CN111652808A - A method of infrared image detail enhancement and noise suppression - Google Patents
A method of infrared image detail enhancement and noise suppression Download PDFInfo
- Publication number
- CN111652808A CN111652808A CN201910689889.1A CN201910689889A CN111652808A CN 111652808 A CN111652808 A CN 111652808A CN 201910689889 A CN201910689889 A CN 201910689889A CN 111652808 A CN111652808 A CN 111652808A
- Authority
- CN
- China
- Prior art keywords
- image
- weight
- pixel
- noise
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000001629 suppression Effects 0.000 title claims abstract description 8
- 238000001914 filtration Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims description 8
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 2
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 238000007499 fusion processing Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000003331 infrared imaging Methods 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种红外图像细节增强及噪声抑制方法,使用更大范围内的权重值对图像进行处理,有效的消除红外图像中的高斯噪声,并且保留一定的图像细节,对比于原本的均值滤波图像有效的提高了图像的质量。对原始图像通过使用拉普拉斯变换,得到图像较多的细节信息,经过对图像进行融合可以得到一副具有多图像细节低噪声的图像。本发明的思路简单,计算复杂度不高,且效果良好。
The invention discloses an infrared image detail enhancement and noise suppression method, which uses a wider range of weight values to process the image, effectively eliminates Gaussian noise in the infrared image, and retains certain image details, which is compared with the original average value. Filtering the image effectively improves the quality of the image. By using Laplace transform on the original image, more detailed information of the image can be obtained, and by fusing the images, an image with multiple image details and low noise can be obtained. The idea of the invention is simple, the calculation complexity is not high, and the effect is good.
Description
技术领域technical field
本发明属于红外图像处理技术领域,特别涉及一种具有抑制噪声的红外图像边缘细节增强方法,具体涉及一种红外图像细节增强及噪声抑制方法。The invention belongs to the technical field of infrared image processing, in particular to an infrared image edge detail enhancement method with noise suppression, in particular to an infrared image detail enhancement and noise suppression method.
背景技术Background technique
随着红外探测技术的不断发展,红外成像技术被越来越多的应用于军事和医疗等领域。但在因为红外图像是灰度图像,因此其缺乏立体感,分辨度和对比度低、空间相关性强,图像效果模糊,并且红外探测器的制造工艺的影响使得红外成像效果远不如可见光成像效果。With the continuous development of infrared detection technology, infrared imaging technology is increasingly used in military and medical fields. However, because the infrared image is a grayscale image, it lacks stereoscopic effect, has low resolution and contrast, strong spatial correlation, blurred image effect, and the influence of the manufacturing process of the infrared detector makes the infrared imaging effect far inferior to the visible light imaging effect.
红外图像噪声主要是高斯噪声、椒盐噪声及复合噪声等。因为红外图像质量是由多种噪声综合产生的整体影响,因此红外图像降噪方法受到了广泛的关注,但现有的降噪算法存在着一定的缺陷:(1)有的降噪算法会损失图像细节信息,使得降噪后的图像丢失部分特征信息;(2)有的降噪算法处理后使得原信噪比降低或提升不大,对图像清晰程度提升不大;(3)有的降噪算法虽可以有效提升图像细节,但其运算过于复杂不利于算法的硬件实现。Infrared image noise is mainly Gaussian noise, salt and pepper noise and composite noise. Because the quality of infrared images is the overall impact of a variety of noises, infrared image noise reduction methods have received extensive attention, but the existing noise reduction algorithms have certain defects: (1) Some noise reduction algorithms will lose Image detail information, so that the image after noise reduction loses part of the feature information; (2) Some noise reduction algorithms reduce or improve the original signal-to-noise ratio after processing, and the image clarity is not improved much; (3) Some reduce Although the noise algorithm can effectively improve the image details, its operation is too complicated, which is not conducive to the hardware implementation of the algorithm.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述背景技术中存在的对红外图像处理效果不佳的技术问题,提供一种红外图像细节增强及噪声抑制方法。The purpose of the present invention is to provide an infrared image detail enhancement and noise suppression method in view of the technical problem that the infrared image processing effect is not good in the above-mentioned background art.
为了解决上述技术问题,本发明提供一种红外图像细节增强及噪声抑制方法,包括以下步骤:In order to solve the above technical problems, the present invention provides a method for enhancing infrared image details and suppressing noise, comprising the following steps:
(1)获取原始红外图像P0;(1) Obtain the original infrared image P 0 ;
(2)计算以像素点坐标为中心5×5大小内全部像素点的权重值Wn;(2) Calculate the weight value W n of all pixel points in the size of 5×5 with the pixel point coordinates as the center;
(3)对所求得的权重值Wn进行归一化得到W;(3) Normalize the obtained weight value W n to obtain W;
(4)以像素点为中心3×3大小区域内像素灰度值与其对应位置的权重进行加权均值滤波得到经过加权滤波的图像P1;(4) performing weighted mean filtering with the weight of the pixel gray value and its corresponding position in a 3×3 area with the pixel as the center to obtain a weighted filtered image P 1 ;
(5)对图像P0进行拉普拉斯变换得到图像P2,得到强化后的图像边缘信息;(5) Laplace transform is performed on the image P 0 to obtain the image P 2 , and the enhanced image edge information is obtained;
(6)将经过滤波后得到的图像P1与图像P2通过使用拉普拉斯金字塔变换进行融合得到图像P3并输出图像P3;(6) fuse the filtered image P 1 and the image P 2 by using the Laplace pyramid transform to obtain the image P 3 and output the image P 3 ;
其中,所述权重Wn的值采用欧式距离的倒数,其计算公式为:Wherein, the value of the weight W n adopts the reciprocal of the Euclidean distance, and its calculation formula is:
其中,(x0,y0)表示中心像素点的位置坐标,并对上式进行归一化:Among them, (x 0 , y 0 ) represents the position coordinates of the center pixel, and the above formula is normalized:
其中,通过求得的权重值对中心像素点(x0,y0)周围3×3大小区域内像素灰度值进行均值滤波,得到中心像素点(x0,y0)的灰度值为:Among them, average filtering is performed on the gray value of the pixels in the 3×3 area around the central pixel (x 0 , y 0 ) through the obtained weight value, and the gray value of the central pixel (x 0 , y 0 ) is obtained. :
g=w1×g(i-1,j+1)+w2×g(i,j+1)+w3×g(i+1,j+1)+w4×g(i-1,j)+w5×g(i,j)+w6×g(i+1,j)+w7×g(i-1,j-1)+w8×g(i,j-1)+w9×g(i+1,j-1)g=w 1 ×g(i-1,j+1)+w 2 ×g(i,j+1)+w 3 ×g(i+1,j+1)+w 4 ×g(i-1 , j)+w 5 ×g(i,j)+w 6 ×g(i+1,j)+w 7 ×g(i-1,j-1)+w 8 ×g(i,j-1 )+w 9 ×g(i+1, j-1)
其中,通过图像函数f(x,y)的拉普拉斯算子定义:Among them, it is defined by the Laplace operator of the image function f(x, y):
其中和为:in and for:
求得拉普拉斯算子为:The Laplace operator is obtained as:
其中,将经过权重均值滤波的图像P1与经过拉普拉斯算子锐化后的图像P2进行图像分解,将得到的各层图像进行融合处理后进行图像的扩展与金字塔的重构从而得到最终的融合图像P3。Among them, the image P 1 filtered by the weighted mean value and the image P 2 sharpened by the Laplacian operator are decomposed, and the obtained images of each layer are fused and then the image is expanded and the pyramid is reconstructed. The final fused image P 3 is obtained.
与现有技术相比,本发明提出了一种基于红外图像细节增强及噪声抑制的方法,使用更大范围内的权重值对图像进行处理,有效的消除红外图像中的高斯噪声,并且保留一定的图像细节,对比于原本的均值滤波图像有效的提高了图像的质量。对原始图像通过使用拉普拉斯变换,得到图像较多的细节信息,经过对图像进行融合可以得到一副具有多图像细节低噪声的图像。本发明的思路简单,计算复杂度不高,且效果良好。Compared with the prior art, the present invention proposes a method based on infrared image detail enhancement and noise suppression, which uses a wider range of weight values to process the image, effectively eliminates the Gaussian noise in the infrared image, and retains a certain amount of noise. Compared with the original mean-filtered image, the image quality is effectively improved. By using Laplace transform on the original image, more detailed information of the image can be obtained, and by fusing the images, an image with multiple image details and low noise can be obtained. The idea of the invention is simple, the calculation complexity is not high, and the effect is good.
附图说明Description of drawings
图1所示为本申请的方法流程图;Fig. 1 shows the method flow chart of this application;
图2所示为本申请的5×5权重模板图;FIG. 2 shows a 5×5 weight template diagram of the present application;
图3所示为本申请的3×3滤波模板图;FIG. 3 shows a 3×3 filtering template diagram of the present application;
图4所示为本申请拉普拉斯算子模板图;Figure 4 shows the Laplacian operator template diagram of the present application;
图5所示为本申请拉普拉斯金字塔融合框图。FIG. 5 shows a block diagram of the Laplacian pyramid fusion of the present application.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用属于“包含”和/或“包括”时,其指明存在特征、步骤、操作、部件或者模块、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it should also be understood that when used in this specification of "comprising" and/or "comprising", it indicates There are features, steps, operations, components or modules, components and/or combinations thereof.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second", etc. in the description and claims of the present application and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that data so used may be interchanged under appropriate circumstances such that the embodiments of the application described herein can, for example, be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict.
本发明设计一种应用红外图像细节增强及噪声抑制算法,在有效的降低红外图像中的高斯噪声的同时尽可能多的保留红外图像的细节及图像中目标边缘的清晰度。The present invention designs an infrared image detail enhancement and noise suppression algorithm, which effectively reduces the Gaussian noise in the infrared image and preserves as many details of the infrared image and sharpness of the target edge in the image as possible.
实施例Example
本实施例提出一种红外图像细节增强及噪声抑制方法,该方法的具体步骤如图1所示,包括:This embodiment proposes a method for enhancing infrared image details and suppressing noise. The specific steps of the method are shown in FIG. 1 , including:
(1)获取原始红外图像P0;(1) Obtain the original infrared image P 0 ;
(2)计算以像素点坐标为中心5×5大小内全部像素点的权重值Wn(n的值为1到25间的整数);(2) Calculate the weight value W n (the value of n is an integer between 1 and 25) of all the pixel points in the size of 5 × 5 with the coordinates of the pixel point as the center;
(3)对所求得的权重值Wn进行归一化得到W;(3) Normalize the obtained weight value W n to obtain W;
(4)以像素点为中心3×3大小区域内像素灰度值与其对应位置的权重进行加权均值滤波得到经过加权滤波的图像P1;(4) performing weighted mean filtering with the weight of the pixel gray value and its corresponding position in a 3×3 area with the pixel as the center to obtain a weighted filtered image P 1 ;
(5)对图像P0进行拉普拉斯变换得到图像P2,得到强化后的图像边缘信息;(5) Laplace transform is performed on the image P 0 to obtain the image P 2 , and the enhanced image edge information is obtained;
(6)将经过滤波后得到的图像P1与图像P2通过使用拉普拉斯金字塔变换进行融合得到图像P3并输出图像P3;(6) fuse the filtered image P 1 and the image P 2 by using the Laplace pyramid transform to obtain the image P 3 and output the image P 3 ;
本发明步骤(2)中权重值Wn通过使用欧式距离的倒数计算得出5×5大小内各像素点对应的位置坐标(x,y)与中心像素点的位置坐标(x0,y0)计算求出,权重模板如图2所示,其计算公式为:In step (2) of the present invention, the weight value W n is calculated by using the reciprocal of the Euclidean distance to obtain the position coordinates (x, y) corresponding to each pixel in the size of 5×5 and the position coordinates (x 0 , y 0 of the center pixel) ) is calculated, the weight template is shown in Figure 2, and its calculation formula is:
对步骤(2)中所得权重Wn(x,y)进行归一化计算得到归一化后的权重值wn:The normalized calculation is performed on the weight W n (x, y) obtained in step (2) to obtain the normalized weight value w n :
将所得权重经过处理后得到新的权重值后,步骤(4)通过求得的权重值wn对中心像素点(i,j)周围3×3大小区域内像素点对应的灰度值g(i,j)进行计算,滤波模板如图3所示,得到中心像素点(x0,y0)的灰度值g(i,j)为:After the obtained weight is processed to obtain a new weight value, step (4) uses the obtained weight value w n to calculate the gray value g ( i, j) is calculated, the filtering template is shown in Figure 3, and the gray value g(i, j) of the central pixel point (x 0 , y 0 ) is obtained as:
g=w1×g(i-1,j+1)+w2×g(i,j+1)+w3×g(i+1,j+1)+w4×g(i-1,j)+w5×g(i,j)+w6×g(i+1,j)+w7×g(i-1,j-1)+w8×g(i,j-1)+w9×g(i+1,j-1)g=w 1 ×g(i-1,j+1)+w 2 ×g(i,j+1)+w 3 ×g(i+1,j+1)+w 4 ×g(i-1 , j)+w 5 ×g(i,j)+w 6 ×g(i+1,j)+w 7 ×g(i-1,j-1)+w 8 ×g(i,j-1 )+w 9 ×g(i+1, j-1)
通过处理后新的灰度值得到图像P1。The image P 1 is obtained by the new gray value after processing.
步骤5通过二维图像函数f(x,y)的拉普拉斯变换是各向同性的二阶导数:Step 5 The Laplace transform of the two-dimensional image function f(x, y) is the isotropic second derivative:
在二维图像函数f(x,y)中,x和y两个方向的二阶差分和为:In the two-dimensional image function f(x, y), the second-order difference of the two directions of x and y and for:
将x和y两个方向的二阶差分和带入上述图像函数求得拉普拉斯算子f(x,y)的二阶导数中得到上述方程的离散形式:Take the second difference in the x and y directions and Bring in the above image function to obtain the second derivative of the Laplace operator f(x, y) to obtain the discrete form of the above equation:
使用如图4所示的拉普拉斯算子模板,经过拉普拉斯算子处理后得到图像P2,该图像包含了原图像的细节及边缘信息。Using the Laplacian operator template as shown in FIG. 4 , an image P 2 is obtained after being processed by the Laplacian operator, and the image contains the details and edge information of the original image.
步骤(6)流程如图5所示,将经过权重均值滤波的图像P1与经过拉普拉斯算子锐化后的图像P2进行图像分解,得到拉普拉斯层,本发明中采用三层设计,高层的拉普拉斯图像均来自于前一层的降采样。将经过处理得到的P1、P2各层图像进行融合处理后进行图像的扩展与金字塔的重构从而得到最终的融合图像P3,处理完成后的图像P3可以有效的增强图像细节并降低图像的噪声。The process of step (6) is shown in FIG. 5 , the image P1 filtered by the weighted mean value and the image P2 sharpened by the Laplacian operator are decomposed to obtain the Laplacian layer. In the present invention, three layers are used. By design, the high-level Laplacian images are all down-sampled from the previous layer. The processed images of layers P 1 and P 2 are fused, and then image expansion and pyramid reconstruction are performed to obtain the final fused image P 3 . The processed image P 3 can effectively enhance image details and reduce image quality. noise.
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be noted that, for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. These improvements and Retouching should also be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910689889.1A CN111652808A (en) | 2019-07-29 | 2019-07-29 | A method of infrared image detail enhancement and noise suppression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910689889.1A CN111652808A (en) | 2019-07-29 | 2019-07-29 | A method of infrared image detail enhancement and noise suppression |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111652808A true CN111652808A (en) | 2020-09-11 |
Family
ID=72349169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910689889.1A Pending CN111652808A (en) | 2019-07-29 | 2019-07-29 | A method of infrared image detail enhancement and noise suppression |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111652808A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112258448A (en) * | 2020-09-15 | 2021-01-22 | 郑州金惠计算机系统工程有限公司 | Fine scratch detection method, fine scratch detection device, electronic equipment and computer-readable storage medium |
CN114202466A (en) * | 2020-09-18 | 2022-03-18 | 北京金山云网络技术有限公司 | Image noise reduction method, device, electronic device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100142790A1 (en) * | 2008-12-04 | 2010-06-10 | New Medical Co., Ltd. | Image processing method capable of enhancing contrast and reducing noise of digital image and image processing device using same |
CN103208105A (en) * | 2013-05-02 | 2013-07-17 | 中国电子科技集团公司第二十八研究所 | Infrared image detail enhancement and noise adaptive inhibition method |
CN107784642A (en) * | 2016-08-26 | 2018-03-09 | 北京航空航天大学 | A kind of infrared video and visible light video method for self-adaption amalgamation |
CN109919861A (en) * | 2019-01-29 | 2019-06-21 | 浙江数链科技有限公司 | Infrared image enhancing method, device, computer equipment and storage medium |
-
2019
- 2019-07-29 CN CN201910689889.1A patent/CN111652808A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100142790A1 (en) * | 2008-12-04 | 2010-06-10 | New Medical Co., Ltd. | Image processing method capable of enhancing contrast and reducing noise of digital image and image processing device using same |
CN103208105A (en) * | 2013-05-02 | 2013-07-17 | 中国电子科技集团公司第二十八研究所 | Infrared image detail enhancement and noise adaptive inhibition method |
CN107784642A (en) * | 2016-08-26 | 2018-03-09 | 北京航空航天大学 | A kind of infrared video and visible light video method for self-adaption amalgamation |
CN109919861A (en) * | 2019-01-29 | 2019-06-21 | 浙江数链科技有限公司 | Infrared image enhancing method, device, computer equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
徐敏;赵毅强;刘文娟;: "基于长线列探测器的图像非均匀性研究与校正", 传感器与微系统 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112258448A (en) * | 2020-09-15 | 2021-01-22 | 郑州金惠计算机系统工程有限公司 | Fine scratch detection method, fine scratch detection device, electronic equipment and computer-readable storage medium |
CN114202466A (en) * | 2020-09-18 | 2022-03-18 | 北京金山云网络技术有限公司 | Image noise reduction method, device, electronic device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lau et al. | Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps | |
CN111915530B (en) | An end-to-end haze concentration adaptive neural network image dehazing method | |
Rajkumar et al. | A comparative analysis on image quality assessment for real time satellite images | |
CN103533214B (en) | Video real-time denoising method based on kalman filtering and bilateral filtering | |
CN101639938B (en) | Image restoration method based on double-edge wave filter and margin deconvolution | |
CN108629744B (en) | Image enhancement method | |
CN112184604B (en) | Color image enhancement method based on image fusion | |
CN112507997A (en) | Face super-resolution system based on multi-scale convolution and receptive field feature fusion | |
CN104599242B (en) | Use the fuzzy core method of estimation of multiple dimensioned non local canonical | |
CN111091503A (en) | Image defocus blur method based on deep learning | |
WO2015192316A1 (en) | Face hallucination using convolutional neural networks | |
CN107203985A (en) | An End-to-End Deep Learning Framework for Multi-exposure Image Fusion | |
Liu et al. | Pd-gan: Perceptual-details gan for extremely noisy low light image enhancement | |
Wang et al. | A graph-based joint bilateral approach for depth enhancement | |
CN112927135B (en) | A polarization image interpolation method based on edge perception | |
CN117726537B (en) | SAR image denoising network method and system based on adaptive multi-scale feature fusion AMFFD-Net | |
CN113222825A (en) | Infrared image super-resolution reconstruction method based on visible light image training and application | |
CN111652809A (en) | A Noise Suppression Method for Infrared Image with Enhanced Details | |
He et al. | Atmospheric turbulence mitigation based on turbulence extraction | |
CN110415193A (en) | Restoration method of low-illumination fuzzy image in coal mine | |
CN115689960A (en) | A fusion method of infrared and visible light images based on adaptive illumination in nighttime scenes | |
CN102222327A (en) | Image denoising method based on Treelet transformation and minimum mean-square error estimation | |
Arulkumar et al. | Super resolution and demosaicing based self learning adaptive dictionary image denoising framework | |
CN103955934A (en) | Image blurring detecting algorithm combined with image obviousness region segmentation | |
CN118982467A (en) | A polarization image fusion method based on multi-scale transformation and image enhancement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20240105 |