CN111646792B - 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法 - Google Patents

一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法 Download PDF

Info

Publication number
CN111646792B
CN111646792B CN202010573084.3A CN202010573084A CN111646792B CN 111646792 B CN111646792 B CN 111646792B CN 202010573084 A CN202010573084 A CN 202010573084A CN 111646792 B CN111646792 B CN 111646792B
Authority
CN
China
Prior art keywords
acetate
bme
ceramic
barium titanate
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010573084.3A
Other languages
English (en)
Other versions
CN111646792A (zh
Inventor
洪志超
陈永虹
宋运雄
林志盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Torch Electron Technology Co ltd
Original Assignee
Fujian Torch Electron Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Torch Electron Technology Co ltd filed Critical Fujian Torch Electron Technology Co ltd
Priority to CN202010573084.3A priority Critical patent/CN111646792B/zh
Publication of CN111646792A publication Critical patent/CN111646792A/zh
Application granted granted Critical
Publication of CN111646792B publication Critical patent/CN111646792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)

Abstract

一种BME多层陶瓷电容器、BME瓷介电容器陶瓷材料及制备方法,一种BME瓷介电容器陶瓷材料,包括以下原料:钛酸钡、乙酸锰、乙酸镁、草酸氧钒、稀土乙酸盐、乙醇钡、乙酸钙、正硅酸乙酯,通过限定陶瓷原料的组成,以钛酸钡为基础,引入草酸氧钒、正硅酸乙酯与钛酸钡、乙酸盐、乙醇钡配合,在烧结时形成良好的“壳‑芯”结构,获得2500‑3000的高介电常数的同时,使电容温度变化率保持在±15%范围内。

Description

一种BME多层陶瓷电容器、BME瓷介电容器陶瓷材料及制备 方法
技术领域
本发明属于多层陶瓷电容器制备领域,具体涉及一种BME多层陶瓷电容器、BME瓷介电容器陶瓷材料及制备方法。
背景技术
随着电子产品小型化、多功能化的发展,表面贴装技术得到了广泛的应用与发展。多层陶瓷电容器(Multilayer Ceramic Capacitor)简称MLCC,是表面贴装技术中应用最广泛的一类片式元器件之一。伴随着尺寸更小、性能更高的电子设备日益增长的需求,对多层陶瓷电容器在更小体积、更大容量、更高可靠性以及更低成本等方面提出了更高的要求。
多层陶瓷电容器采用流延-共烧工艺,通过流延、印刷、叠压将电极层与介电层相互叠加,再通过脱脂、烧结、端电极,从而制成多层陶瓷电容器。传统的多层陶瓷电容器采用钯或钯银合金等贵金属作为内电极,生产成本高。为降低成本,可以通过采用镍、铜等贱金属替代贵金属作为内电极。由于贱金属在空气气氛中烧结会发生氧化,所以需要再还原性气氛下进行烧制。另一方面,纯钛酸钡材料在还原气氛下烧结会被还原,发生半导体化,导致绝缘电阻降低,所以要在钛酸钡中加入锰、镁、稀土等元素以使陶瓷材料适合于还原气氛中烧结,得到高绝缘电阻和高可靠性的多层陶瓷电容器。
更高的介电常数、更薄的介质层厚度有利于多层陶瓷电容器的小型化、大容量化。因此,如何得到具有良好电容温度特性、高介电常数、低损耗,同时具备抗还原特性,且适合于超薄介质层多层陶瓷电容器制造的介电陶瓷材料,是研究的方向。在美国专利US20040229746A1中,配方体系为BaTiO3-Mn3O4-Y2O3-Ho2O3-CaCO3-SiO2-B2O3-Al2O3-MgO-CaO,在1200℃~1300℃还原气氛下烧结,但其陶瓷晶粒尺寸大于500nm,不适用于超薄介质层贱金属多层陶瓷电容器的制造。因此,如何更加均匀、高效地进行掺杂,获得具有超细晶粒、粒度均匀且性能优异的介电陶瓷材料,并能应用于贱金属、超薄介质层、大容量的多层陶瓷电容器是本发明所要解决的问题。
发明内容
本发明的目的是克服现有技术的缺点,提供一种BME多层陶瓷电容器、BME瓷介电容器陶瓷材料及制备方法。
本发明采用如下技术方案:
一种BME瓷介电容器陶瓷材料,包括以下重量份的原料:钛酸钡100份、乙酸锰0.15-0.3份、乙酸镁0.3-1.0份、草酸氧钒0.01-0.04份、稀土乙酸盐1.0-5.0份、乙醇钡0.5-1.5份、乙酸钙0.3-1.0份、正硅酸乙酯1.0-3.0份。
进一步的,所述稀土乙酸盐选自乙酸钇、乙酸镧、乙酸铈、乙酸镨、乙酸钕、乙酸钐、乙酸钆、乙酸铽、乙酸镝、乙酸钬、乙酸饵和乙酸镱中的一种或多种。
进一步的,所述钛酸钡的粒度小于500nm。
一种BME多层陶瓷电容器,采用以上任一项所述的陶瓷材料制成。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨1-4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:5-20:5-20;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨4-24h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:15-35:15-35:0.5-2;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨4-24h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度≦15um;
步骤六,将贱金属内极印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:对生坯进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1200-1320℃保温1-4h;然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h;再冷却至室温;
步骤九,端外电极工艺:外电极材质为铜,烧附温度为700-900℃,采用氮气保护,保温0.5-2h,冷却后,即得到BME瓷介电容器陶瓷材料。
进一步的,所述步骤七中,生坯脱脂的环境为:270℃的空气气氛下,保温4h。
进一步的,所述贱金属内极为镍金属内极。
由上述对本发明的描述可知,与现有技术相比,本发明的有益效果是:
第一,通过限定陶瓷原料的组成,以钛酸钡为基础,引入草酸氧钒、正硅酸乙酯与钛酸钡、乙酸盐、乙醇钡配合,在烧结时形成良好的“壳-芯”结构,获得2500-3000的高介电常数的同时,使电容温度变化率保持在±15%范围内;草酸氧钒与其他乙酸盐原料配合,还可调节TCC,降低损耗;正硅酸乙酯与其他乙酸盐原料配合,还可调节TCC,促进陶瓷材料的烧结,提高致密性,提高BDV;
第二,制备时,限定各原料的球磨顺序和时间,将除钛酸钡以外的原料先溶解于有机溶剂中,使添加的各元素分布均匀,烧结形成良好的“壳-芯”结构;
第三,生坯在烧结之前先进行脱脂,以排出加入的有机物,同时使有机盐添加剂进行裂解,使添加的各元素分散更加均匀,再经两段式烧结,使添加物形成均匀分散的纳米级氧化物,烧结形成良好的的“壳-芯”结构,以获得获得2500-3000的高介电常数的同时,使电容温度变化率保持在±15%范围内;
第四,添加乙酸锰,能够在烧结过程中有效阻止Ti4+的还原,降低损耗、提高绝缘电阻;添加乙酸镁及稀土乙酸盐,可以在介电材料中进行施主和受主掺杂,同时形成“壳-芯”结构,得到平稳的介温特性曲线;添加乙醇钡、乙酸钙与正硅酸乙酯配合,有利于提高瓷介瓷体的致密度,降低损耗。
附图说明
图1为本发明提供的瓷介电容器陶瓷材料组织结构示意图;
图2为本发明提供的MLCC内部结构示意图;
图3为实施例1样品介电常数随温度变化曲线;
图4为实施例1样品电容温度变化率随温度变化曲线;
图中,1-陶瓷材料、2-镍金属内极、3-铜外电极。
具体实施方式
以下通过具体实施方式对本发明作进一步的描述。
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.15-0.3份、乙酸镁0.3-1.0份、草酸氧钒0.01-0.04份、稀土乙酸盐1.0-5.0份、乙醇钡0.5-1.5份、乙酸钙0.3-1.0份、正硅酸乙酯1.0-3.0份。
其中,稀土乙酸盐选自乙酸钇、乙酸镧、乙酸铈、乙酸镨、乙酸钕、乙酸钐、乙酸钆、乙酸铽、乙酸镝、乙酸钬、乙酸饵和乙酸镱中的一种或多种。
钛酸钡的粒度小于500nm。
通过限定BME瓷介电容器陶瓷材料的组成,以钛酸钡为基础,引入草酸氧钒、正硅酸乙酯与钛酸钡、乙酸盐配合,在烧结时形成良好的“壳-芯”结构,获得2500-3000的高介电常数的同时,使电容温度变化率保持在±15%范围内;草酸氧钒与其他乙酸盐原料配合,还可调节TCC,降低损耗;正硅酸乙酯与其他乙酸盐原料配合,还可调节TCC,促进陶瓷材料的烧结,提高致密性,提高BDV。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨1-4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:5-20:5-20;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨4-24h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:15-35:15-35:0.5-2;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨4-24h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度≦15um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1200-1320℃保温1-4h;然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h;再冷却至室温;
步骤九,端外电极工艺:外电极材质为铜,烧附温度为700-900℃,采用氮气保护,保温0.5-2h,冷却后,即得到BME瓷介电容器陶瓷材料。
实施例1
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、草酸氧钒0.03份、乙酸镱1.5份、乙酸镝0.36份、乙醇钡1.14份、乙酸钙0.79份、正硅酸乙酯2.43份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度位10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1250℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
参照图3样品介电常数随温度变化曲线及图4样品电容温度变化率随温度变化曲线可知,样品具有高介电常数(2500~3000),低损耗(<1.5%),在工作温度范围(-55℃~125℃)内具有良好的温度稳定性(±15%),符合X7R要求。
实施例2
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.15份、乙酸镁0.92份、草酸氧钒0.03份、乙酸钇2.28份、乙酸镝1.46份、乙醇钡0.5份、乙酸钙0.79份、正硅酸乙酯1.34份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度为10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1270℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
实施例3
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、草酸氧钒0.01份、乙酸镱4.5份、乙酸钬0.37份、乙醇钡1.14份、乙酸钙0.34份、正硅酸乙酯2.43份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度为10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1270℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
实施例4
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、草酸氧钒0.04份、乙酸镱1.5份、乙酸饵0.37份、乙醇钡0.5份、乙酸钙0.34份、正硅酸乙酯2.43份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度为10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在12700℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
实施例5
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.3份、乙酸镁0.31份、草酸氧钒0.03份、乙酸钇1.14份、乙酸钬0.37份、乙醇钡1.14份、乙酸钙0.79份、正硅酸乙酯1.07份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度为10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1270℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
对比例1
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、乙酸镱1.5份、乙酸镝0.36份、乙醇钡1.14份、乙酸钙0.79份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度位10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1250℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
对比例2
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、乙酸镱1.5份、乙酸镝0.36份、乙醇钡1.14份、乙酸钙0.79份、正硅酸乙酯2.43份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度位10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1250℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
对比例3
一种BME多层陶瓷电容器,采用BME瓷介电容器陶瓷材料制成。
BME瓷介电容器陶瓷材料包括以下重量份的原料:钛酸钡100份、乙酸锰0.22份、乙酸镁0.61份、草酸氧钒0.03份、乙酸镱1.5份、乙酸镝0.36份、乙醇钡1.14份、乙酸钙0.79份。
一种BME瓷介电容器陶瓷材料的制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:10:10;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨8h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:20:20:1;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨8h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度位10um;
步骤六,将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:将生坯置于270℃的空气气氛下,保温4h对进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1250℃保温2h;然后降温至900℃回氧,氧气含量12ppm,保温4h;再冷却至室温;
步骤九,端外电极工艺:倒角后端附铜外电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,即得到BME瓷介电容器陶瓷材料。
将上述8个实施例所制备的样品经测试获得如下数据,其结果列于下表:
Figure GDA0003389943010000151
通过上述表格可知,本发明提供的BME瓷介电容器陶瓷材料,通过限定BME瓷介电容器陶瓷材料的组成,以钛酸钡为基础,引入草酸氧钒、正硅酸乙酯与钛酸钡、乙酸盐、乙醇钡配合,在烧结时形成良好的“壳-芯”结构,具有高介电常数(2500~3000),低损耗(<1.5%),在工作温度范围(-55℃~125℃)内具有良好的温度稳定性(±15%),符合X7R要求。同时具有良好的绝缘电阻(25℃RC>2000MΩ·μF,125℃RC>1500MΩ·μF)和很高的击穿强度(BDV>100V/μm),且可与贱金属内电极良好匹配,适应于还原气氛中烧结。利用本发明可设计大容量、超薄介质层的多层陶瓷电容器。有着极高的产业化前景及工业应用价值。
以上所述,仅为本发明的较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (6)

1.一种BME瓷介电容器陶瓷材料,其特征在于:包括以下重量份的原料:钛酸钡100份、乙酸锰0.15-0.3份、乙酸镁0.3-1.0份、草酸氧钒0.01-0.04份、稀土乙酸盐1.0-5.0份、乙醇钡0.5-1.5份、乙酸钙0.3-1.0份、正硅酸乙酯1.0-3.0份;
其制备方法,包括以下步骤:
步骤一,将BME瓷介电容器陶瓷材料中除钛酸钡以外的原料按其比例称重、混合得添加剂;
步骤二,往添加剂中加入乙醇、甲苯,球磨1-4h,使添加剂完全溶解,其中添加剂、乙醇与甲苯按重量比为添加剂:乙醇:甲苯=1:5-20:5-20;
步骤三,往步骤二得到的溶液中,加入钛酸钡、乙醇、甲苯、分散剂,球磨4-24h,使钛酸钡分散均匀,其中钛酸钡、乙醇、甲苯与分散剂按重量比为酸钡:乙醇:甲苯:分散剂=100:15-35:15-35:0.5-2;
步骤四,将步骤三制得的浆料中,加入邻苯二甲酸二辛酯、聚乙烯醇缩丁醛酯,球磨4-24h,获得流延浆料,其中钛酸钡、邻苯二甲酸二辛酯与聚乙烯醇缩丁醛酯按重量比为钛酸钡:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20;
步骤五,将制得的流延浆料,流延成介电层,介电层厚度≦15um;
步骤六,将贱金属内极印刷至介电层,并将介电层与介电层相互叠加,再经过水压、切片,制造出生坯;
步骤七,脱脂:对生坯进行脱脂;
步骤八,烧结:将脱脂后的生坯,在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1200-1320℃保温1-4h;然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h;再冷却至室温;
步骤九,端外电极工艺:外电极材质为铜,烧附温度为700-900℃,采用氮气保护,保温0.5-2h,冷却后,即得到BME瓷介电容器陶瓷材料。
2.根据权利要求1所述的一种BME瓷介电容器陶瓷材料,其特征在于:所述稀土乙酸盐选自乙酸钇、乙酸镧、乙酸铈、乙酸镨、乙酸钕、乙酸钐、乙酸钆、乙酸铽、乙酸镝、乙酸钬、乙酸饵和乙酸镱中的一种或多种。
3.根据权利要求1所述的一种BME瓷介电容器陶瓷材料,其特征在于:所述钛酸钡的粒度小于500nm。
4.根据权利要求1所述的一种BME瓷介电容器陶瓷材料,其特征在于:所述步骤七中,生坯脱脂的环境为:270℃的空气气氛下,保温4h。
5.根据权利要求1所述的一种BME瓷介电容器陶瓷材料,其特征在于:所述贱金属内极为镍金属内极。
6.一种BME多层陶瓷电容器,其特征在于:采用如权利要求1至3任一项所述的陶瓷材料制成。
CN202010573084.3A 2020-06-22 2020-06-22 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法 Active CN111646792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010573084.3A CN111646792B (zh) 2020-06-22 2020-06-22 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010573084.3A CN111646792B (zh) 2020-06-22 2020-06-22 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN111646792A CN111646792A (zh) 2020-09-11
CN111646792B true CN111646792B (zh) 2022-02-11

Family

ID=72352422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010573084.3A Active CN111646792B (zh) 2020-06-22 2020-06-22 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN111646792B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645708B (zh) * 2020-12-24 2022-07-15 福建火炬电子科技股份有限公司 一种抗还原bme瓷介电容器及电容器用陶瓷材料
CN113800902B (zh) * 2021-09-18 2022-08-09 福建火炬电子科技股份有限公司 一种具有高介电常数的bme瓷介电容器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880167A (zh) * 2010-06-11 2010-11-10 清华大学 水体系化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料
CN102120699A (zh) * 2010-12-24 2011-07-13 钱云春 掺杂改性钛酸钡基中高压瓷介电容器材料
CN106045498A (zh) * 2016-05-31 2016-10-26 福建火炬电子科技股份有限公司 一种bme瓷介电容器陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135546A1 (en) * 2007-11-27 2009-05-28 Tsinghua University Nano complex oxide doped dielectric ceramic material, preparation method thereof and multilayer ceramic capacitors made from the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880167A (zh) * 2010-06-11 2010-11-10 清华大学 水体系化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料
CN102120699A (zh) * 2010-12-24 2011-07-13 钱云春 掺杂改性钛酸钡基中高压瓷介电容器材料
CN106045498A (zh) * 2016-05-31 2016-10-26 福建火炬电子科技股份有限公司 一种bme瓷介电容器陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN111646792A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP4255448B2 (ja) 誘電体セラミック用ゾル組成物と、これを利用した誘電体セラミック及び積層セラミックキャパシタ
US5335139A (en) Multilayer ceramic chip capacitor
US7521390B2 (en) Ultra low temperature fixed X7R and BX dielectric ceramic composition and method of making
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN111646792B (zh) 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法
CN110506083B (zh) 导电糊剂
WO2009061627A1 (en) Lead and cadmium free, low temperature fired x7r dielectric ceramic composition and method of making
JP2011201761A (ja) 誘電体磁器組成物およびセラミック電子部品
US20130301185A1 (en) Multilayered ceramic elements
US9704650B2 (en) COG dielectric composition for use with nickel electrodes
CN114188155A (zh) 一种适用于超薄层贱金属内电极多层陶瓷电容器的x7r/x8r介质粉体及制备方法
CN113800902B (zh) 一种具有高介电常数的bme瓷介电容器及其制备方法
US20060171099A1 (en) Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same
JP2003277156A (ja) セラミック粉末と積層セラミック電子部品
KR20190116112A (ko) 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
CN113563065A (zh) 一种介电陶瓷组合物及其制备方法与应用
TWI819190B (zh) 導電性漿料、電子零件、及積層陶瓷電容器
EP3892600B1 (en) Cog dielectric composition for use wth nickel electrodes
TWI810336B (zh) 導電性漿料、電子零件以及積層陶瓷電容器
JP2787746B2 (ja) 積層型セラミックチップコンデンサ
CN112645708B (zh) 一种抗还原bme瓷介电容器及电容器用陶瓷材料
JP5488118B2 (ja) 誘電体磁器組成物および電子部品
CN1211316C (zh) 陶瓷介质材料及其制备方法和用于生产陶瓷电容器的方法
CN116779333A (zh) 一种分步掺杂制备的超薄bme瓷介电容器及制备方法
EP4376036A1 (en) Multilayer electronic component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant