CN111650948B - Quick tracking control method for horizontal plane track of benthonic AUV - Google Patents

Quick tracking control method for horizontal plane track of benthonic AUV Download PDF

Info

Publication number
CN111650948B
CN111650948B CN202010523598.8A CN202010523598A CN111650948B CN 111650948 B CN111650948 B CN 111650948B CN 202010523598 A CN202010523598 A CN 202010523598A CN 111650948 B CN111650948 B CN 111650948B
Authority
CN
China
Prior art keywords
auv
value
disturbance
error
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010523598.8A
Other languages
Chinese (zh)
Other versions
CN111650948A (en
Inventor
曹禹
孙延超
秦洪德
万磊
张宇昂
景锐洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202010523598.8A priority Critical patent/CN111650948B/en
Publication of CN111650948A publication Critical patent/CN111650948A/en
Application granted granted Critical
Publication of CN111650948B publication Critical patent/CN111650948B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0692Rate of change of altitude or depth specially adapted for under-water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种可底栖式AUV的水平面轨迹快速跟踪控制方法,它属于自主式水下机器人的轨迹跟踪控制技术领域。本发明解决了将目前的控制方法应用到可底栖式AUV时存在的控制精度有限,且调整速度慢的问题。本发明将海流扰动、模型不确定性组合为扰动集总项,使用有限时间扰动观测器逼近扰动集总项值,并引入神经网络估计观测误差。进而提出一种基于有限时间扰动观测器的自适应神经网络反步控制器,来实现对可底栖式AUV的有限时间高精度轨迹跟踪控制。本发明可以应用于可底栖式AUV的轨迹跟踪控制。

Figure 202010523598

The invention discloses a fast tracking control method for a horizontal plane trajectory of a bottom-dwelling AUV, which belongs to the technical field of trajectory tracking control of autonomous underwater robots. The invention solves the problems of limited control precision and slow adjustment speed when the current control method is applied to the bottom-dwelling AUV. The invention combines current disturbance and model uncertainty into a disturbance lumped term, uses a finite-time disturbance observer to approximate the disturbance lumped term value, and introduces a neural network to estimate the observation error. Furthermore, an adaptive neural network backstepping controller based on the finite-time disturbance observer is proposed to realize the finite-time high-precision trajectory tracking control of the benthic AUV. The present invention can be applied to the trajectory tracking control of the bottom-dwelling AUV.

Figure 202010523598

Description

一种可底栖式AUV的水平面轨迹快速跟踪控制方法A fast tracking control method of horizontal plane trajectory for bottom-dwelling AUV

技术领域technical field

本发明属于自主式水下机器人的轨迹跟踪控制技术领域,具体涉及一种可底栖式AUV的水平面轨迹快速跟踪控制方法。The invention belongs to the technical field of trajectory tracking control of autonomous underwater robots, and in particular relates to a horizontal plane trajectory fast tracking control method of a bottom-dwelling AUV.

背景技术Background technique

自主式水下机器人(AUV)作为人类探索和开发海洋的重要工具,其在军事和民用领域都有着很大的发展前景。当下,根据AUV的工作特点,可将其分为用于大范围调查的巡航式AUV以及用于小范围观察的悬停式AUV。虽然两种类型的AUV都具有着极大的作用,但是相应的缺陷也很明显,如:巡航式AUV的定点观察能力较差、悬停式AUV的大范围调查能力较差。所以为了实现对海洋的进一步观测,开发一种高度自治并兼具巡航式AUV与悬停式AUV的特点的新型AUV是非常有意义的。因此,底栖式AUV的概念也由此被提出,可底栖式AUV是一种结合了海底观测节点与AUV特性的一种新型水下航行器,可以用于海底信息采集,可以在完成海底坐标高精度探测任务的同时,满足对微小目标识别的需求。同时,此种改型AUV也是一类典型的非线性强耦合系统,不仅具有工作环境复杂、水动力参数难以精确求解等AUV共性的研究障碍,而且在大规模部署以及精确坐沉于海底的作业要求下,存在水动力系数摄动、载体易发生碰撞等影响因素。As an important tool for human exploration and development of the ocean, autonomous underwater vehicles (AUVs) have great development prospects in both military and civilian fields. At present, according to the working characteristics of AUVs, they can be divided into cruising AUVs for large-scale surveys and hovering AUVs for small-scale observations. Although both types of AUVs have great effects, the corresponding defects are also obvious, such as the poor fixed-point observation ability of cruise AUVs and the poor ability of hovering AUVs to investigate in large areas. Therefore, in order to realize further observation of the ocean, it is very meaningful to develop a new type of AUV that is highly autonomous and has the characteristics of both cruising AUV and hovering AUV. Therefore, the concept of benthic AUV was also proposed. The benthic AUV is a new type of underwater vehicle that combines the characteristics of seabed observation nodes and AUVs. At the same time of high-precision coordinate detection tasks, it can meet the needs of small target recognition. At the same time, this modified AUV is also a typical nonlinear strongly coupled system, which not only has the common research obstacles of AUV such as complex working environment and difficult to solve hydrodynamic parameters accurately, but also has large-scale deployment and accurate submerged operations on the seabed. Under the requirements, there are influencing factors such as the perturbation of hydrodynamic coefficient and the possibility of collision of the carrier.

为完整、高效地完成指定区域的海底油气地震勘探,底栖式AUV需要具备良好的距海底面定高航行能力、抗干扰能力以及高精度的路径跟踪性能,即设计有效的运动控制律,使可底栖式AUV能够实现从初始状态跟踪设定轨迹并完成规定任务,并在较短时间内保证跟踪位置误差的全局一致渐进稳定,进而实现在指定区域的高精度快速部署作业需求。目前常见的AUV控制方法通常是针对外界扰动设计鲁棒控制器或用神经网络逼近系统的总干扰。但是,此类方法的控制精度有限,且调整速度较慢,应用在可底栖式AUV这一类工作环境较恶劣,对轨迹跟踪精度要求高,需要快速对外界干扰做出反应的AUV上时,难以实现有限时间高精度轨迹跟踪控制。In order to complete the submarine oil and gas seismic exploration in the designated area completely and efficiently, the benthic AUV needs to have good navigation ability, anti-interference ability and high-precision path tracking performance from the seabed surface, that is, to design an effective motion control law, so that The bottom-dwelling AUV can track the set trajectory from the initial state and complete the specified tasks, and ensure the global consistent and progressive stability of the tracking position error in a relatively short period of time, thereby achieving high-precision and rapid deployment operations in designated areas. At present, the common AUV control methods are usually to design a robust controller for external disturbances or use neural networks to approximate the total disturbance of the system. However, the control accuracy of such methods is limited and the adjustment speed is slow. When applied to AUVs such as bottom-dwelling AUVs that have harsh working environments, require high trajectory tracking accuracy, and need to quickly respond to external disturbances , it is difficult to achieve limited-time high-precision trajectory tracking control.

发明内容SUMMARY OF THE INVENTION

本发明的目的是为解决将目前的控制方法应用到可底栖式AUV时存在的控制精度有限,且调整速度慢的问题,而提出了一种可底栖式AUV的水平面轨迹快速跟踪控制方法。The purpose of the present invention is to solve the problems of limited control accuracy and slow adjustment speed when the current control method is applied to the benthic AUV, and proposes a horizontal plane trajectory fast tracking control method of the benthic AUV .

本发明为解决上述技术问题所采取的技术方案是:一种可底栖式AUV的水平面轨迹快速跟踪控制方法,所述方法具体包括以下步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a fast tracking control method of the horizontal plane trajectory of the bottom-dwelling AUV, the method specifically comprises the following steps:

步骤一、将模型不确定性和海流扰动考虑为一个扰动集总项τ′d,建立考虑扰动集总项的可底栖式AUV的运动学与动力学方程;Step 1. Consider the model uncertainty and current disturbance as a disturbance lumped term τ′ d , and establish the kinematics and dynamics equations of the benthic AUV considering the disturbance lumped term;

步骤二、基于步骤一建立的运动学与动力学方程,利用反步控制方法建立轨迹跟踪的误差系统;Step 2. Based on the kinematics and dynamics equations established in step 1, use the backstepping control method to establish an error system for trajectory tracking;

步骤三、根据步骤二建立的轨迹跟踪误差系统设计滑模干扰观测器,利用设计的滑模干扰观测器对扰动集总项τ′d进行逼近,获得扰动集总项τ′d的观测值;Step 3: Design a sliding mode disturbance observer according to the trajectory tracking error system established in step 2, and use the designed sliding mode disturbance observer to approximate the disturbance lumped term τ′ d to obtain the observation value of the disturbance lumped term τ′ d ;

步骤四、采用径向基函数神经网络对扰动集总项的观测误差

Figure BDA0002533010510000021
进行估计,获得观测误差
Figure BDA0002533010510000022
的估计值;Step 4. Using radial basis function neural network to measure the observation error of the perturbed lumped term
Figure BDA0002533010510000021
make an estimate, get the observation error
Figure BDA0002533010510000022
estimated value;

步骤五、根据扰动集总项τ′d的观测值以及观测误差

Figure BDA0002533010510000023
的估计值来设计控制器,使可底栖式AUV的位姿在有限时间内跟踪期望值,且跟踪误差在有限时间内收敛。Step 5. According to the observation value of the disturbance lumped term τ′ d and the observation error
Figure BDA0002533010510000023
The estimated value of , to design the controller, so that the pose of the bottom-dwelling AUV can track the expected value in a limited time, and the tracking error converges in a limited time.

本发明的有益效果是:本发明提出了一种可底栖式AUV的水平面轨迹快速跟踪控制方法,本发明将海流扰动、模型不确定性组合为扰动集总项,使用有限时间扰动观测器逼近扰动集总项值,并引入神经网络估计观测误差。进而提出一种基于有限时间扰动观测器的自适应神经网络反步控制器,来实现对可底栖式AUV的有限时间高精度轨迹跟踪控制。The beneficial effects of the present invention are as follows: the present invention proposes a fast tracking control method for the horizontal plane trajectory of the bottom-dwelling AUV, the present invention combines the current disturbance and model uncertainty into a disturbance lumped term, and uses a finite time disturbance observer to approximate The lumped term values are perturbed and a neural network is introduced to estimate the observation error. Furthermore, an adaptive neural network backstepping controller based on the finite-time disturbance observer is proposed to realize the finite-time high-precision trajectory tracking control of the benthic AUV.

采用本发明方法使可底栖式AUV运动控制系统在存在外界干扰的情况下,位姿量η仍然能够在有限时间内跟踪期望值ηd,且跟踪误差e1=η-ηd在有限时间内收敛。可保证控制输入量为有限值,更贴近工程实际。The method of the invention enables the bottom-dwelling AUV motion control system to track the expected value η d within a limited time in the presence of external interference, and the tracking error e 1 =η-η d within a limited time convergence. It can ensure that the control input is a limited value, which is closer to the actual engineering.

附图说明Description of drawings

图1是可底栖式AUV的纵荡跟踪曲线图;Fig. 1 is the surging tracking curve diagram of the bottom-dwelling AUV;

图2是可底栖式AUV的横荡跟踪曲线图;Fig. 2 is the sway tracking curve diagram of the bottom-dwelling AUV;

图3是可底栖式AUV的艏摇跟踪曲线图;Fig. 3 is the bow tracking curve diagram of the benthic AUV;

图4是干扰观测器对纵向干扰的观测曲线图;Fig. 4 is the observation curve diagram of disturbance observer to longitudinal disturbance;

图中,H1代表纵向干扰值,d1代表纵向干扰观测值;In the figure, H1 represents the longitudinal interference value, and d1 represents the longitudinal interference observation value;

图5是干扰观测器对横向干扰的观测曲线图;Fig. 5 is the observation curve diagram of interference observer to lateral interference;

图中,H2代表横向干扰值,d2代表横向干扰观测值;In the figure, H2 represents the lateral interference value, and d2 represents the lateral interference observation value;

图6是干扰观测器对艏摇干扰的观测曲线图;Fig. 6 is the observation curve diagram of the disturbance observer to the yaw disturbance;

图中,H3代表艏摇干扰值,d3代表艏摇干扰观测值;In the figure, H3 represents the yaw disturbance value, and d3 represents the observable yaw disturbance value;

图7是执行器纵向控制力输出曲线图;Fig. 7 is the output curve diagram of the longitudinal control force of the actuator;

图8是执行器横向控制力输出曲线图;Fig. 8 is the output curve diagram of the lateral control force of the actuator;

图9是执行器艏摇控制力矩输出曲线图。FIG. 9 is an output curve diagram of the actuator yaw control torque.

具体实施方式Detailed ways

具体实施方式一、本实施方式所述的一种可底栖式AUV的水平面轨迹快速跟踪控制方法,所述方法具体包括以下步骤:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 1. A method for fast tracking and controlling a horizontal plane trajectory of a bottom-dwelling AUV described in this embodiment, the method specifically includes the following steps:

步骤一、将模型不确定性和海流扰动考虑为一个扰动集总项τ′d,建立考虑扰动集总项的可底栖式AUV的运动学与动力学方程;Step 1. Consider the model uncertainty and current disturbance as a disturbance lumped term τ′ d , and establish the kinematics and dynamics equations of the benthic AUV considering the disturbance lumped term;

步骤二、基于步骤一建立的运动学与动力学方程,利用反步控制方法建立轨迹跟踪的误差系统;Step 2. Based on the kinematics and dynamics equations established in step 1, use the backstepping control method to establish an error system for trajectory tracking;

步骤三、根据步骤二建立的轨迹跟踪误差系统设计滑模干扰观测器,利用设计的滑模干扰观测器对扰动集总项τ′d进行逼近,获得扰动集总项τ′d的观测值;Step 3: Design a sliding mode disturbance observer according to the trajectory tracking error system established in step 2, and use the designed sliding mode disturbance observer to approximate the disturbance lumped term τ′ d to obtain the observation value of the disturbance lumped term τ′ d ;

步骤四、采用径向基函数神经网络对扰动集总项的观测误差

Figure BDA0002533010510000032
进行估计,获得观测误差
Figure BDA0002533010510000033
的估计值;Step 4. Using radial basis function neural network to measure the observation error of the perturbed lumped term
Figure BDA0002533010510000032
make an estimate, get the observation error
Figure BDA0002533010510000033
estimated value;

步骤五、根据扰动集总项τ′d的观测值以及观测误差

Figure BDA0002533010510000034
的估计值来设计控制器,使可底栖式AUV的位姿在有限时间内跟踪期望值,且跟踪误差在有限时间内收敛。Step 5. According to the observation value of the disturbance lumped term τ′ d and the observation error
Figure BDA0002533010510000034
The estimated value of , to design the controller, so that the pose of the bottom-dwelling AUV can track the expected value in a limited time, and the tracking error converges in a limited time.

可底栖式AUV的运动学与动力学方程采用基于刚体在流体中运动的牛顿-欧拉方程表示:The kinematics and dynamics equations of the benthic AUV are expressed by the Newton-Eulerian equations based on the motion of a rigid body in a fluid:

Figure BDA0002533010510000031
Figure BDA0002533010510000031

式中,M为质量惯性矩阵,η=[x,y,ψ]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位置与姿态,v=[u,v,r]T表示载体坐标系下水平面内的速度与角速度,J∈R3×3代表固定坐标系与载体坐标系之间的坐标转换矩阵;C(v)∈R3x3为包含附加质量项的科里奥利向心力矩阵;D(v)∈R3x3为流体阻尼矩阵;g(η)∈R3为重力和浮力作用在艇体产生的恢复力和恢复力矩向量;τ∈R3为执行器运行时产生的控制力和力矩向量;τd∈R3为外界干扰造成的扰动向量。In the formula, M is the mass inertia matrix, η=[x, y, ψ] T represents the three-degree-of-freedom position and attitude of the benthic AUV in the horizontal plane under the fixed coordinate system, v=[u, v, r] T Represents the velocity and angular velocity in the horizontal plane under the carrier coordinate system, J∈R 3×3 represents the coordinate transformation matrix between the fixed coordinate system and the carrier coordinate system; C(v)∈R 3x3 is the Coriolis containing the additional mass term Centripetal force matrix; D(v)∈R 3x3 is the fluid damping matrix; g(η)∈R 3 is the restoring force and restoring moment vector generated by gravity and buoyancy acting on the hull; τ∈R 3 is generated when the actuator is running Control force and moment vector; τ d ∈ R 3 is the disturbance vector caused by external disturbance.

本发明考虑模型不确定性与海流扰动,将其考虑为一个扰动集总项,考虑其可行的数学表达形式。The present invention considers model uncertainty and ocean current disturbance, considers it as a disturbance lumped term, and considers its feasible mathematical expression form.

具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中,建立考虑扰动集总项的可底栖式AUV的运动学与动力学方程,其具体为:Embodiment 2: The difference between this embodiment and Embodiment 1 is that in the first step, the kinematics and dynamics equations of the bottom-dwelling AUV considering the perturbation lumped term are established, which are specifically:

Figure BDA0002533010510000041
Figure BDA0002533010510000041

式中,v=[u,v0,r]T,v表示可底栖式AUV在载体坐标系下水平面内的速度与角速度向量,u代表纵荡速度,v0代表横荡速度,r代表艏摇角速度;上角标T代表转置;η=[x,y,ψ]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位姿向量,x和y分别代表可底栖式AUV在固定坐标系下纵向和横向位置坐标,ψ代表艏向角;J(η)代表固定坐标系与载体坐标系之间的坐标转换矩阵,J(η)∈R3×3,R代表实数;τ′d表示系统的扰动集总项;τ代表控制输入向量,亦可称为执行器运行时产生的控制力和力矩向量;

Figure BDA0002533010510000042
是η的一阶导数,
Figure BDA0002533010510000043
代表可底栖式AUV在固定坐标系下的速度与角速度向量;
Figure BDA0002533010510000045
是v的一阶导数,
Figure BDA0002533010510000044
代表可底栖式AUV在载体坐标系下的加速度与角加速度向量;M0代表质量惯性矩阵的标称值;上角标-1代表矩阵的逆,C0(v)代表科里奥利向心力矩阵的标称值;D0(v)代表流体阻尼矩阵的标称值;g0代表恢复力和恢复力矩向量的标称值;In the formula, v=[u, v 0 , r] T , v represents the velocity and angular velocity vector of the benthic AUV in the horizontal plane under the carrier coordinate system, u represents the surge speed, v 0 represents the sway speed, and r represents the sway speed Yaw angular velocity; superscript T stands for transposition; η=[x,y,ψ] T stands for the three-degree-of-freedom pose vector of the bottom-dwelling AUV in the horizontal plane in a fixed coordinate system, and x and y represent the bottom-mountable AUV respectively The longitudinal and lateral position coordinates of the perched AUV in the fixed coordinate system, ψ represents the heading angle; J(η) represents the coordinate transformation matrix between the fixed coordinate system and the carrier coordinate system, J(η)∈R 3×3 , R Represents a real number; τ′ d represents the disturbance lumped term of the system; τ represents the control input vector, which can also be called the control force and torque vector generated when the actuator is running;
Figure BDA0002533010510000042
is the first derivative of η,
Figure BDA0002533010510000043
Represents the velocity and angular velocity vectors of the benthic AUV in a fixed coordinate system;
Figure BDA0002533010510000045
is the first derivative of v,
Figure BDA0002533010510000044
Represents the acceleration and angular acceleration vectors of the benthic AUV in the carrier coordinate system; M 0 represents the nominal value of the mass-inertia matrix; the superscript -1 represents the inverse of the matrix, and C 0 (v) represents the Coriolis centripetal force the nominal value of the matrix; D 0 (v) represents the nominal value of the fluid damping matrix; g 0 represents the nominal value of the restoring force and restoring moment vectors;

所述固定坐标系O-XYZ为:以海面或海中的任意一点为原点O,X轴位于水平面,并以规定的正北方向为正方向;Y轴位于水平面,以规定的正东方向为正方向,即,将OX轴按右手定则顺时针旋转90°得到的便是OY轴;Z轴垂直于XOY坐标平面,并以地心方向为正;The fixed coordinate system O-XYZ is: take the sea surface or any point in the sea as the origin O, the X axis is located on the horizontal plane, and the specified true north direction is the positive direction; the Y axis is located on the horizontal plane, and the specified true east direction is the positive direction. Direction, that is, the OY axis is obtained by rotating the OX axis 90° clockwise according to the right-hand rule; the Z axis is perpendicular to the XOY coordinate plane, and the geocentric direction is positive;

所述载体坐标系O0-X0Y0Z0为:以可底栖式AUV重心所在位置为原点O0,X0轴在可底栖式AUV纵剖面内,与可底栖式AUV水线面平行且以艇艏方向为正方向;Y0轴与可底栖式AUV纵剖面垂直,与水平面平行且以右舷方向为正方向;Z0轴在可底栖式AUV纵剖面内,与可底栖式AUV水线面垂直且以艇底方向为正方向;The carrier coordinate system O 0 -X 0 Y 0 Z 0 is: taking the position of the center of gravity of the benthic AUV as the origin O 0 , the X 0 axis is in the longitudinal section of the benthic AUV, and the water The line plane is parallel and the bow direction is the positive direction; the Y 0 axis is perpendicular to the longitudinal section of the benthic AUV, parallel to the horizontal plane and the starboard direction is the positive direction; the Z 0 axis is in the longitudinal section of the benthic AUV, and the The bottom-dwelling AUV water plane is vertical and the direction of the bottom of the boat is the positive direction;

Figure BDA0002533010510000046
Figure BDA0002533010510000046

式中,ΔM代表质量惯性矩阵的不确定值;ΔC(v)代表科里奥利向心力矩阵的不确定值;ΔD(v)代表流体阻尼矩阵的不确定值;Δg代表恢复力和恢复力矩向量的不确定值;τd代表外界干扰造成的扰动向量的不确定值。where ΔM represents the uncertainty value of the mass inertia matrix; ΔC(v) represents the uncertainty value of the Coriolis centripetal force matrix; ΔD(v) represents the uncertainty value of the fluid damping matrix; Δg represents the restoring force and restoring moment vector The uncertainty value of τ d represents the uncertainty value of the disturbance vector caused by the external disturbance.

具体实施方式三:本实施方式与具体实施方式二不同的是,所述步骤二的具体过程为:Embodiment 3: The difference between this embodiment and Embodiment 2 is that the specific process of the second step is:

定义跟踪误差:Define tracking error:

Figure BDA0002533010510000051
Figure BDA0002533010510000051

式中,e1表示轨迹跟踪误差;e2表示速度跟踪误差;ηd=[xd,ydd]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位姿期望值,xd为x的期望值,yd为y的期望值,ψd为ψ的期望值;

Figure BDA0002533010510000052
是ηd的一阶导数;
Figure BDA0002533010510000053
是e1的一阶导数;vd表示可底栖式AUV在载体坐标系下水平面的速度与角速度期望向量;In the formula, e 1 represents the trajectory tracking error; e 2 represents the velocity tracking error; η d = [x d , y d , ψ d ] T represents the three-degree-of-freedom pose of the benthic AUV in the horizontal plane in a fixed coordinate system Expected value, x d is the expected value of x, y d is the expected value of y, ψ d is the expected value of ψ;
Figure BDA0002533010510000052
is the first derivative of η d ;
Figure BDA0002533010510000053
is the first derivative of e 1 ; v d represents the expected vector of velocity and angular velocity on the horizontal plane of the bottom-dwelling AUV in the carrier coordinate system;

则根据公式(2)建立轨迹跟踪的误差系统为:Then according to formula (2), the error system of trajectory tracking is established as:

Figure BDA0002533010510000054
Figure BDA0002533010510000054

式中,

Figure BDA0002533010510000055
是e2的一阶导数;
Figure BDA0002533010510000056
是J(η)的一阶导数;
Figure BDA0002533010510000057
为vd的一阶导数;In the formula,
Figure BDA0002533010510000055
is the first derivative of e2 ;
Figure BDA0002533010510000056
is the first derivative of J(η);
Figure BDA0002533010510000057
is the first derivative of v d ;

定义虚拟误差z:Define the dummy error z:

z=e21 (6)z=e 21 (6)

式中,α1为虚拟控制律一;In the formula, α 1 is the virtual control law one;

取虚拟误差积分项为ε:Take the virtual error integral term as ε:

Figure BDA0002533010510000058
Figure BDA0002533010510000058

则轨迹跟踪的误差系统转变为:Then the error system of trajectory tracking is transformed into:

Figure BDA0002533010510000059
Figure BDA0002533010510000059

式中,

Figure BDA00025330105100000510
为ε的一阶导数;
Figure BDA00025330105100000511
为z的一阶导数;
Figure BDA00025330105100000512
为α1的一阶导数。In the formula,
Figure BDA00025330105100000510
is the first derivative of ε;
Figure BDA00025330105100000511
is the first derivative of z;
Figure BDA00025330105100000512
is the first derivative of α1.

公式(2)中存在扰动集总项τ′d,为实现较短时间内对扰动值的估计,采用滑模干扰观测器进行逼近。反步控制的基本思想是反馈控制,但是在此基础上将系统分为了下一阶输出作为上一阶子系统输入的多个子系统,并利用Lyapunov函数对每一阶子系统进行了处理以得出相应的虚拟输入,并以此方法设计下一阶子系统的输入,直到最终得出实际输入,综合以上处理步骤,即可完成反步控制律的设计。There is a disturbance lumped term τ′ d in formula (2). In order to estimate the disturbance value in a short time, a sliding mode disturbance observer is used for approximation. The basic idea of backstepping control is feedback control, but on this basis, the system is divided into multiple subsystems with the next-order output as the input of the previous-order subsystem, and the Lyapunov function is used to process each order subsystem to obtain The corresponding virtual input is obtained, and the input of the next-order subsystem is designed in this way, until the actual input is finally obtained, and the design of the backstep control law can be completed by combining the above processing steps.

具体实施方式四:本实施方式与具体实施方式三不同的是,所述步骤三的具体过程为:Embodiment 4: The difference between this embodiment and Embodiment 3 is that the specific process of the third step is:

选择滑模面函数s为:The sliding mode surface function s is chosen as:

s=ρ-v (9)s=ρ-v (9)

式中,ρ为中间变量,

Figure BDA0002533010510000061
为ρ的一阶导数,且
Figure BDA0002533010510000062
的形式为:In the formula, ρ is an intermediate variable,
Figure BDA0002533010510000061
is the first derivative of ρ, and
Figure BDA0002533010510000062
of the form:

Figure BDA0002533010510000063
Figure BDA0002533010510000063

式中,k7为正定对角阵,k7∈R3×3;L为正定对角阵,L=diag[L1,L2,L3]∈R3×3,L1,L2,L3均为L中的元素,

Figure BDA0002533010510000064
m=1,2,3,
Figure BDA0002533010510000065
为三自由度上扰动的最大值;0<r<1;sign代表符号函数;s=[s1,s2,s3]T,s1,s2,s3均为s中的元素,有|s|r=[|s1|r,|s2|r,|s3|r]T,|·|代表取绝对值;In the formula, k 7 is a positive definite diagonal matrix, k 7 ∈R 3×3 ; L is a positive definite diagonal matrix, L=diag[L 1 ,L 2 ,L 3 ]∈R 3×3 ,L 1 ,L 2 , L 3 are all elements in L,
Figure BDA0002533010510000064
m=1,2,3,
Figure BDA0002533010510000065
is the maximum value of disturbance on three degrees of freedom; 0<r<1; sign represents the sign function; s=[s 1 , s 2 , s 3 ] T , s 1 , s 2 , s 3 are all elements in s, There is |s| r = [|s 1 | r , |s 2 | r , |s 3 | r ] T , |·| represents the absolute value;

则扰动集总项τ′d的观测值为Then the observed value of the disturbance lumped term τ′ d is

Figure BDA0002533010510000066
Figure BDA0002533010510000066

式中,

Figure BDA0002533010510000067
为扰动集总项τ′d的观测值;
Figure BDA0002533010510000068
为s的一阶导数。In the formula,
Figure BDA0002533010510000067
is the observed value of the disturbance lumped term τ′ d ;
Figure BDA0002533010510000068
is the first derivative of s.

如果存在0<a1<1和0<a2<2,那么对于ri(i=1,…,n),以下不等式被满足:If there are 0<a 1 <1 and 0<a 2 <2, then for ri ( i =1,...,n), the following inequalities are satisfied:

Figure BDA0002533010510000069
Figure BDA0002533010510000069

Figure BDA00025330105100000610
Figure BDA00025330105100000610

sign代表符号函数,对于向量sign represents the sign function, for a vector

ξ=[ζ1…ζn]T (14)ξ=[ζ 1 …ζ n ] T (14)

存在下列等式There is the following equation

ζα=[|ζ1|αsign(ζ1)…|ζn|αsign(ζn)]T (15)ζ α = [|ζ 1 | α sign(ζ 1 )…|ζ n | α sign(ζ n )] T (15)

sign(ζ)=[sign(ζ1)…sign(ζn)]T (16)sign(ζ)=[sign(ζ 1 )…sign(ζ n )] T (16)

虽然系统(11)中已经获得扰动的估计值,但由于L的值并不容易明确,所以会导致系统中出现观测误差

Figure BDA00025330105100000611
Although the estimated value of the disturbance has been obtained in the system (11), since the value of L is not easy to clarify, it will lead to observation errors in the system
Figure BDA00025330105100000611

干扰观测器的基本设计原理是将AUV控制系统中存在的参数摄动项、模型不确定项及外界干扰等未知项组合为扰动集总项,再根据可测得的系统状态构建观测器系统,在线逼近扰动集总项,最后利用扰动集总项的观测值设计相应的控制器,从而提升系统对预设轨迹的跟踪性能。The basic design principle of the disturbance observer is to combine the parameter perturbation terms, model uncertainties and external disturbances existing in the AUV control system into a perturbation lumped term, and then construct the observer system according to the measurable system state. The disturbance lumped term is approximated online, and the corresponding controller is designed by using the observation value of the disturbance lumped term, so as to improve the tracking performance of the system to the preset trajectory.

具体实施方式五:本实施方式与具体实施方式四不同的是,所述步骤四的具体过程为:Embodiment 5: The difference between this embodiment and the fourth embodiment is that the specific process of the fourth step is:

观测误差

Figure BDA0002533010510000071
为:observation error
Figure BDA0002533010510000071
for:

Figure BDA0002533010510000072
Figure BDA0002533010510000072

采用径向基函数神经网络对扰动集总项的观测误差

Figure BDA0002533010510000073
进行估计,径向基函数神经网络的输入x为:
Figure BDA0002533010510000074
则径向基函数神经网络输出观测误差
Figure BDA0002533010510000075
的估计值为:Observation error of perturbed lumped term using radial basis function neural network
Figure BDA0002533010510000073
To estimate, the input x of the radial basis function neural network is:
Figure BDA0002533010510000074
Then the radial basis function neural network outputs the observation error
Figure BDA0002533010510000075
is estimated to be:

Figure BDA0002533010510000076
Figure BDA0002533010510000076

式中,

Figure BDA0002533010510000077
为权值矩阵的估计值,
Figure BDA0002533010510000078
均为
Figure BDA0002533010510000079
中的子矩阵,
Figure BDA00025330105100000710
j=1,2,3,
Figure BDA00025330105100000711
代表第j行第i个神经网络权值的估计值,i=1,2,…,6,φ(x)为中间变量,φ(x)=[φ1(x),φ2(x),...,φ6(x)]T,φi(x)代表第i个神经网络的高斯形式的径向基函数。In the formula,
Figure BDA0002533010510000077
is the estimated value of the weight matrix,
Figure BDA0002533010510000078
both
Figure BDA0002533010510000079
A submatrix in ,
Figure BDA00025330105100000710
j=1,2,3,
Figure BDA00025330105100000711
Represents the estimated value of the ith neural network weight in the jth row, i=1,2,...,6, φ(x) is the intermediate variable, φ(x)=[φ 1 (x),φ 2 (x) ,...,φ 6 (x)] T , φ i (x) represents the radial basis function of the Gaussian form of the ith neural network.

径向基函数神经网络是以函数逼近理论为基础的一类具有结构简单、训练简洁、学习收敛速度快、能够逼近任意非线性函数特点的前向网络。这类网络的学习等价于在多维空间中寻找训练数据的最佳拟合平面。Radial basis function neural network is a kind of forward network based on function approximation theory, which has the characteristics of simple structure, concise training, fast learning convergence speed, and can approximate any nonlinear function. The learning of such networks is equivalent to finding the best fit plane for the training data in a multidimensional space.

具体实施方式六:本实施方式与具体实施方式五不同的是,所述步骤五的具体过程为:Embodiment 6: The difference between this embodiment and Embodiment 5 is that the specific process of step 5 is:

由于执行器的物理限制,执行输入最大值为一有限值,故需要以最大输出值为上界限制控制输入;Due to the physical limitation of the actuator, the maximum value of the execution input is a finite value, so it is necessary to limit the control input with the upper bound of the maximum output value;

控制输入向量τ受饱和度值约束:The control input vector τ is constrained by the saturation value:

sat(τ)=[sat(τ1),sat(τ2),sat(τ3)]T (19)sat(τ)=[sat(τ 1 ), sat(τ 2 ), sat(τ 3 )] T (19)

式中,sat(τ)是对控制输入向量做饱和限制处理后的输出值,由控制输入向量τ和饱和控制函数sat(τj)产生,τj代表控制输入向量τ的第j个值,j=1,2,3;In the formula, sat(τ) is the output value of the control input vector after saturation limit processing, which is generated by the control input vector τ and the saturated control function sat(τ j ), where τ j represents the j-th value of the control input vector τ, j=1,2,3;

sat(τj)代表执行器的非线性饱和特性,饱和控制功能被描述为:sat(τ j ) represents the nonlinear saturation characteristic of the actuator, and the saturation control function is described as:

sat(τj)=τj(t)+θj(t) (20)sat(τ j )=τ j (t)+θ j (t) (20)

其中in

Figure BDA0002533010510000081
Figure BDA0002533010510000081

式中,θj(t)为饱和控制项,τmj为控制输入向量τ的第j个值τj的最大允许值;In the formula, θ j (t) is the saturation control term, and τ mj is the maximum allowable value of the j-th value τ j of the control input vector τ;

设计自适应反步控制律如下:The adaptive backstepping control law is designed as follows:

Figure BDA0002533010510000082
Figure BDA0002533010510000082

式中,τs代表控制输入向量的名义值,α2为虚拟控制律二,ki为正定对角阵,i=1,2,…6,ki∈R3×3,a为常数,0<a<1,

Figure BDA0002533010510000083
Figure BDA0002533010510000084
的一阶导数,c为待设计的控制参数及自适应增益,c>0,λ为常数,λ>0。In the formula, τ s represents the nominal value of the control input vector, α 2 is the second virtual control law, ki is a positive definite diagonal matrix, i=1, 2,...6, ki ∈ R 3×3 , a is a constant, 0<a<1,
Figure BDA0002533010510000083
Yes
Figure BDA0002533010510000084
The first derivative of , c is the control parameter and adaptive gain to be designed, c>0, λ is a constant, λ>0.

1、理论基础1. Theoretical basis

1.1可底栖式AUV的运动系统数学模型1.1 Mathematical model of the motion system of the bottom-dwelling AUV

可底栖式AUV的运动学与动力学方程可采用基于刚体在流体中运动的牛顿-欧拉方程表示:The kinematics and dynamics equations of the benthic AUV can be expressed by the Newton-Eulerian equation based on the motion of a rigid body in a fluid:

Figure BDA0002533010510000085
Figure BDA0002533010510000085

M为质量惯性矩阵,η=[x,y,ψ]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位置与姿态,v=[u,v0,r]T表示载体坐标系下水平面内的速度与角速度,J∈R3×3代表固定坐标系与载体坐标系之间的坐标转换矩阵;C(v)∈R3×3为包含附加质量项的科里奥利向心力矩阵;D(v)∈R3×3为流体阻尼矩阵;g(η)∈R3为重力和浮力作用在艇体产生的恢复力和恢复力矩向量;τ∈R3为执行器运行时产生的控制力和力矩向量;τd∈R3为外界干扰造成的扰动向量。M is the mass inertia matrix, η=[x, y, ψ] T represents the three-degree-of-freedom position and attitude of the benthic AUV in the horizontal plane under the fixed coordinate system, v=[u, v 0 , r] T represents the carrier The velocity and angular velocity in the horizontal plane under the coordinate system, J∈R 3×3 represents the coordinate transformation matrix between the fixed coordinate system and the carrier coordinate system; C(v)∈R 3×3 is the Coriolis containing the additional mass term Centripetal force matrix; D(v)∈R 3×3 is the fluid damping matrix; g(η)∈R 3 is the restoring force and restoring moment vector generated by gravity and buoyancy acting on the hull; τ∈R 3 is the actuator running The generated control force and torque vector; τ d ∈ R 3 is the disturbance vector caused by the external disturbance.

模型不确定性与海流扰动会导致较严重的跟踪误差,将其考虑为一个扰动集总项,考虑其可行的数学表达形式。因此,等式(23)可变换为:Model uncertainty and current disturbance will lead to serious tracking error, which is considered as a disturbance lumped term, and its feasible mathematical expression is considered. Therefore, equation (23) can be transformed into:

Figure BDA0002533010510000091
Figure BDA0002533010510000091

式中,τ'd表示系统的扰动集总项,其表达式如下:In the formula, τ' d represents the perturbation lumped term of the system, and its expression is as follows:

Figure BDA0002533010510000092
Figure BDA0002533010510000092

式中,下标0表示名义模型的各项系数,Δ表示不确定值。In the formula, the subscript 0 represents the coefficients of the nominal model, and Δ represents the uncertain value.

本发明的目标可表述为设计合适的控制器τ使可底栖式AUV运动控制系统在存在外界干扰的情况下,其位姿量η仍然能够在有限时间内跟踪期望值ηd,并使跟踪误差e1=η-ηd在有限时间内收敛,且控制输入受限小于饱和值。The goal of the present invention can be expressed as designing a suitable controller τ so that the motion control system of the benthic AUV can still track the expected value η d within a limited time in the presence of external disturbances, and make the tracking error e 1 =η-η d converges in finite time and the control input is limited to less than the saturation value.

结合实际工程背景提出3个假设:Combined with the actual engineering background, three hypotheses are proposed:

假设1位姿状态η与其一阶导数

Figure BDA0002533010510000093
可测。Suppose 1 pose state η and its first derivative
Figure BDA0002533010510000093
measurable.

假设2干扰观测器观测误差有界。Suppose 2 disturbance observer observation error is bounded.

假设3位姿期望值ηd与其一阶、二阶导数均已知而且有界。It is assumed that the expected value η d of the 3 poses and its first and second derivatives are known and bounded.

假设4扰动集总项有界,即||τ'd||≤χ,其中,χ为未知正常数。It is assumed that the 4 perturbation lumped terms are bounded, that is, ||τ' d ||≤χ, where χ is an unknown positive constant.

1.2有限时间控制的定义1.2 Definition of finite time control

考虑如下系统:Consider the following system:

Figure BDA0002533010510000094
Figure BDA0002533010510000094

式中,f:U0×R→Rn在U0×R上连续,U0为原点x=0处的一个邻域。对于所考虑的系统(26),非线性控制系统有限时间稳定性理论定义如下:假设存在一个定义在原点的邻域

Figure BDA0002533010510000095
上的光滑函数V(x),并且存在实数p>0,0<α<1以及d>0,使得V(x)在
Figure BDA0002533010510000096
上正定和
Figure BDA0002533010510000097
Figure BDA0002533010510000098
上半负定或
Figure BDA0002533010510000099
Figure BDA00025330105100000910
上半负定,则系统的原点是有限时间稳定的,停止时间依赖于初始值。In the formula, f: U 0 ×R→R n is continuous on U 0 ×R, and U 0 is a neighborhood at the origin x=0. For the considered system (26), the finite-time stability theory of nonlinear control systems is defined as follows: Suppose there is a neighborhood defined at the origin
Figure BDA0002533010510000095
A smooth function V(x) on , and there exist real numbers p>0, 0<α<1, and d>0, such that V(x) is in
Figure BDA0002533010510000096
Shangzheng Dinghe
Figure BDA0002533010510000097
exist
Figure BDA0002533010510000098
first half negative definite or
Figure BDA0002533010510000099
exist
Figure BDA00025330105100000910
If the upper half is negative definite, the origin of the system is stable for a finite time, and the stop time depends on the initial value.

x(0)=x0 (27)x(0)=x 0 (27)

1.3反步控制方法1.3 Backstep control method

定义跟踪误差define tracking error

Figure BDA00025330105100000911
Figure BDA00025330105100000911

则根据式(26)得到误差系统为:Then according to formula (26), the error system can be obtained as:

Figure BDA0002533010510000101
Figure BDA0002533010510000101

定义虚拟误差:Define dummy error:

z=e21 (30)z=e 21 (30)

其中,α1为虚拟控制律。Among them, α 1 is the virtual control law.

取积分项:Take points:

Figure BDA0002533010510000102
Figure BDA0002533010510000102

则误差系统变为:Then the error system becomes:

Figure BDA0002533010510000103
Figure BDA0002533010510000103

如果设计控制律τ使z有界,则e1和e2有界。If the control law τ is designed to make z bounded, then e1 and e2 are bounded.

1.4滑模干扰观测器设计1.4 Design of Sliding Mode Interference Observer

系统(24)中存在扰动集总项τ'd,为实现较短时间内对扰动值的估计,采用滑模干扰观测器进行逼近,选择滑模面函数为:There is a perturbation lumped term τ' d in the system (24). In order to estimate the perturbation value in a relatively short time, the sliding mode disturbance observer is used for approximation, and the sliding mode surface function is selected as:

s=ρ-v (33)s=ρ-v (33)

式中,ρ为中间变量,其形式可描述为:In the formula, ρ is an intermediate variable, and its form can be described as:

Figure BDA0002533010510000104
Figure BDA0002533010510000104

式中,k7∈R3×3为正定对角阵,0<r<1,L∈R3×3为一正定对角阵。In the formula, k 7 ∈ R 3×3 is a positive definite diagonal matrix, 0<r<1, L ∈ R 3×3 is a positive definite diagonal matrix.

则扰动集总项观测值为:Then the observed value of the disturbance lumped term is:

Figure BDA0002533010510000105
Figure BDA0002533010510000105

针对系统(32)设计形式为(35)的扰动观测器,则滑模面式(33)在有限时间t0内收敛到零,扰动集总项在有限时间t0内被扰动观测器有效的估计。For the system (32), the disturbance observer of the form (35) is designed, then the sliding mode surface formula (33) converges to zero within the finite time t 0 , and the disturbance lumped term is valid by the disturbance observer within the finite time t 0 . estimate.

定义:如果存在0<a1<1和0<a2<2,那么对于ri(i=1,…,n),以下不等式被满足:Definition: If 0<a 1 <1 and 0<a 2 <2 exist, then for ri ( i =1,...,n), the following inequalities are satisfied:

Figure BDA0002533010510000106
Figure BDA0002533010510000106

Figure BDA0002533010510000107
Figure BDA0002533010510000107

此外,本发明中sign代表符号函数,对于向量In addition, sign represents a sign function in the present invention, and for a vector

ξ=[ζ1…ζn]T (38)ξ=[ζ 1 …ζ n ] T (38)

存在下列等式There is the following equation

ζα=[|ζ1|αsign(ζ1)…|ζn|αsign(ζn)]T (39)ζ α = [|ζ 1 | α sign(ζ 1 )…|ζ n | α sign(ζ n )] T (39)

sign(ζ)=[sign(ζ1)…sign(ζn)]T (40)sign(ζ) = [sign(ζ1)...sign( ζn )] T (40)

证明:采用如下的Lypunov函数:Proof: Using the following Lypunov function:

Figure BDA0002533010510000111
Figure BDA0002533010510000111

对上式求导可以得到:Derivation of the above formula can get:

Figure BDA0002533010510000112
Figure BDA0002533010510000112

由式(41)和式(42)可以得From equations (41) and (42), we can get

Figure BDA0002533010510000113
Figure BDA0002533010510000113

则根据有限时间理论可知滑模干扰观测器可以在有限时间内估计出干扰来。Then according to the finite time theory, it can be known that the sliding mode disturbance observer can estimate the disturbance in a finite time.

1.5控制输入饱和约束1.5 Control Input Saturation Constraint

由于执行器的物理限制,控制信号τ受饱和度值约束。在这里,Due to the physical limitations of the actuator, the control signal τ is constrained by the saturation value. it's here,

sat(τ)=[sat(τ1)…sat(τn)]T (44)sat(τ)=[sat(τ 1 )…sat(τ n )] T (44)

sat(τ)是实际控制输入的向量,由执行器和饱和控制函数sat(τi)(i=1,2,…,n)产生,代表执行器的非线性饱和特性。饱和控制功能可以被描述为:sat(τ) is the vector of actual control inputs, produced by the actuator and the saturation control function sat(τ i ) (i=1,2,...,n), representing the nonlinear saturation characteristics of the actuator. The saturation control function can be described as:

sat(τi)=τi(t)+θi(t) (45)sat(τ i )=τ i (t)+θ i (t) (45)

其中in

Figure BDA0002533010510000114
Figure BDA0002533010510000114

式中,τmi为控制输入的最大允许值。In the formula, τ mi is the maximum allowable value of the control input.

1.6有限时间轨迹跟踪控制器设计1.6 Design of finite-time trajectory tracking controller

使用滑模观测器时会产生扰动集总项估计误差

Figure BDA0002533010510000115
且由于扰动集总项值范围不易确定会导致观测器参数较难选取,故采用RBF神经网络进行逼近扰动集总项估计误差,即Perturbation lumped term estimation error occurs when using sliding mode observers
Figure BDA0002533010510000115
And because the value range of the perturbation lumped term is not easy to determine, it will lead to difficulty in selecting the observer parameters, so the RBF neural network is used to approximate the perturbation lumped term estimation error, that is,

Figure BDA0002533010510000116
Figure BDA0002533010510000116

其中

Figure BDA0002533010510000121
φ(x)为径向基函数,θ*∈Rm是神经网络最优权值,m为神经网络隐含节点数。且θ*满足
Figure BDA0002533010510000122
Figure BDA0002533010510000123
Figure BDA0002533010510000124
m为隐藏节点数,ε*是最优逼近误差。in
Figure BDA0002533010510000121
φ(x) is the radial basis function, θ * ∈ R m is the optimal weight of the neural network, and m is the number of hidden nodes in the neural network. and θ * satisfies
Figure BDA0002533010510000122
Figure BDA0002533010510000123
and
Figure BDA0002533010510000124
m is the number of hidden nodes, and ε * is the optimal approximation error.

最优权值θ*被定义为:The optimal weight θ * is defined as:

Figure BDA0002533010510000125
Figure BDA0002533010510000125

本发明中径向基函数φ(x)选择高斯基函数:In the present invention, the radial basis function φ(x) selects the Gaussian basis function:

Figure BDA0002533010510000126
Figure BDA0002533010510000126

式中,di=[di1,di2,…,dim]为隐含层第i个神经元的中心;bi=[bi1,bi2,…,bim]为第i个神经元高斯基函数的宽度。In the formula, d i =[d i1 ,d i2 ,...,d im ] is the center of the i-th neuron in the hidden layer; b i =[b i1 ,b i2 ,...,b im ] is the i-th neuron The width of the meta Gaussian function.

将神经网络输入取为

Figure BDA0002533010510000127
则观测误差
Figure BDA0002533010510000128
的估计可以写为:Take the neural network input as
Figure BDA0002533010510000127
then the observation error
Figure BDA0002533010510000128
The estimate of can be written as:

Figure BDA0002533010510000129
Figure BDA0002533010510000129

式中,

Figure BDA00025330105100001210
为权值矩阵的估计值,
Figure BDA00025330105100001211
均为
Figure BDA00025330105100001212
中的子矩阵,
Figure BDA00025330105100001213
j=1,2,3,
Figure BDA00025330105100001214
代表第j行第i个神经网络权值的估计值,i=1,2,…,6,φ(x)为中间变量,φ(x)=[φ1(x),φ2(x),…,φ6(x)]T,φi(x)代表第i个神经网络的高斯形式的径向基函数。In the formula,
Figure BDA00025330105100001210
is the estimated value of the weight matrix,
Figure BDA00025330105100001211
both
Figure BDA00025330105100001212
A submatrix in ,
Figure BDA00025330105100001213
j=1,2,3,
Figure BDA00025330105100001214
Represents the estimated value of the ith neural network weight in the jth row, i=1,2,...,6, φ(x) is the intermediate variable, φ(x)=[φ 1 (x),φ 2 (x) ,…,φ 6 (x)] T , φ i (x) represents the radial basis function of the ith neural network in Gaussian form.

综合以上分析过程,设计如下自适应反步控制律:Based on the above analysis process, the following adaptive backstepping control law is designed:

Figure BDA00025330105100001215
Figure BDA00025330105100001215

式中:α1为虚拟控制律一,α2为虚拟控制律二,z为虚拟误差,ε为虚拟误差积分项,ki∈R3×3(i=1,2,3,4,5,6)为正定对角阵,0<a<1,λ>0,c>0为待设计的控制参数及自适应增益。可以看出当可底栖式AUV误差系统数学模型(24),通过误差变换(28)、(30)化为误差系统(32),如果将控制输入向量τ、虚拟控制律α1、α2以及自适应律设计为式(51)的形式,则变换误差z一致最终有界,且跟踪误差e1满足有限时间收敛性能。In the formula: α 1 is the virtual control law 1, α 2 is the virtual control law 2, z is the virtual error, ε is the virtual error integral term, k i ∈ R 3×3 (i=1,2,3,4,5 , 6) is a positive definite diagonal matrix, 0<a<1, λ>0, c>0 are the control parameters and adaptive gain to be designed. It can be seen that when the mathematical model (24) of the error system of the benthic AUV can be transformed into the error system (32) through the error transformations (28) and (30), if the control input vector τ, the virtual control laws α 1 , α 2 And the adaptive law is designed in the form of Equation (51), then the transformation error z is uniform and eventually bounded, and the tracking error e 1 satisfies the finite-time convergence performance.

证明:取Proof: take

Figure BDA0002533010510000131
Figure BDA0002533010510000131

but

Figure BDA0002533010510000132
Figure BDA0002533010510000132

将α1代入式(32)得:Substitute α 1 into equation (32) to get:

Figure BDA0002533010510000133
Figure BDA0002533010510000133

式中α=-λmin(k1),β=-λmin(k4);where α=-λ min (k 1 ), β=-λ min (k 4 );

则根据有限时间控制理论,只要z在有限时间内收敛,那么e1在有限时间收敛。Then according to the finite time control theory, as long as z converges in a finite time, then e 1 converges in a finite time.

Pick

Figure BDA0002533010510000134
Figure BDA0002533010510000134

式中:

Figure BDA0002533010510000135
为相应的估计误差,λ=diag[λ123456]。where:
Figure BDA0002533010510000135
is the corresponding estimation error, λ=diag[λ 123456 ].

but

Figure BDA0002533010510000136
Figure BDA0002533010510000136

将τ、α2

Figure BDA0002533010510000137
代入得:Set τ, α 2 ,
Figure BDA0002533010510000137
Substitute into:

Figure BDA0002533010510000138
Figure BDA0002533010510000138

对式(57)后三项进行分析:由于

Figure BDA0002533010510000139
为一标量,故有Analyze the last three terms of equation (57): since
Figure BDA0002533010510000139
is a scalar, so we have

Figure BDA00025330105100001310
Figure BDA00025330105100001310

又因为also because

Figure BDA00025330105100001311
Figure BDA00025330105100001311

Therefore

Figure BDA0002533010510000141
Figure BDA0002533010510000141

定义变量:Define variables:

Figure BDA0002533010510000142
Figure BDA0002533010510000142

因为

Figure BDA0002533010510000143
Figure BDA0002533010510000144
则当
Figure BDA0002533010510000145
时because
Figure BDA0002533010510000143
and
Figure BDA0002533010510000144
then when
Figure BDA0002533010510000145
Time

Figure BDA0002533010510000146
Figure BDA0002533010510000146

所以so

Figure BDA0002533010510000147
Figure BDA0002533010510000147

Figure BDA0002533010510000148
时,when
Figure BDA0002533010510000148
hour,

Figure BDA0002533010510000149
Figure BDA0002533010510000149

所以so

Figure BDA00025330105100001410
Figure BDA00025330105100001410

综合式(62)和式(64),得Combining equations (62) and (64), we get

Figure BDA00025330105100001411
Figure BDA00025330105100001411

将h代入不等式(61)与(60)得Substitute h into inequalities (61) and (60) to get

Figure BDA00025330105100001412
Figure BDA00025330105100001412

又因zTk3z>0,zTk6z>0,故And because z T k 3 z > 0, z T k 6 z > 0, so

Figure BDA00025330105100001413
Figure BDA00025330105100001413

其中,k3min=λmin(k3)zTz、k6min=λmin(k6)zTz,所以由式(36)、(37)可得出Among them, k 3minmin (k 3 )z T z, k 6minmin (k 6 )z T z, so it can be obtained from equations (36) and (37)

Figure BDA0002533010510000151
Figure BDA0002533010510000151

其中,

Figure BDA0002533010510000152
故根据有限时间控制理论,选择合适参数即可使可底栖式轨迹跟踪误差在有限时间内收敛,证毕。in,
Figure BDA0002533010510000152
Therefore, according to the finite-time control theory, the benthic trajectory tracking error can be converged in a finite time by selecting appropriate parameters, and the verification is completed.

本发明通过引入滑模干扰观测器系统以及有限时间控制方法获得快速跟踪期望位姿的性能,并且在一定程度上放宽了对控制参数选取的要求。The invention obtains the performance of fast tracking of the desired pose by introducing the sliding mode disturbance observer system and the finite time control method, and relaxes the requirements for the selection of control parameters to a certain extent.

本发明通过将海流扰动、模型不确定性组合为扰动集总项,使用有限时间扰动观测器逼近扰动集总项值并引入神经网络估计观测误差,又选取有限时间反步控制方法削弱抖振的产生,故处理影响可底栖式AUV水平面轨迹跟踪精度的几种因素的方式都包含于控制器的设计中,更贴近实际的工程需求。The invention combines the current disturbance and model uncertainty into a disturbance lumped term, uses a finite-time disturbance observer to approximate the disturbance lumped term value, introduces a neural network to estimate the observation error, and selects a finite-time backstepping control method to weaken the chattering effect. Therefore, the ways to deal with several factors that affect the tracking accuracy of the bottom-dwelling AUV's horizontal trajectory are included in the design of the controller, which is closer to the actual engineering needs.

2、仿真部分2. Simulation part

2.1仿真准备2.1 Simulation preparation

为验证本发明所设计的运动控制方法的有效性,将其应用到一种可底栖式AUV水平面运动模型中进行仿真验证,并考虑模型不确定性、海流扰动组合的扰动集总项造成的影响。可底栖式AUV模型相应的参数分别如表1-3所示。In order to verify the effectiveness of the motion control method designed in the present invention, it is applied to a bottom-dwelling AUV horizontal plane motion model for simulation verification, and the model uncertainty and the combined disturbance lumped term of the ocean current disturbance are considered. influences. The corresponding parameters of the benthic AUV model are shown in Table 1-3.

表1可底栖式AUV水动力系数Table 1 Hydrodynamic coefficient of benthic AUV

Figure BDA0002533010510000153
Figure BDA0002533010510000153

表2可底栖式AUV惯性系数Table 2 Inertia coefficient of benthic AUV

Figure BDA0002533010510000161
Figure BDA0002533010510000161

表3 OBFN位置与姿态仿真初值表Table 3 OBFN position and attitude simulation initial value table

Figure BDA0002533010510000162
Figure BDA0002533010510000162

扰动集总项perturbation lumped term

为了便于仿真分析,本发明将模型不确定性量化处理,并与外界干扰组合为扰动集总项H=[2sin0.2t+0.01,2sin0.2t+0.01,sin0.2t+0.01]T,并将其并入仿真模块。In order to facilitate the simulation analysis, the present invention quantifies the uncertainty of the model, and combines it with the external disturbance to form the disturbance lumped term H=[2sin0.2t+0.01, 2sin0.2t+0.01, sin0.2t+0.01] T , and the It is incorporated into the simulation module.

干扰观测器参数Disturbance Observer Parameters

为验证发明方法设计的干扰观测器可以有效地逼近外界干扰,取其仿真参数如表4所示。The interference observer designed to verify the inventive method can effectively approximate the external interference, and its simulation parameters are shown in Table 4.

表4干扰观测器参数取值Table 4 Interference observer parameter values

Figure BDA0002533010510000163
Figure BDA0002533010510000163

控制器参数Controller parameters

要求系统收敛速度较快且需要控制执行器输入,据此选择如下仿真参数,如表5所示。It is required that the system has a fast convergence speed and the actuator input needs to be controlled. Based on this, the following simulation parameters are selected, as shown in Table 5.

表5运动控制参数取值Table 5 Motion control parameter values

Figure BDA0002533010510000164
Figure BDA0002533010510000164

对于神经网络项取参数如下:The parameters for the neural network item are as follows:

λi=15,c=2;将RBF神经网络隐含层的节点个数取为j=6,高斯基函数的中心表示为d=[d1,…,d6],取值如式(70)所示,基宽bj=40。λ i = 15, c = 2; the number of nodes in the hidden layer of the RBF neural network is taken as j = 6, and the center of the Gaussian basis function is expressed as d = [d 1 ,...,d 6 ], and the value is shown in the formula ( 70), the base width b j =40.

Figure BDA0002533010510000171
Figure BDA0002533010510000171

2.2仿真分析2.2 Simulation Analysis

考虑到如果期望轨迹较为复杂,那么对控制律的检验会更有代表性。因此,本发明选择一种较为复杂的水平面航行轨迹作为期望轨迹,其具体表达式如下:Consider that if the expected trajectory is more complex, the test of the control law will be more representative. Therefore, the present invention selects a relatively complex horizontal plane navigation trajectory as the desired trajectory, and its specific expression is as follows:

ηd(t)=[x(t),y(t),ψ(t)]T (71)η d (t) = [x(t), y(t), ψ(t)] T (71)

Figure BDA0002533010510000172
Figure BDA0002533010510000172

其中ηd为期望轨迹。where ηd is the desired trajectory.

在仿真分析中,考虑到存在模型不确定性以及外界干扰构成的扰动集总项,以及饱和输入对可底栖式AUV的影响。图1至图3给出了可底栖式AUV的水平面3自由度轨迹跟踪曲线。图4至图6给出了干扰观测器对扰动集总项的估计情况。图7至图9给出了可底栖式AUV的控制输入情况。In the simulation analysis, considering the existence of model uncertainty and the disturbance lumped term composed of external disturbances, as well as the influence of saturated input on the bottom-dwelling AUV. Figures 1 to 3 show the 3-DOF trajectory tracking curves of the bottom-dwelling AUV. Figures 4 to 6 show the estimates of the disturbance lumped term by the disturbance observer. Figures 7 to 9 show the control inputs of the benthic AUV.

从图1至图9可以看出,本发明所提出的方法可较好地观测外界干扰并能在较短时间内实现对期望轨迹的跟踪,而且限制了控制输入,并获得了良好的动态过程,快速实现对轨迹跟踪的性能。It can be seen from Fig. 1 to Fig. 9 that the method proposed in the present invention can better observe the external disturbance and can track the desired trajectory in a relatively short time, and also limit the control input, and obtain a good dynamic process , to quickly achieve the performance of trajectory tracking.

本发明的上述算例仅为详细地说明本发明的计算模型和计算流程,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。The above calculation examples of the present invention are only to illustrate the calculation model and calculation process of the present invention in detail, but are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, on the basis of the above description, other different forms of changes or changes can also be made, and it is impossible to list all the embodiments here. Obvious changes or modifications are still within the scope of the present invention.

Claims (3)

1.一种可底栖式AUV的水平面轨迹快速跟踪控制方法,其特征在于,所述方法具体包括以下步骤:1. a kind of horizontal plane track fast tracking control method of bottom-dwelling type AUV, is characterized in that, described method specifically comprises the following steps: 步骤一、将模型不确定性和海流扰动考虑为一个扰动集总项τ′d,建立考虑扰动集总项的可底栖式AUV的运动学与动力学方程;Step 1. Consider the model uncertainty and current disturbance as a disturbance lumped term τ′ d , and establish the kinematics and dynamics equations of the benthic AUV considering the disturbance lumped term; 所述步骤一中,建立考虑扰动集总项的可底栖式AUV的运动学与动力学方程,其具体为:In the step 1, the kinematics and dynamics equations of the bottom-dwelling AUV considering the perturbation lumped term are established, which are specifically:
Figure FDA0003693642420000011
Figure FDA0003693642420000011
式中,v=[u,v0,r]T,v表示可底栖式AUV在载体坐标系下水平面内的速度与角速度向量,u代表纵荡速度,v0代表横荡速度,r代表艏摇角速度;上角标T代表转置;η=[x,y,ψ]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位姿向量,x和y分别代表可底栖式AUV在固定坐标系下纵向和横向位置坐标,ψ代表艏向角;J(η)代表固定坐标系与载体坐标系之间的坐标转换矩阵,J(η)∈R3×3,R代表实数;τ′d表示系统的扰动集总项;τ代表控制输入向量;
Figure FDA0003693642420000012
是η的一阶导数,
Figure FDA0003693642420000013
代表可底栖式AUV在固定坐标系下的速度与角速度向量;
Figure FDA0003693642420000014
是v的一阶导数,
Figure FDA0003693642420000015
代表可底栖式AUV在载体坐标系下的加速度与角加速度向量;M0代表质量惯性矩阵的标称值;上角标-1代表矩阵的逆,C0(v)代表科里奥利向心力矩阵的标称值;D0(v)代表流体阻尼矩阵的标称值;g0代表恢复力和恢复力矩向量的标称值;
In the formula, v=[u, v 0 , r] T , v represents the velocity and angular velocity vector of the benthic AUV in the horizontal plane under the carrier coordinate system, u represents the surge speed, v 0 represents the sway speed, and r represents the sway speed Yaw angular velocity; superscript T stands for transposition; η=[x,y,ψ] T stands for the three-degree-of-freedom pose vector of the bottom-dwelling AUV in the horizontal plane in a fixed coordinate system, and x and y represent the bottom-mountable AUV respectively The longitudinal and lateral position coordinates of the perched AUV in the fixed coordinate system, ψ represents the heading angle; J(η) represents the coordinate transformation matrix between the fixed coordinate system and the carrier coordinate system, J(η)∈R 3×3 , R represents a real number; τ′ d represents the disturbance lumped term of the system; τ represents the control input vector;
Figure FDA0003693642420000012
is the first derivative of η,
Figure FDA0003693642420000013
Represents the velocity and angular velocity vectors of the benthic AUV in a fixed coordinate system;
Figure FDA0003693642420000014
is the first derivative of v,
Figure FDA0003693642420000015
Represents the acceleration and angular acceleration vectors of the benthic AUV in the carrier coordinate system; M 0 represents the nominal value of the mass-inertia matrix; the superscript -1 represents the inverse of the matrix, and C 0 (v) represents the Coriolis centripetal force the nominal value of the matrix; D 0 (v) represents the nominal value of the fluid damping matrix; g 0 represents the nominal value of the restoring force and restoring moment vectors;
所述固定坐标系O-XYZ为:以海面或海中的任意一点为原点O,X轴位于水平面,并以规定的正北方向为正方向;Y轴位于水平面,以规定的正东方向为正方向;Z轴垂直于XOY坐标平面,并以地心方向为正;The fixed coordinate system O-XYZ is: take the sea surface or any point in the sea as the origin O, the X axis is located on the horizontal plane, and the specified true north direction is the positive direction; the Y axis is located on the horizontal plane, and the specified true east direction is the positive direction. direction; the Z axis is perpendicular to the XOY coordinate plane, and the direction of the center of the earth is positive; 所述载体坐标系O0-X0Y0Z0为:以可底栖式AUV重心所在位置为原点O0,X0轴在可底栖式AUV纵剖面内,与可底栖式AUV水线面平行且以艇艏方向为正方向;Y0轴与可底栖式AUV纵剖面垂直,与水平面平行且以右舷方向为正方向;Z0轴在可底栖式AUV纵剖面内,与可底栖式AUV水线面垂直且以艇底方向为正方向;The carrier coordinate system O 0 -X 0 Y 0 Z 0 is: taking the position of the center of gravity of the benthic AUV as the origin O 0 , the X 0 axis is in the longitudinal section of the benthic AUV, and the water The line plane is parallel and the bow direction is the positive direction; the Y 0 axis is perpendicular to the longitudinal section of the benthic AUV, parallel to the horizontal plane and the starboard direction is the positive direction; the Z 0 axis is in the longitudinal section of the benthic AUV, and the The bottom-dwelling AUV water plane is vertical and the direction of the bottom of the boat is the positive direction;
Figure FDA0003693642420000016
Figure FDA0003693642420000016
式中,ΔM代表质量惯性矩阵的不确定值;ΔC(v)代表科里奥利向心力矩阵的不确定值;ΔD(v)代表流体阻尼矩阵的不确定值;Δg代表恢复力和恢复力矩向量的不确定值;τd代表外界干扰造成的扰动向量的不确定值;where ΔM represents the uncertainty value of the mass inertia matrix; ΔC(v) represents the uncertainty value of the Coriolis centripetal force matrix; ΔD(v) represents the uncertainty value of the fluid damping matrix; Δg represents the restoring force and restoring moment vector The uncertainty value of τ d represents the uncertainty value of the disturbance vector caused by the external disturbance; 步骤二、基于步骤一建立的运动学与动力学方程,利用反步控制方法建立轨迹跟踪的误差系统;Step 2. Based on the kinematics and dynamics equations established in step 1, use the backstepping control method to establish an error system for trajectory tracking; 所述步骤二的具体过程为:The specific process of the second step is: 定义跟踪误差:Define tracking error:
Figure FDA0003693642420000021
Figure FDA0003693642420000021
式中,e1表示轨迹跟踪误差;e2表示速度跟踪误差;ηd=[xd,ydd]T表示可底栖式AUV在固定坐标系下水平面内的三自由度位姿期望值,xd为x的期望值,yd为y的期望值,ψd为ψ的期望值;
Figure FDA0003693642420000022
是ηd的一阶导数;
Figure FDA0003693642420000023
是e1的一阶导数;vd表示可底栖式AUV在载体坐标系下水平面的速度与角速度期望向量;
In the formula, e 1 represents the trajectory tracking error; e 2 represents the velocity tracking error; η d = [x d , y d , ψ d ] T represents the three-degree-of-freedom pose of the benthic AUV in the horizontal plane in a fixed coordinate system Expected value, x d is the expected value of x, y d is the expected value of y, ψ d is the expected value of ψ;
Figure FDA0003693642420000022
is the first derivative of η d ;
Figure FDA0003693642420000023
is the first derivative of e 1 ; v d represents the expected vector of velocity and angular velocity on the horizontal plane of the benthic AUV in the carrier coordinate system;
则根据公式(2)建立轨迹跟踪的误差系统为:Then according to formula (2), the error system of trajectory tracking is established as:
Figure FDA0003693642420000024
Figure FDA0003693642420000024
式中,
Figure FDA0003693642420000025
是e2的一阶导数;
Figure FDA0003693642420000026
是J(η)的一阶导数;
Figure FDA0003693642420000027
为vd的一阶导数;
In the formula,
Figure FDA0003693642420000025
is the first derivative of e2 ;
Figure FDA0003693642420000026
is the first derivative of J(η);
Figure FDA0003693642420000027
is the first derivative of v d ;
定义虚拟误差z:Define the dummy error z: z=e21 (6)z=e 21 (6) 式中,α1为虚拟控制律一;In the formula, α 1 is the virtual control law one; 取虚拟误差积分项为ε:Take the virtual error integral term as ε:
Figure FDA0003693642420000028
Figure FDA0003693642420000028
则轨迹跟踪的误差系统转变为:Then the error system of trajectory tracking is transformed into:
Figure FDA0003693642420000029
Figure FDA0003693642420000029
式中,
Figure FDA00036936424200000210
为ε的一阶导数;
Figure FDA00036936424200000211
为z的一阶导数;
Figure FDA00036936424200000212
为α1的一阶导数;
In the formula,
Figure FDA00036936424200000210
is the first derivative of ε;
Figure FDA00036936424200000211
is the first derivative of z;
Figure FDA00036936424200000212
is the first derivative of α 1 ;
步骤三、根据步骤二建立的轨迹跟踪误差系统设计滑模干扰观测器,利用设计的滑模干扰观测器对扰动集总项τ′d进行逼近,获得扰动集总项τ′d的观测值;Step 3: Design a sliding mode disturbance observer according to the trajectory tracking error system established in step 2, and use the designed sliding mode disturbance observer to approximate the disturbance lumped term τ′ d to obtain the observation value of the disturbance lumped term τ′ d ; 所述步骤三的具体过程为:The specific process of the third step is: 选择滑模面函数s为:The sliding mode surface function s is chosen as: s=ρ-v (9)s=ρ-v (9) 式中,ρ为中间变量,
Figure FDA0003693642420000031
为ρ的一阶导数,且
Figure FDA0003693642420000032
的形式为:
In the formula, ρ is an intermediate variable,
Figure FDA0003693642420000031
is the first derivative of ρ, and
Figure FDA0003693642420000032
of the form:
Figure FDA0003693642420000033
Figure FDA0003693642420000033
式中,k7为正定对角阵,k7∈R3×3;L为正定对角阵,L=diag[L1,L2,L3]∈R3×3,L1,L2,L3均为L中的元素,
Figure FDA0003693642420000034
Figure FDA0003693642420000035
为三自由度上扰动的最大值;0<r<1;sign代表符号函数;s=[s1,s2,s3]T,s1,s2,s3均为s中的元素,有|s|r=[|s1|r,|s2|r,|s3|r]T,|·|代表取绝对值;
In the formula, k 7 is a positive definite diagonal matrix, k 7 ∈R 3×3 ; L is a positive definite diagonal matrix, L=diag[L 1 ,L 2 ,L 3 ]∈R 3×3 ,L 1 ,L 2 , L 3 are all elements in L,
Figure FDA0003693642420000034
Figure FDA0003693642420000035
is the maximum value of disturbance on three degrees of freedom; 0<r<1; sign represents the sign function; s=[s 1 , s 2 , s 3 ] T , s 1 , s 2 , s 3 are all elements in s, There is |s| r = [|s 1 | r , |s 2 | r , |s 3 | r ] T , |·| represents the absolute value;
则扰动集总项τ′d的观测值为Then the observed value of the disturbance lumped term τ′ d is
Figure FDA0003693642420000036
Figure FDA0003693642420000036
式中,
Figure FDA0003693642420000037
为扰动集总项τ′d的观测值;
Figure FDA0003693642420000038
为s的一阶导数;
In the formula,
Figure FDA0003693642420000037
is the observed value of the disturbance lumped term τ′ d ;
Figure FDA0003693642420000038
is the first derivative of s;
步骤四、采用径向基函数神经网络对扰动集总项的观测误差
Figure FDA0003693642420000039
进行估计,获得观测误差
Figure FDA00036936424200000310
的估计值;
Step 4. Using radial basis function neural network to measure the observation error of the perturbed lumped term
Figure FDA0003693642420000039
make an estimate, get the observation error
Figure FDA00036936424200000310
estimated value;
步骤五、根据扰动集总项τ′d的观测值以及观测误差
Figure FDA00036936424200000311
的估计值来设计控制器,使可底栖式AUV的位姿在有限时间内跟踪期望值,且跟踪误差在有限时间内收敛。
Step 5. According to the observation value of the disturbance lumped term τ′ d and the observation error
Figure FDA00036936424200000311
The estimated value of , to design the controller, so that the pose of the bottom-dwelling AUV can track the expected value in a limited time, and the tracking error converges in a limited time.
2.根据权利要求1所述的一种可底栖式AUV的水平面轨迹快速跟踪控制方法,其特征在于,所述步骤四的具体过程为:2. a kind of horizontal plane trajectory fast tracking control method of bottom-dwelling AUV according to claim 1, is characterized in that, the concrete process of described step 4 is: 观测误差
Figure FDA00036936424200000312
为:
observation error
Figure FDA00036936424200000312
for:
Figure FDA00036936424200000313
Figure FDA00036936424200000313
采用径向基函数神经网络对扰动集总项的观测误差
Figure FDA00036936424200000314
进行估计,径向基函数神经网络的输入n为:n=[e1 T,e2 Td T,vd T],则径向基函数神经网络输出观测误差
Figure FDA00036936424200000315
的估计值为:
Observation error of perturbed lumped term using radial basis function neural network
Figure FDA00036936424200000314
For estimation, the input n of the radial basis function neural network is: n=[e 1 T , e 2 T , η d T , v d T ], then the radial basis function neural network outputs the observation error
Figure FDA00036936424200000315
is estimated to be:
Figure FDA00036936424200000316
Figure FDA00036936424200000316
式中,
Figure FDA0003693642420000041
为权值矩阵的估计值,
Figure FDA0003693642420000042
Figure FDA0003693642420000043
均为
Figure FDA0003693642420000044
中的子矩阵,
Figure FDA0003693642420000045
Figure FDA0003693642420000046
代表第j行第i个神经网络权值的估计值,i=1,2,…,6,φ(n)为中间变量,φ(n)=[φ1(n),φ2(n),…,φ6(n)]T,φi(n)代表第i个神经网络的高斯形式的径向基函数。
In the formula,
Figure FDA0003693642420000041
is the estimated value of the weight matrix,
Figure FDA0003693642420000042
Figure FDA0003693642420000043
both
Figure FDA0003693642420000044
A submatrix in ,
Figure FDA0003693642420000045
Figure FDA0003693642420000046
Represents the estimated value of the ith neural network weight in the jth row, i=1,2,...,6, φ(n) is the intermediate variable, φ(n)=[φ 1 (n),φ 2 (n) ,…,φ 6 (n)] T , φ i (n) represents the radial basis function of the Gaussian form of the ith neural network.
3.根据权利要求2所述的一种可底栖式AUV的水平面轨迹快速跟踪控制方法,其特征在于,所述步骤五的具体过程为:3. a kind of horizontal plane trajectory fast tracking control method of bottom-dwelling type AUV according to claim 2, is characterized in that, the concrete process of described step 5 is: 控制输入向量τ受饱和度值约束:The control input vector τ is constrained by the saturation value: sat(τ)=[sat(τ1),sat(τ2),sat(τ3)]T (19)sat(τ)=[sat(τ 1 ), sat(τ 2 ), sat(τ 3 )] T (19) 式中,sat(τ)是对控制输入向量做饱和限制处理后的输出值,τj代表控制输入向量τ的第j个值,j=1,2,3;In the formula, sat(τ) is the output value of the control input vector after saturation limit processing, τ j represents the jth value of the control input vector τ, j=1, 2, 3; sat(τj)代表执行器的非线性饱和特性,饱和控制功能被描述为:sat(τ j ) represents the nonlinear saturation characteristic of the actuator, and the saturation control function is described as: sat(τj)=τj(t)+θj(t) (20)sat(τ j )=τ j (t)+θ j (t) (20) 其中in
Figure FDA0003693642420000047
Figure FDA0003693642420000047
式中,θj(t)为饱和控制项,τmj为控制输入向量τ的第j个值τj的最大允许值;In the formula, θ j (t) is the saturation control term, and τ mj is the maximum allowable value of the j-th value τ j of the control input vector τ; 设计自适应反步控制律如下:The adaptive backstepping control law is designed as follows:
Figure FDA0003693642420000048
Figure FDA0003693642420000048
式中,τs代表控制输入向量的名义值,α2为虚拟控制律二,ki为正定对角阵,i=1,2,…6,ki∈R3×3,a为常数,0<a<1,
Figure FDA0003693642420000049
Figure FDA00036936424200000410
的一阶导数,c为待设计的控制参数及自适应增益,c>0,λ为常数,λ>0。
In the formula, τ s represents the nominal value of the control input vector, α 2 is the second virtual control law, ki is a positive definite diagonal matrix, i=1, 2,...6, ki ∈ R 3×3 , a is a constant, 0<a<1,
Figure FDA0003693642420000049
Yes
Figure FDA00036936424200000410
The first derivative of , c is the control parameter and adaptive gain to be designed, c>0, λ is a constant, λ>0.
CN202010523598.8A 2020-06-10 2020-06-10 Quick tracking control method for horizontal plane track of benthonic AUV Active CN111650948B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010523598.8A CN111650948B (en) 2020-06-10 2020-06-10 Quick tracking control method for horizontal plane track of benthonic AUV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010523598.8A CN111650948B (en) 2020-06-10 2020-06-10 Quick tracking control method for horizontal plane track of benthonic AUV

Publications (2)

Publication Number Publication Date
CN111650948A CN111650948A (en) 2020-09-11
CN111650948B true CN111650948B (en) 2022-08-02

Family

ID=72347456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010523598.8A Active CN111650948B (en) 2020-06-10 2020-06-10 Quick tracking control method for horizontal plane track of benthonic AUV

Country Status (1)

Country Link
CN (1) CN111650948B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327892B (en) * 2020-11-17 2023-03-24 哈尔滨工程大学 Anti-interference control method with AUV (autonomous Underwater vehicle) error limited
CN112904872B (en) * 2021-01-19 2021-12-10 哈尔滨工程大学 Fixed-time fast trajectory tracking control method for benthic AUV based on disturbance approximation
CN112947067B (en) * 2021-01-26 2024-02-20 大连海事大学 Precise tracking control method for three-dimensional track of underwater robot
CN112965371B (en) * 2021-01-29 2021-09-28 哈尔滨工程大学 Water surface unmanned ship track rapid tracking control method based on fixed time observer
CN112947077B (en) * 2021-01-29 2021-10-29 哈尔滨工程大学 A Robust Trajectory Tracking Control Method for AUV Based on Switching Performance Function Technology
CN113238567B (en) * 2021-04-30 2021-12-10 哈尔滨工程大学 A weak buffeting integral sliding mode point stabilization control method for benthic AUV based on extended state observer
CN113110532B (en) * 2021-05-08 2022-11-04 哈尔滨工程大学 Sliding mode trajectory tracking control method for bottom-dwelling AUV adaptive terminal based on auxiliary dynamic system
CN113110512B (en) * 2021-05-19 2022-08-26 哈尔滨工程大学 Benthonic AUV self-adaptive trajectory tracking control method for weakening unknown interference and buffeting influence
CN113848887B (en) * 2021-09-08 2024-08-27 哈尔滨工程大学 Under-actuated unmanned ship track tracking control method based on MLP method
CN114442640B (en) * 2022-02-28 2022-09-16 哈尔滨理工大学 Track tracking control method for unmanned surface vehicle
CN115060267A (en) * 2022-06-01 2022-09-16 东南大学 A SINS Self-Aided Navigation Method Based on Maneuvering Constraints and Incremental Filtering
CN114895569A (en) * 2022-06-06 2022-08-12 天津瀚海蓝帆海洋科技有限公司 A Quantitative Feedback Sliding Mode Trajectory Tracking Control Method for AUV Based on Nonlinear Disturbance Observer
CN115268475B (en) * 2022-08-09 2023-06-13 哈尔滨工程大学 Precise Terrain Tracking Control Method for Robotic Fish Based on Finite Time Disturbance Observer
CN115576335A (en) * 2022-09-23 2023-01-06 浙江大学 Self-adaptive neural network trajectory tracking method for autonomous underwater helicopter
CN115933647B (en) * 2022-11-24 2023-09-01 汕头大学 OMR trajectory tracking control method and storage medium based on composite control algorithm
CN119036457A (en) * 2024-09-27 2024-11-29 清华大学 Method and device for determining angular acceleration of rotating joint of robot and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843233A (en) * 2016-04-11 2016-08-10 哈尔滨工程大学 Non-linear observer based autonomous underwater vehicle motion control method
CN108267952A (en) * 2017-12-07 2018-07-10 西北工业大学 A kind of adaptive finite-time control method of underwater robot
CN109240316A (en) * 2018-11-15 2019-01-18 哈尔滨工程大学 Consider the seabed flight node default capabilities Trajectory Tracking Control method of propeller output saturation
CN109901598A (en) * 2019-04-08 2019-06-18 哈尔滨工程大学 Path tracking method of autonomous underwater robot based on stochastic model predictive control technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942965B2 (en) * 2012-02-22 2015-01-27 The United States Of America, As Represented By The Secretary Of The Navy System and method for underwater vehicle simulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843233A (en) * 2016-04-11 2016-08-10 哈尔滨工程大学 Non-linear observer based autonomous underwater vehicle motion control method
CN108267952A (en) * 2017-12-07 2018-07-10 西北工业大学 A kind of adaptive finite-time control method of underwater robot
CN109240316A (en) * 2018-11-15 2019-01-18 哈尔滨工程大学 Consider the seabed flight node default capabilities Trajectory Tracking Control method of propeller output saturation
CN109901598A (en) * 2019-04-08 2019-06-18 哈尔滨工程大学 Path tracking method of autonomous underwater robot based on stochastic model predictive control technology

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
复杂环境下的欠驱动智能水下机器人定深跟踪控制;万磊等;《上海交通大学学报》;20151231;第49卷(第12期);第1849-1854页 *
欠驱动智能水下机器人的自抗扰路径跟踪控制;万磊等;《上海交通大学学报》;20141231;第48卷(第12期);第1727-1731、1738页 *

Also Published As

Publication number Publication date
CN111650948A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
CN111650948B (en) Quick tracking control method for horizontal plane track of benthonic AUV
CN109634307B (en) A compound track tracking control method for unmanned underwater vehicle
Yu et al. Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics
CN107168312B (en) A Spatial Trajectory Tracking Control Method Compensating for UUV Kinematics and Dynamics Disturbances
CN112965371B (en) Water surface unmanned ship track rapid tracking control method based on fixed time observer
Lapierre Robust diving control of an AUV
CN111736617B (en) Track tracking control method for preset performance of benthonic underwater robot based on speed observer
Cui et al. Leader–follower formation control of underactuated autonomous underwater vehicles
Almeida et al. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty
CN112904872B (en) Fixed-time fast trajectory tracking control method for benthic AUV based on disturbance approximation
CN109189103B (en) An underactuated AUV trajectory tracking control method with transient performance constraints
CN112068440B (en) Dynamic positioning control method for AUV recovery and docking based on model predictive control
Liu et al. Deep reinforcement learning for vectored thruster autonomous underwater vehicle control
Yu et al. Output feedback spatial trajectory tracking control of underactuated unmanned undersea vehicles
Lamraoui et al. Path following control of fully actuated autonomous underwater vehicle based on LADRC
Wu et al. Homing tracking control of autonomous underwater vehicle based on adaptive integral event-triggered nonlinear model predictive control
Gao et al. Command filtered path tracking control of saturated ASVs based on time‐varying disturbance observer
Peng et al. Research on hover control of AUV uncertain stochastic nonlinear system based on constructive backstepping control strategy
Dai et al. Dual closed loop AUV trajectory tracking control based on finite time and state observer
Zhang et al. Sliding mode prediction control for 3d path following of an underactuated auv
CN116300998A (en) A ROV underwater high-precision attitude control method
Li et al. Formation control of a group of AUVs using adaptive high order sliding mode controller
Harris et al. Preliminary evaluation of null-space dynamic process model identification with application to cooperative navigation of underwater vehicles
Rezazadegan et al. An adaptive control scheme for 6-dof control of an auv using saturation functions
Liang et al. 3D trajectory tracking control of an underactuated AUV based on adaptive neural network dynamic surface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant