表原假设成立的可能性,根据p值决定是否接受原假设;p>0.05时,接受原假设H0,两者的差别无统计学意义;p<0.05时,拒绝原假设;以开始驾驶的第一个5分钟时间段为参考值,比对其他时间段的样本值差异度,以此作为判断疲劳时刻发生的依据;
步骤三、将此分类问题看做二分类问题,设置类别为正常和疲劳,根据步骤二中学生T检验结果为训练数据与测试数据贴上对应标签;训练初始的随机森林模型,根据训练误差的收敛趋势图与不断调试随机森林参数mtry,设置决策树数量为150,mtry值为8,完成初始模型的训练;应用贝叶斯优化算法需要指定需要优化参数与其初始范围值,随机森林算法中需要优化的四个参数为Max_depth:决策树的最大深度;Max_features:寻求每个节点最佳分割时考虑的特征数;Min_samples_split:分割每个节点时所需的最少样本数;N_estimators:决策树数量;指定N_estimators初始范围为10~150,Min_samples_split为2~10,Max_features为0.1~0.999,Max_depth为5~20;设置贝叶斯优化算法使用的采集函数为上置信边界,以AUC结果为评价指标依据不断优化,通过迭代方式选取出最优超参数,得出最终优化参数结果;最后以优化后的参数结果重新开始训练随机森林模型,并保存调试。
CN202010493804.5A 2020-06-03 2020-06-03 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法 Pending CN111657889A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010493804.5A CN111657889A (zh) 2020-06-03 2020-06-03 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010493804.5A CN111657889A (zh) 2020-06-03 2020-06-03 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法

Publications (1)

Publication Number Publication Date
CN111657889A true CN111657889A (zh) 2020-09-15

Family

ID=72385670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010493804.5A Pending CN111657889A (zh) 2020-06-03 2020-06-03 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法

Country Status (1)

Country Link
CN (1) CN111657889A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365680A (zh) * 2020-10-29 2021-02-12 福信富通科技股份有限公司 一种基于ai识别的主动安全预警方法及系统
CN112389444A (zh) * 2020-10-16 2021-02-23 爱驰汽车(上海)有限公司 基于驾驶员心率检测的车辆预警方法及装置
CN112699793A (zh) * 2020-12-29 2021-04-23 长安大学 一种基于随机森林的疲劳驾驶检测优化识别方法
CN112971771A (zh) * 2021-02-23 2021-06-18 浙江大学计算机创新技术研究院 一种基于毫米波重建心电图的方法
CN113033674A (zh) * 2021-03-25 2021-06-25 安徽理工大学 一种贝叶斯优化随机森林算法的苹果多光谱图像无损检测方法
CN113561989A (zh) * 2021-08-16 2021-10-29 斑马网络技术有限公司 基于心电信号的危险驾驶状态检测方法、设备及存储介质
CN113830093A (zh) * 2021-08-13 2021-12-24 森思泰克河北科技有限公司 一种检测疲劳驾驶的方法、装置及车载终端
CN113827215A (zh) * 2021-09-02 2021-12-24 中国电子科技南湖研究院 一种基于毫米波雷达的多种心律失常自动诊断方法
CN114041767A (zh) * 2021-10-11 2022-02-15 宁波春建电子科技有限公司 一种基于深度相机和毫米波雷达的心率检测方法
CN114506335A (zh) * 2022-01-13 2022-05-17 四川豪智融科技有限公司 一种自动驾驶用驾驶员疲劳与健康监控系统
CN114569130A (zh) * 2022-02-25 2022-06-03 西南交通大学 高速铁路行车调度员监控工作的注意力水平识别方法
CN115685096A (zh) * 2022-12-30 2023-02-03 成都实时技术股份有限公司 一种基于逻辑回归的二次雷达副瓣抑制方法
IL289321B1 (en) * 2021-12-23 2023-06-01 Neteera Tech Ltd Derivation of heartbeat interval hundreds of returns
WO2023113246A1 (ko) * 2021-12-15 2023-06-22 숭실대학교산학협력단 움직임 보정을 통한 운전자 호흡수 추출 장치 및 그 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599207A (zh) * 2009-05-06 2009-12-09 深圳市汉华安道科技有限责任公司 一种疲劳驾驶检测装置及汽车
WO2015160272A1 (en) * 2014-04-14 2015-10-22 Novelic D.O.O. Mm-wave radar driver fatigue sensor apparatus
CN105632104A (zh) * 2016-03-18 2016-06-01 内蒙古大学 一种疲劳驾驶检测系统和方法
CN109124625A (zh) * 2018-09-04 2019-01-04 大连理工大学 一种驾驶员疲劳状态水平分级方法
CN110346790A (zh) * 2019-07-09 2019-10-18 长沙莫之比智能科技有限公司 一种基于毫米波雷达的非接触式生命体征监测方法、装置及系统
US20200151474A1 (en) * 2017-07-31 2020-05-14 Alcohol Countermeasure Systems (International) Inc. Non-intrusive assessment of fatigue in drivers using eye tracking
CN111166357A (zh) * 2020-01-06 2020-05-19 四川宇然智荟科技有限公司 多传感器融合的疲劳监测装置系统及其监测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599207A (zh) * 2009-05-06 2009-12-09 深圳市汉华安道科技有限责任公司 一种疲劳驾驶检测装置及汽车
WO2015160272A1 (en) * 2014-04-14 2015-10-22 Novelic D.O.O. Mm-wave radar driver fatigue sensor apparatus
CN105632104A (zh) * 2016-03-18 2016-06-01 内蒙古大学 一种疲劳驾驶检测系统和方法
US20200151474A1 (en) * 2017-07-31 2020-05-14 Alcohol Countermeasure Systems (International) Inc. Non-intrusive assessment of fatigue in drivers using eye tracking
CN109124625A (zh) * 2018-09-04 2019-01-04 大连理工大学 一种驾驶员疲劳状态水平分级方法
CN110346790A (zh) * 2019-07-09 2019-10-18 长沙莫之比智能科技有限公司 一种基于毫米波雷达的非接触式生命体征监测方法、装置及系统
CN111166357A (zh) * 2020-01-06 2020-05-19 四川宇然智荟科技有限公司 多传感器融合的疲劳监测装置系统及其监测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何嘉林: "基于随机森林与贝叶斯优化算法的排水管道缺陷检测算法研究", 《中国优秀硕士学位论文全文数据库》 *
刘强: "基于机器学习的疲劳驾驶监测识别系统设计与开发", 《中国优秀硕士学位论文全文数据库》 *
张祖怀: "基于人体生理信号的驾驶疲劳研究方法及其应用", 《中国优秀硕士学位论文全文数据库》 *
蒋腾,胡涛,祝民鹏,陈丹: "基于连续小波变换的多数据心率提取方法", 《现代雷达》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389444B (zh) * 2020-10-16 2022-04-12 爱驰汽车(上海)有限公司 基于驾驶员心率检测的车辆预警方法及装置
CN112389444A (zh) * 2020-10-16 2021-02-23 爱驰汽车(上海)有限公司 基于驾驶员心率检测的车辆预警方法及装置
CN112365680A (zh) * 2020-10-29 2021-02-12 福信富通科技股份有限公司 一种基于ai识别的主动安全预警方法及系统
CN112699793A (zh) * 2020-12-29 2021-04-23 长安大学 一种基于随机森林的疲劳驾驶检测优化识别方法
CN112971771A (zh) * 2021-02-23 2021-06-18 浙江大学计算机创新技术研究院 一种基于毫米波重建心电图的方法
CN112971771B (zh) * 2021-02-23 2022-12-06 浙江大学计算机创新技术研究院 一种基于毫米波重建心电图的方法
CN113033674A (zh) * 2021-03-25 2021-06-25 安徽理工大学 一种贝叶斯优化随机森林算法的苹果多光谱图像无损检测方法
CN113830093A (zh) * 2021-08-13 2021-12-24 森思泰克河北科技有限公司 一种检测疲劳驾驶的方法、装置及车载终端
CN113561989A (zh) * 2021-08-16 2021-10-29 斑马网络技术有限公司 基于心电信号的危险驾驶状态检测方法、设备及存储介质
CN113827215A (zh) * 2021-09-02 2021-12-24 中国电子科技南湖研究院 一种基于毫米波雷达的多种心律失常自动诊断方法
CN113827215B (zh) * 2021-09-02 2024-01-16 中国电子科技南湖研究院 一种基于毫米波雷达的多种心律失常自动诊断方法
CN114041767A (zh) * 2021-10-11 2022-02-15 宁波春建电子科技有限公司 一种基于深度相机和毫米波雷达的心率检测方法
WO2023113246A1 (ko) * 2021-12-15 2023-06-22 숭실대학교산학협력단 움직임 보정을 통한 운전자 호흡수 추출 장치 및 그 방법
IL289321B1 (en) * 2021-12-23 2023-06-01 Neteera Tech Ltd Derivation of heartbeat interval hundreds of returns
WO2023119285A1 (en) * 2021-12-23 2023-06-29 Neteera Technologies Ltd. Derivation of heartbeat interval from reflection signal
CN114506335A (zh) * 2022-01-13 2022-05-17 四川豪智融科技有限公司 一种自动驾驶用驾驶员疲劳与健康监控系统
CN114569130A (zh) * 2022-02-25 2022-06-03 西南交通大学 高速铁路行车调度员监控工作的注意力水平识别方法
CN114569130B (zh) * 2022-02-25 2023-07-04 西南交通大学 高速铁路行车调度员监控工作的注意力水平识别方法
CN115685096B (zh) * 2022-12-30 2023-03-21 成都实时技术股份有限公司 一种基于逻辑回归的二次雷达副瓣抑制方法
CN115685096A (zh) * 2022-12-30 2023-02-03 成都实时技术股份有限公司 一种基于逻辑回归的二次雷达副瓣抑制方法

Similar Documents

Publication Publication Date Title
CN111657889A (zh) 一种基于毫米波雷达的非接触式驾驶员疲劳检测方法
CN105919584B (zh) 用于可穿戴心率监测设备的心率估计方法及装置
CN109117730B (zh) 心电图心房颤动实时判断方法、装置、系统及存储介质
CN105320969A (zh) 基于多尺度Renyi熵的心率变异性特征分类方法
CN105411565A (zh) 基于广义尺度小波熵的心率变异性特征分类方法
CN108577834B (zh) 一种用于癫痫间期棘波自动检测的方法
CN105877766A (zh) 一种基于多生理信号融合的精神状态检测系统及方法
CN109480833A (zh) 基于人工智能的癫痫患者脑电信号的预处理和识别方法
Bairy et al. Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
CN101259016A (zh) 实时自动检测癫痫特征波的方法
CN102512158A (zh) 一种基于高维模糊识别的心电信号质量评估方法和装置
CN111803065B (zh) 一种基于脑电数据的危险交通场景辨识方法及系统
Kelwade et al. Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series
Kelwade et al. Prediction of cardiac arrhythmia using artificial neural network
CN102961129A (zh) 一种远程医疗的异常心电张量分析方法
CN115299963A (zh) 基于波形特征模板的高频振荡信号自动检测算法及系统
CN111887811B (zh) 基于脑电信号特征的大脑异常放电检测方法及系统
CN113729653A (zh) 一种人体脉搏波信号采集方法
CN117017297A (zh) 驾驶员疲劳的预测和识别模型建立方法及其应用
CN109063652B (zh) 一种信号处理方法、系统及计算机存储介质
CN106778561B (zh) 一种穿戴式设备的身份识别方法及识别装置
CN113180697B (zh) 一种脑电波分析方法及终端
CN112022151B (zh) 一种脑电棘慢波的处理及识别方法
Ma et al. Research on drowsy-driving monitoring and warning system based on multi-feature comprehensive evaluation
Kaleem et al. Telephone-quality pathological speech classification using empirical mode decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200915

WD01 Invention patent application deemed withdrawn after publication