CN111639034A - Test method, device, equipment and computer storage medium - Google Patents

Test method, device, equipment and computer storage medium Download PDF

Info

Publication number
CN111639034A
CN111639034A CN202010496229.4A CN202010496229A CN111639034A CN 111639034 A CN111639034 A CN 111639034A CN 202010496229 A CN202010496229 A CN 202010496229A CN 111639034 A CN111639034 A CN 111639034A
Authority
CN
China
Prior art keywords
label information
target
target label
recommendation score
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010496229.4A
Other languages
Chinese (zh)
Inventor
翁玉萍
卢道和
周杰
方镇举
陈文龙
袁文静
黄涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WeBank Co Ltd
Original Assignee
WeBank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WeBank Co Ltd filed Critical WeBank Co Ltd
Priority to CN202010496229.4A priority Critical patent/CN111639034A/en
Publication of CN111639034A publication Critical patent/CN111639034A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Prevention of errors by analysis, debugging or testing of software
    • G06F11/3668Testing of software
    • G06F11/3672Test management
    • G06F11/3684Test management for test design, e.g. generating new test cases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Prevention of errors by analysis, debugging or testing of software
    • G06F11/3668Testing of software
    • G06F11/3672Test management
    • G06F11/3688Test management for test execution, e.g. scheduling of test suites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/36Creation of semantic tools, e.g. ontology or thesauri
    • G06F16/367Ontology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Computer Hardware Design (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及金融科技(Fintech)技术领域,并公开了一种测试方法,该方法包括:根据输入的业务场景类型确定数据输入源,并根据数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;获取各目标标签信息对应的评估指标,并获取各评估指标对应的指标影响因子;根据各评估指标和各指标影响因子计算各目标标签信息对应的结果权重值,并根据各结果权重值对各目标标签信息对应的推荐分数值进行校正;基于校正后的各推荐分数值确定第二预设数量的目标推荐分数值,并将各目标推荐分数值对应的待评估方案作为测试用例进行测试。本发明还公开了一种测试装置、设备和一种计算机存储介质。本发明提高了自动化测试的有效性。

Figure 202010496229

The invention relates to the technical field of financial technology (Fintech), and discloses a testing method. The method includes: determining a data input source according to an input business scenario type, and obtaining the first data input source in untrained label information of a knowledge map according to the data input source. a preset number of target label information; obtain the evaluation indicators corresponding to each target label information, and obtain the index influence factors corresponding to each evaluation index; calculate the result weight value corresponding to each target label information according to each evaluation index and each index impact factor, and correct the recommendation score value corresponding to each target label information according to the weight value of each result; determine a second preset number of target recommendation score values based on the corrected recommendation score values, and determine the target recommendation score value corresponding to each target recommendation score value to be evaluated. Scenarios are tested as test cases. The invention also discloses a testing device, equipment and a computer storage medium. The present invention improves the effectiveness of automated testing.

Figure 202010496229

Description

测试方法、装置、设备及计算机存储介质Test method, apparatus, equipment and computer storage medium

技术领域technical field

本发明涉及金融科技(Fintech)的测试技术领域,尤其涉及测试方法、装置、设备及计算机存储介质。The present invention relates to the technical field of testing of financial technology (Fintech), and in particular, to a testing method, apparatus, equipment and computer storage medium.

背景技术Background technique

随着计算机技术的发展,越来越多的技术(大数据、分布式、人工智能等)应用在金融领域,传统金融业正在逐步向金融科技(Fintech)转变,但由于金融行业的安全性、实时性要求,也对技术提出了更高的要求。目前在测试人员进行各种自动化测试(如用例回归测试)时,一般是测试人员根据自身的经验来手动执行测试用例,很容易受到测试人员自身主观意识的影响,存在测试关注点分散,无针对性,重点易被忽略,关键业务场景覆盖不足等问题,从而导致测试的有效性较低。因此,如何提高自动化测试的有效性成为了目前亟待解决的技术问题。With the development of computer technology, more and more technologies (big data, distributed, artificial intelligence, etc.) are applied in the financial field, and the traditional financial industry is gradually transforming into financial technology (Fintech). Real-time requirements also put forward higher requirements for technology. At present, when testers conduct various automated tests (such as use case regression testing), testers generally execute test cases manually based on their own experience, which is easily affected by the testers' own subjective consciousness, and there are scattered test concerns and no targeted testing. There are many problems such as lack of coverage of key business scenarios, easy to ignore key points, etc., resulting in low test effectiveness. Therefore, how to improve the effectiveness of automated testing has become an urgent technical problem to be solved.

发明内容SUMMARY OF THE INVENTION

本发明的主要目的在于提出一种测试方法、装置、设备及计算机存储介质,旨在解决如何提高自动化测试的有效性的技术问题。The main purpose of the present invention is to propose a testing method, device, equipment and computer storage medium, aiming at solving the technical problem of how to improve the effectiveness of automated testing.

为实现上述目的,本发明提供一种测试方法,所述测试方法包括如下步骤:In order to achieve the above object, the present invention provides a kind of test method, and the test method comprises the following steps:

根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;Determine a data input source according to the input business scenario type, and obtain a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source;

获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;obtaining the evaluation index corresponding to each of the target label information, and obtaining the index impact factor corresponding to each of the evaluation indexes;

根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;Calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and correct the recommendation score value corresponding to each of the target label information according to each of the result weight values;

基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。A second preset number of target recommendation score values are determined based on each of the corrected recommendation score values, and the to-be-evaluated solution corresponding to each of the target recommendation score values is tested as a test case.

可选地,所述根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值的步骤,包括:Optionally, the step of calculating the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors includes:

根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的待评估方案的修正指标总值;Calculate the total value of the revised index of the to-be-evaluated scheme corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator impact factors;

根据各所述修正指标总值和各所述评估指标计算各所述目标标签信息对应的结果权重值。A result weight value corresponding to each of the target label information is calculated according to the total value of each of the correction indicators and each of the evaluation indicators.

可选地,所述根据各所述结果权重值对各所述目标标签信息对应的待评估方案的推荐分数值进行校正的步骤,包括:Optionally, the step of correcting the recommended score value of the to-be-evaluated scheme corresponding to each of the target label information according to each of the result weight values includes:

获取各所述目标标签信息对应的待评估方案的推荐分数值,依次遍历各所述推荐分数值,在各所述结果权重值中确定当前遍历的当前推荐分数值对应的当前结果权重值;Obtain the recommendation score value of the to-be-evaluated scheme corresponding to each of the target label information, traverse each of the recommended score values in turn, and determine the current result weight value corresponding to the currently traversed current recommendation score value in each of the result weight values;

基于预设计算公式对所述当前推荐分数值和当前结果权重值进行计算,并根据计算结果对所述当前推荐分数值进行校正,直至各所述推荐分数值遍历完成。The current recommendation score value and the current result weight value are calculated based on a preset calculation formula, and the current recommendation score value is corrected according to the calculation result until the traversal of each recommendation score value is completed.

可选地,所述获取各所述目标标签信息对应的待评估方案的推荐分数值的步骤,包括:Optionally, the step of obtaining the recommended score value of the to-be-evaluated scheme corresponding to each of the target label information includes:

依次遍历各所述目标标签信息对应的待评估方案,确定当前遍历的当前待评估方案在所述知识图谱中的目标库,并获取所述目标库的默认分数值,将所述默认分数值作为所述当前待评估方案的推荐分数值,直至各所述待评估方案遍历完成。Traverse the to-be-evaluated schemes corresponding to the target label information in turn, determine the target library of the currently traversed current to-be-evaluated scheme in the knowledge graph, obtain the default score value of the target library, and use the default score value as The recommended score value of the currently to-be-evaluated scheme until the traversal of each of the to-be-evaluated schemes is completed.

可选地,所述获取各所述目标标签信息对应的评估指标的步骤,包括:Optionally, the step of obtaining the evaluation index corresponding to each of the target label information includes:

依次遍历各所述目标标签信息,并确定当前遍历的当前目标标签信息对应多个不同类型的指标量值,将各所述指标量值作为所述当前目标标签信息对应的评估指标,直至各所述目标标签信息遍历完成。Traverse each of the target label information in turn, and determine that the current target label information currently traversed corresponds to a plurality of different types of indicator values, and use each of the indicator values as the evaluation indicators corresponding to the current target label information, until each The target tag information traversal is completed.

可选地,所述获取各所述评估指标对应的指标影响因子的步骤,包括:Optionally, the step of obtaining the index impact factor corresponding to each of the evaluation indexes includes:

依次遍历各所述评估指标,确定当前遍历的当前评估指标中的所有指标量值,并根据各所述指标量值确定所述当前评估指标对应的指标影响因子,直至各所述评估指标遍历完成。Traverse each of the evaluation indicators in turn, determine all the indicator values in the current evaluation indicators currently traversed, and determine the indicator impact factor corresponding to the current evaluation indicators according to the indicator values, until the traversal of each evaluation indicator is completed. .

可选地,所述根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息的步骤,包括:Optionally, the step of obtaining a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source includes:

获取知识图谱中的多个未训练标签信息,并根据所述数据输入源对各所述未训练标签信息进行排序;Acquire a plurality of untrained label information in the knowledge graph, and sort each of the untrained label information according to the data input source;

根据所述排序的排序结果在各所述未训练标签信息中获取第一预设数量的目标标签信息。A first preset number of target tag information is acquired from each of the untrained tag information according to the sorting result of the sorting.

此外,为实现上述目的,本发明还提供一种测试装置,所述测试装置包括:In addition, in order to achieve the above purpose, the present invention also provides a test device, the test device includes:

确定模块,用于根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;a determination module, configured to determine a data input source according to the input business scenario type, and obtain a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source;

获取模块,用于获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;an acquisition module, configured to acquire the evaluation indicators corresponding to each of the target label information, and acquire the index impact factors corresponding to each of the evaluation indicators;

校正模块,用于根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;The correction module is configured to calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and to assign a recommendation score corresponding to each of the target label information according to each of the result weight values. value is corrected;

测试模块,用于基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。A test module, configured to determine a second preset number of target recommendation score values based on the corrected recommendation score values, and use the to-be-evaluated solutions corresponding to the target recommendation score values as test cases for testing.

此外,为实现上述目的,本发明还提供一种测试设备,所述测试设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的测试程序,所述测试程序被所述处理器执行时实现如上所述的测试方法的步骤。In addition, in order to achieve the above object, the present invention also provides a test device, the test device includes: a memory, a processor, and a test program stored on the memory and executable on the processor, the test program The steps of the testing method as described above are implemented when executed by the processor.

此外,为实现上述目的,本发明还提供一种计算机存储介质,所述计算机存储介质上存储有测试程序,所述测试程序被处理器执行时实现如上所述的测试方法的步骤。In addition, in order to achieve the above object, the present invention also provides a computer storage medium, where a test program is stored on the computer storage medium, and when the test program is executed by a processor, the steps of the above test method are implemented.

本发明通过根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。通过根据业务场景类型确定数据输入源,并在知识图谱中获取目标标签信息,再根据目标标签信息对应的评估指标和指标影响因子计算结果权重值,并对目标标签信息对应的推荐分数值进行校正,再根据校正后的推荐分数值确定测试用例进行测试,从而可以有效地选择出符合业务场景类型的测试用例进行测试,避免了现有技术中通过人工自行选择测试用例进行测试,导致测试的有效性降低的现象发生,提高了自动化测试的有效性和准确性。The present invention determines the data input source according to the input business scenario type, and obtains a first preset number of target label information in the untrained label information of the knowledge map according to the data input source; and obtains the corresponding target label information. Evaluate indicators, and obtain the indicator impact factors corresponding to each of the evaluation indicators; calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator impact factors, and according to each of the result weight values Correct the recommendation score values corresponding to each of the target label information; determine a second preset number of target recommendation score values based on the corrected recommendation score values, and determine the target recommendation score values corresponding to each of the target recommendation score values to be evaluated Scenarios are tested as test cases. By determining the data input source according to the type of business scenario, and obtaining the target label information in the knowledge graph, the result weight value is calculated according to the evaluation index and index impact factor corresponding to the target label information, and the recommendation score value corresponding to the target label information is corrected. , and then determine the test case for testing according to the corrected recommended score value, so that the test case that conforms to the business scenario type can be effectively selected for testing, avoiding the manual selection of test cases for testing in the prior art, resulting in effective testing. The phenomenon of reduced performance occurs, which improves the effectiveness and accuracy of automated testing.

附图说明Description of drawings

图1是本发明实施例方案涉及的硬件运行环境的测试设备结构示意图;1 is a schematic structural diagram of a test equipment of a hardware operating environment involved in an embodiment of the present invention;

图2为本发明测试方法第一实施例的流程示意图;Fig. 2 is the schematic flow chart of the first embodiment of the testing method of the present invention;

图3为本发明测试装置的装置模块示意图;Fig. 3 is the device module schematic diagram of the test device of the present invention;

图4为本发明测试方法中知识图谱的推荐分数示意图;4 is a schematic diagram of the recommended score of the knowledge graph in the testing method of the present invention;

图5为本发明测试方法中的测试流程示意图;Fig. 5 is the test flow schematic diagram in the test method of the present invention;

图6为本发明测试方法中知识图谱的构建示意图。6 is a schematic diagram of the construction of a knowledge graph in the testing method of the present invention.

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.

具体实施方式Detailed ways

应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

如图1所示,图1是本发明实施例方案涉及的硬件运行环境的测试设备结构示意图。As shown in FIG. 1 , FIG. 1 is a schematic structural diagram of a test device of a hardware operating environment involved in the solution of an embodiment of the present invention.

本发明实施例测试设备可以是PC机或服务器设备,其上运行有Java虚拟机。The test device in the embodiment of the present invention may be a PC or a server device, and a Java virtual machine runs thereon.

如图1所示,该测试设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。As shown in FIG. 1 , the test equipment may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 . Among them, the communication bus 1002 is used to realize the connection and communication between these components. The user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface. Optionally, the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface). The memory 1005 may be high-speed RAM memory, or may be non-volatile memory, such as disk memory. Optionally, the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .

本领域技术人员可以理解,图1中示出的测试设备结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the structure of the test equipment shown in FIG. 1 does not constitute a limitation on the equipment, and may include more or less components than the one shown, or combine some components, or arrange different components.

如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及测试程序。As shown in FIG. 1 , the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module and a test program.

在图1所示的测试设备中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的测试程序,并执行下述测试方法中的操作。In the test equipment shown in FIG. 1, the network interface 1004 is mainly used to connect to the background server, and perform data communication with the background server; the user interface 1003 is mainly used to connect the client (client), and perform data communication with the client; and the processing The tester 1001 can be used to call the test program stored in the memory 1005 and perform the operations in the test method described below.

基于上述硬件结构,提出本发明测试方法实施例。Based on the above hardware structure, an embodiment of the testing method of the present invention is proposed.

参照图2,图2为本发明测试方法第一实施例的流程示意图,所述方法包括:Referring to FIG. 2, FIG. 2 is a schematic flowchart of the first embodiment of the testing method of the present invention, and the method includes:

步骤S10,根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;Step S10, determining a data input source according to the input business scenario type, and obtaining a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source;

在本实施例中,通过采用GIT(分布式版本控制系统)进行测试时的版本管理,并将其集成到JENKINS(开源软件项目)上。然后调用预设的质量中台(可选用TctpTest表示)平台CI(Continuous Integration,持续集成)接口进行版本自动化部署,即先根据开发人员或测试人员输入的信息来确定业务场景类型,向知识图谱请求得到在此业务场景类型下所推荐的用例标签信息。在获取到知识图谱反馈的反馈信息后,根据反馈信息确定待进行测试的所有测试用例,再通过测试执行引擎直接执行所有测试用例。并且测试执行引擎在执行完成后,会将相应的执行结果进行输出,并存储到数据库中,以便TctpTest平台可以通过数据库中具有执行结果的数据报告进行历次回溯,使得测试的效率更高效,并且能够降低漏测率。In this embodiment, GIT (distributed version control system) is used for version management during testing, and it is integrated into JENKINS (open source software project). Then call the preset quality middle platform (optionally represented by TctpTest) platform CI (Continuous Integration, continuous integration) interface for automatic version deployment, that is, first determine the type of business scenario according to the information input by the developer or tester, and request the knowledge graph Get the recommended use case label information under this business scenario type. After obtaining the feedback information fed back by the knowledge graph, all test cases to be tested are determined according to the feedback information, and then all test cases are directly executed through the test execution engine. And after the test execution engine is executed, it will output the corresponding execution results and store them in the database, so that the TctpTest platform can backtrack through the data reports with the execution results in the database, making the test more efficient and able to Reduce the miss rate.

其中,知识图谱包括三部分功能。第一部分是通过多维度建模生成高效、有价值的基准标签案例库。第二部分是与TctpTest平台进行接口交互,其接口可以包括:请求推荐标签、查询更多标签(采用分页以及DB(数据库)表里查询字段创建索引,避免标签信息过多,降低带宽使用,提高查询性能,支持模糊匹配,尽快找到执行者想要的标签信息)、反馈标签信息(推送接口)、执行指定标签测试案例等。第三部分是可以将本次执行的标签案例信息作为新的数据输入源,重新参与建模算法,得到更精准的标签权重。Among them, the knowledge graph includes three functions. The first part is to generate an efficient and valuable benchmark label case library through multi-dimensional modeling. The second part is the interface interaction with the TctpTest platform. The interface can include: requesting recommended labels, querying more labels (using paging and query fields in the DB (database) table to create indexes, avoiding too much label information, reducing bandwidth usage, improving Query performance, support fuzzy matching, find the label information that the executor wants as soon as possible), feedback label information (push interface), execute specified label test cases, etc. The third part is that the label case information executed this time can be used as a new data input source to re-participate in the modeling algorithm to obtain more accurate label weights.

因此,在本实施例中,可以先获取输入的业务场景类型,并在数据库中获取与此业务场景类型相关联的父级功能类型和子级功能类型,以形成数据输入源。也就是数据输入源包括业务场景类型、父级功能类型和子级功能类型。其中,父级功能类型可以是测试案例的大需求。而子级功能类型可以是大需求下的小需求。例如,开户account(账户)就是父级功能类型,而开户下的卡信息cardinfo(卡信息表)则可以是子级功能类型。Therefore, in this embodiment, the input business scenario type can be obtained first, and the parent function type and child function type associated with the business scenario type can be obtained in the database to form a data input source. That is, the data input source includes the business scenario type, the parent function type, and the child function type. Among them, the parent function type can be the large requirement of the test case. The child functional type can be a small requirement under a large requirement. For example, the account opening account is the parent function type, and the card information cardinfo (card information table) under the account opening can be the child function type.

因此在获取到数据输入源,可以根据此数据输入源在知识图谱中获取M次flag为0的训练数据(即一定数量的未被训练的训练数据),并根据这些训练数据确定业务场景类型下的训练案例标签信息(即未训练标签信息),再以数据输入源中的父级功能类型+子级功能类型的使用次数为关键字对未训练标签信息进行排序,并基于排序结果从中选择使用次数前N个(即第一预设数量)最大值对应的未训练标签信息,将其作为目标标签信息。也就是确定这些目标标签信息对应的score(推荐分数值)值需要进行修改。Therefore, after obtaining the data input source, you can obtain the training data (that is, a certain amount of untrained training data) with the flag of 0 in the knowledge graph according to the data input source, and determine the business scenario type according to the training data. The training case label information (that is, the untrained label information), and then use the parent function type + the number of times of use of the child function type in the data input source to sort the untrained label information, and select and use it based on the sorting result. The untrained label information corresponding to the maximum value of the first N times (ie, the first preset number) is used as the target label information. That is, it is necessary to modify the score (recommended score value) value corresponding to the target label information.

步骤S20,获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;Step S20, obtaining evaluation indexes corresponding to each of the target label information, and obtaining an index impact factor corresponding to each of the evaluation indexes;

在获取到各个目标标签信息后,可以将这些目标标签信息对应的案例作为待评估方案,并根据这些待评估方案的案例所在库,业务场景,测试专家经验分,TctpTest平台实际使用次数排名次数作为评估指标,即:After obtaining the target label information, the cases corresponding to the target label information can be used as the solutions to be evaluated, and the actual usage times of the TctpTest platform can be ranked according to the database of the cases to be evaluated, business scenarios, and test expert experience points. Evaluation metrics, namely:

Figure BDA0002522940680000071
其中,aij表示为第i个测试案例中第j指标的量值。
Figure BDA0002522940680000071
Among them, a ij represents the magnitude of the jth index in the ith test case.

并且在本实施例中针对每个评估指标所占据的重要程度来赋予指标影响因子,即:And in this embodiment, according to the importance occupied by each evaluation index, the index influence factor is given, namely:

Figure BDA0002522940680000072
其中,
Figure BDA0002522940680000073
bi表示为第i个评估指标影响因子。
Figure BDA0002522940680000072
in,
Figure BDA0002522940680000073
b i is expressed as the impact factor of the i-th evaluation index.

并且由于知识图谱包括知识公共库、BUG经验库、特定业务场景库和训练数据库。其中,如图4所示,知识公共库包括最基本用例案例,一般默认主流程在此业务场景下必需执行,因此可以将知识公共库的score(推荐分数值)设置为最大值MAX。由于BUG经验库只是在极个别场景下进行,因此可以将BUG经验库的score设置为中值MID。而特定业务场景库只是针对某些特定具体业务场景,因此可以将特定业务场景库的score设置为最低值MIN。而且训练数据库只会影响到BUG经验库和特定业务场景库的score值,而不会影响到知识公共库的score值。并且在本实施例中,每次测试执行的标签用例推荐都是依赖于score的大小,score越大越优先被推荐。因此在计算评估指标时,需要检测待评估方案的案例所在库,以便基于score确定评估指标。And because the knowledge graph includes knowledge public library, BUG experience library, specific business scenario library and training database. Among them, as shown in Figure 4, the knowledge common library includes the most basic use cases. Generally, the main process must be executed in this business scenario by default. Therefore, the score (recommended score value) of the knowledge common library can be set to the maximum value MAX. Since the BUG experience library is only carried out in very few scenarios, the score of the BUG experience library can be set to the median MID. The specific business scenario library is only for some specific specific business scenarios, so the score of the specific business scenario library can be set to the minimum value MIN. Moreover, the training database will only affect the score value of the BUG experience database and the specific business scenario database, but will not affect the score value of the knowledge public database. And in this embodiment, the label use case recommendation for each test execution depends on the size of the score, and the larger the score is, the higher the priority is to be recommended. Therefore, when calculating the evaluation index, it is necessary to detect the database where the case of the solution to be evaluated is located, so as to determine the evaluation index based on the score.

步骤S30,根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;Step S30: Calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and perform a recommendation score value corresponding to each of the target label information according to each of the result weight values. Correction;

当获取到各个评估指标和各个指标影响因子后,可以计算每个目标标签信息对应的结果权重值,再根据各个结果权重值对各个目标标签信息对应的待评估方案的推荐分数值进行校正。需要说明的是,一个结果权重值只对与此结果权重值相关联的待评估方案的推荐分数值进行校正,而不会对其它推荐分数值进行改动。After each evaluation index and each index influence factor are obtained, the result weight value corresponding to each target label information can be calculated, and then the recommendation score value of the to-be-evaluated scheme corresponding to each target label information can be corrected according to each result weight value. It should be noted that, a result weight value only corrects the recommendation score value of the to-be-evaluated scheme associated with the result weight value, and does not change other recommendation score values.

即先获取新的矩阵:That is, get a new matrix first:

Figure BDA0002522940680000074
Figure BDA0002522940680000074

其中,ci表示为第i个测试案例的修正后指标总值,并且计算第i个测试案例中结果权重值的公式:Among them, c i is expressed as the total value of the revised index of the i-th test case, and the formula for calculating the result weight value in the i-th test case:

Figure BDA0002522940680000081
Figure BDA0002522940680000081

当获取到各个结果权重值,并根据结果权重值修改推荐分数值时,可以根据公式score=score*(1+p)来确定校正后的推荐分数值。其中score是推荐分数值,并且校正后的推荐分数值不能超过知识图谱中默认的最大分数值。并且在校正推荐分数值后,会将此校正后的推荐分数值对应的目标标签信息的训练数据,flag设置为1(即确定已进行处理)。When each result weight value is obtained and the recommendation score value is modified according to the result weight value, the corrected recommendation score value can be determined according to the formula score=score*(1+p). The score is the recommendation score value, and the corrected recommendation score value cannot exceed the default maximum score value in the knowledge graph. And after correcting the recommendation score value, the training data of the target label information corresponding to the corrected recommendation score value will be set to 1 (that is, it is determined that the processing has been performed).

步骤S40,基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。Step S40: Determine a second preset number of target recommendation score values based on the corrected recommendation score values, and use the to-be-evaluated solutions corresponding to the target recommendation score values as test cases for testing.

当获取到校正后的各个推荐分数值后,就可以对这些校正后的各个推荐分数值按照由大到小的先后顺序进行排序,并从中选择推荐分数值大于一定值的第二预设数量的推荐分数值(即目标推荐分数值),并将第二预设数量的推荐分数值对应的待评估方案作为测试用例放置在测试执行引擎中进行测试,并在测试完成后,会将测试结果主动存储到数据库中。After the corrected recommended score values are obtained, the corrected recommended score values can be sorted in descending order, and a second preset number of recommended score values greater than a certain value is selected. The recommended score value (that is, the target recommended score value), and the to-be-evaluated solution corresponding to the second preset number of recommended score values is placed as a test case in the test execution engine for testing, and after the test is completed, the test result will be actively stored in the database.

另外,为辅助理解本实施例中的测试流程的理解,下面进行举例说明。In addition, in order to assist the understanding of the test flow in this embodiment, an example is given below.

例如,如图5所示,开发人员或者测试人员在Tctp Test平台中确定业务场景类型,并根据此业务场景类型向知识图谱进行请求推荐标签,而知识图谱则会进行建模筛选出合适的推荐标签,并返回推荐标签至Tctp Test平台。而Tctp Test平台则会根据知识图谱返回推荐标签对应的案例在测试执行引擎中进行执行,即测试执行引擎请求执行对应案例(即测试用例),同时Tctp Test平台会反馈信息(即案件执行情况)至知识图谱。而测试执行引擎在执行完测试用例后,会在进行结果输出的同时,将结果存储在DB(数据库),以便知识图谱进行调用。For example, as shown in Figure 5, developers or testers determine the type of business scenario in the Tctp Test platform, and request a recommended label from the knowledge graph according to the type of business scenario, and the knowledge graph will model and filter out suitable recommendations label, and return the recommended label to the Tctp Test platform. The Tctp Test platform will return the case corresponding to the recommended label according to the knowledge graph to execute in the test execution engine, that is, the test execution engine requests to execute the corresponding case (ie test case), and the Tctp Test platform will feedback information (ie case execution) to the knowledge graph. After the test execution engine executes the test case, it will store the results in the DB (database) while outputting the results, so that the knowledge graph can be called.

其中,知识图谱的架构组成可以如图6所示,包括知识公共库、BUG经验库、业务场景库和训练数据库。其中,业务场景库包括场景类型type、父级功能类型、子级功能类型和score值,并且在知识图谱中建模是基于业务场景库的SCORE值进行的,即从近M份训练树(约M*100测试用例)选出实际使用度最高N条,并且不同区间使用率对应不同SCORE权重。并且在知识图谱中进行建模时,会从训练数据库中获取数据输入源(包括type、父级类型和子级类型)进行建模。而知识公共库包括最基本的用例,如开户、登录等。BUG经验库是生产上发现具有代表性的BUG,总结沉淀输出的案例库。业务场景库是针对具体项目中涉及场景的测试用例集合库。训练数据库是执行者在Tctp Test平台上每次最终确定的用例标签信息的存储库。并且知识公共库、BUG经验库和业务场景库是直接面向和提供给测试执行者的案例库集合,可以由测试人员定期维护及更新。而训练数据库是底层引擎库,用于通过实际测试执行标签的信息输入建模训练,将得到的测试指导标签反馈给另外三个库,形成知识图谱的闭环。并且在知识图谱中会进行知识融合,即针对案例失效标志,重复案例会进行自动识别,并排除。而且在知识图谱中可以进行知识存储,即可以建立以业务场景类型+父级功能类型的关键索引,以便加快查询。Among them, the architectural composition of the knowledge graph can be shown in Figure 6, including the knowledge public database, the BUG experience database, the business scenario database and the training database. Among them, the business scene library includes scene type type, parent function type, child function type and score value, and the modeling in the knowledge graph is based on the SCORE value of the business scene library, that is, from nearly M training trees (approximately M*100 test cases) to select N with the highest actual usage, and the usage rates of different intervals correspond to different SCORE weights. And when modeling in the knowledge graph, the data input source (including type, parent type and child type) will be obtained from the training database for modeling. The knowledge base includes the most basic use cases, such as account opening, login, etc. The BUG experience library is a case library for the representative BUG found in production and summarizing the precipitation output. The business scenario library is a test case collection library for scenarios involved in specific projects. The training database is a repository of use case label information finalized by the performer each time on the Tctp Test platform. In addition, the public knowledge base, the BUG experience base and the business scenario base are a collection of case bases that are directly oriented and provided to test executors, and can be regularly maintained and updated by testers. The training database is the underlying engine library, which is used to input the information of the label through the actual test to input modeling training, and feed back the obtained test guidance label to the other three libraries to form a closed loop of the knowledge map. And knowledge fusion will be carried out in the knowledge graph, that is, for the case failure sign, duplicate cases will be automatically identified and excluded. Moreover, knowledge storage can be performed in the knowledge graph, that is, a key index based on business scenario type + parent function type can be established to speed up query.

在本实施例中,通过根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。通过根据业务场景类型确定数据输入源,并在知识图谱中获取目标标签信息,再根据目标标签信息对应的评估指标和指标影响因子计算结果权重值,并对目标标签信息对应的推荐分数值进行校正,再根据校正后的推荐分数值确定测试用例进行测试,从而可以有效地选择出符合业务场景类型的测试用例进行测试,避免了现有技术中通过人工自行选择测试用例进行测试,导致测试的有效性降低的现象发生,提高了自动化测试的有效性和准确性。In this embodiment, a data input source is determined according to the input business scenario type, and a first preset number of target label information is obtained from the untrained label information of the knowledge graph according to the data input source; each target label information is obtained; The evaluation index corresponding to the label information, and the index influence factor corresponding to each evaluation index is obtained; the result weight value corresponding to each target label information is calculated according to each evaluation index and each index influence factor, and the result weight value corresponding to each target label information is calculated according to each evaluation index. The result weight value is used to correct the recommendation score value corresponding to each of the target label information; a second preset number of target recommendation score values are determined based on each of the corrected recommendation score values, and each of the target recommendation score values The corresponding scheme to be evaluated is tested as a test case. By determining the data input source according to the type of business scenario, and obtaining the target label information in the knowledge graph, the result weight value is calculated according to the evaluation index and index impact factor corresponding to the target label information, and the recommendation score value corresponding to the target label information is corrected. , and then determine the test case for testing according to the corrected recommended score value, so that the test case that conforms to the business scenario type can be effectively selected for testing, avoiding the manual selection of test cases for testing in the prior art, resulting in effective testing. The phenomenon of reduced performance occurs, which improves the effectiveness and accuracy of automated testing.

进一步地,基于本发明测试方法第一实施例,提出本发明测试方法第二实施例。本实施例是本发明第一实施例的步骤S30,根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值的步骤的细化,包括:Further, based on the first embodiment of the testing method of the present invention, a second embodiment of the testing method of the present invention is proposed. This embodiment is the step S30 of the first embodiment of the present invention, and the refinement of the step of calculating the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors includes:

步骤a,根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的待评估方案的修正指标总值;Step a, according to each described evaluation index and each described index influence factor, calculate the revised index total value of the to-be-evaluated scheme corresponding to each described target label information;

在本实施例中,当获取到各个评估指标和各个评估指标对应的指标影响因子后,可以通过提前设置的计算公式来计算各个目标标签信息对应的待评估方案的修正指标总值。其计算公式可以是:In this embodiment, after each evaluation index and the index impact factor corresponding to each evaluation index are obtained, the total value of the revised index of the to-be-evaluated scheme corresponding to each target label information can be calculated by using a calculation formula set in advance. Its calculation formula can be:

Figure BDA0002522940680000101
Figure BDA0002522940680000101

其中,ci表示为第i个测试案例的修正后指标总值(即修正指标总值)。Among them, ci represents the total value of the revised index (ie, the total value of the revised index) of the i -th test case.

步骤b,根据各所述修正指标总值和各所述评估指标计算各所述目标标签信息对应的结果权重值。Step b: Calculate the result weight value corresponding to each of the target label information according to the total value of each of the correction indicators and each of the evaluation indicators.

当获取到各个待评估方案的修正指标总值后,可以根据各个修正指标总值和各个评估指标依次计算各个目标标签信息对应的结果权重值。其计算公式可以是:After the total value of the correction index of each scheme to be evaluated is obtained, the result weight value corresponding to each target label information can be sequentially calculated according to the total value of each correction index and each evaluation index. Its calculation formula can be:

Figure BDA0002522940680000102
Figure BDA0002522940680000102

在本实施例中,通过根据各个评估指标和各个指标影响因子计算修正指标总值,并根据修正指标总值计算结果权重值,从而保障了计算得到的结果权重值的准确性。In this embodiment, the total value of the correction index is calculated according to each evaluation index and each index influence factor, and the result weight value is calculated according to the total value of the correction index, thereby ensuring the accuracy of the calculated result weight value.

进一步地,根据各所述结果权重值对各所述目标标签信息对应的待评估方案的推荐分数值进行校正的步骤,包括:Further, the step of correcting the recommended score value of the to-be-evaluated scheme corresponding to each of the target label information according to each of the result weight values includes:

步骤c,获取各所述目标标签信息对应的待评估方案的推荐分数值,并依次遍历各所述推荐分数值,在各所述结果权重值中确定当前遍历的当前推荐分数值对应的当前结果权重值;Step c, obtaining the recommendation score value of the to-be-evaluated scheme corresponding to each of the target label information, and traversing each of the recommended score values in turn, and determining the current result corresponding to the currently traversed current recommendation score value in each of the result weight values Weights;

在本实施例中,在获取到各个结果权重值后,还需要获取各个目标标签信息对应的待评估方案在知识图谱中的推荐分数值,并依次遍历各个推荐分数值,确定当前遍历的当前推荐分数值,然后在各个结果权重值中获取当前推荐分数值对应的结果权重值(即当前结果权重值)。In this embodiment, after obtaining each result weight value, it is also necessary to obtain the recommendation score value of the to-be-evaluated scheme corresponding to each target label information in the knowledge graph, and traverse each recommendation score value in turn to determine the current traversed current recommendation score value, and then obtain the result weight value corresponding to the current recommendation score value (ie, the current result weight value) in each result weight value.

步骤d,基于预设计算公式对所述当前推荐分数值和当前结果权重值进行计算,并根据计算结果对所述当前推荐分数值进行校正,直至各所述推荐分数值遍历完成。Step d, calculate the current recommendation score value and the current result weight value based on a preset calculation formula, and correct the current recommendation score value according to the calculation result until the traversal of each recommendation score value is completed.

当获取到当前推荐分数值和当前结果权重值后,就可以根据预设计算公式对当前推荐分数值进行校正。其中,预设计算公式可以是score=score*(1+p),score为当前推荐分数值,p为当前结果权重值。并且需要说明的是,对每个推荐分数值均采用相同的方式进行校正,直至各个推荐分数值遍历完成。After the current recommendation score value and the current result weight value are obtained, the current recommendation score value can be corrected according to the preset calculation formula. The preset calculation formula may be score=score*(1+p), score is the current recommendation score value, and p is the current result weight value. It should be noted that each recommendation score value is corrected in the same way until the traversal of each recommendation score value is completed.

在本实施例中,通过根据当前推荐分数值在各个结果权重值中确定当前结果权重值,并根据当前推荐分数值和当前结果权重值进行计算,基于计算结果对当前推荐分数值进行校正,从而保障了对当前推荐分数值校正的准确性。In this embodiment, the current result weight value is determined among the respective result weight values according to the current recommendation score value, the calculation is performed according to the current recommendation score value and the current result weight value, and the current recommendation score value is corrected based on the calculation result, thereby The accuracy of the correction of the current recommended score value is guaranteed.

具体地,获取各所述目标标签信息对应的待评估方案的推荐分数值的步骤,包括:Specifically, the step of obtaining the recommendation score value of the to-be-evaluated scheme corresponding to each of the target label information includes:

步骤e,依次遍历各所述目标标签信息对应的待评估方案,确定当前遍历的当前待评估方案在所述知识图谱中的目标库,并获取所述目标库的默认分数值,将所述默认分数值作为所述当前待评估方案的推荐分数值,直至各所述待评估方案遍历完成。Step e, traverse the to-be-evaluated schemes corresponding to each of the target label information in turn, determine the target library of the currently traversed current to-be-evaluated schemes in the knowledge graph, obtain the default score value of the target library, and set the default The score value is used as the recommended score value of the current solution to be evaluated until the traversal of each solution to be evaluated is completed.

在获取各个推荐分数值时,可以先遍历各个目标标签信息对应的待评估方案,并确定当前遍历的当前待评估方案在知识图谱中的目标库。其中,目标库可以是知识图谱中的知识公共库、BUG经验库和特定业务场景库中的任意一个。并且在知识图谱中会为每一个库均设置有一个默认的推荐分数值。因此在确定目标库后,可以获取此目标库的默认分数值(即默认的推荐分数值),并将此默认分数值作为当前待评估方案的推荐分数值。直至各个待评估方案遍历完成,即每个待评估方案均确定有推荐分数值。When obtaining each recommendation score value, it is possible to first traverse the to-be-evaluated schemes corresponding to each target tag information, and determine the target library of the currently traversed current to-be-evaluated schemes in the knowledge graph. The target library may be any one of a knowledge public library, a BUG experience library, and a specific business scenario library in the knowledge graph. And in the knowledge graph, a default recommendation score value will be set for each library. Therefore, after the target library is determined, the default score value of the target library (ie, the default recommended score value) can be obtained, and the default score value can be used as the recommended score value of the current scheme to be evaluated. Until the traversal of each to-be-evaluated scheme is completed, that is, each to-be-evaluated scheme is determined to have a recommended score value.

在本实施例中,通过遍历各个待评估方案,并确定当前待评估放置在知识图谱中的目标库,并将目标库的默认分数值作为当前待评估方案的推荐分数值,直至各个待评估方案遍历完成。从而保障了获取到的待评估方案的推荐分数值的准确性。In this embodiment, by traversing each to-be-evaluated scheme, determining the target library currently to be evaluated and placed in the knowledge graph, and using the default score value of the target library as the recommended score value of the current to-be-evaluated scheme, until each to-be-evaluated scheme Traversal complete. Thus, the accuracy of the obtained recommendation score value of the scheme to be evaluated is guaranteed.

进一步地,获取各所述目标标签信息对应的评估指标的步骤,包括:Further, the step of obtaining the evaluation index corresponding to each of the target label information includes:

步骤f,依次遍历各所述目标标签信息,确定当前遍历的当前目标标签信息对应多个不同类型的指标量值,将各所述指标量值作为所述当前目标标签信息对应的评估指标,直至各所述目标标签信息遍历完成。Step f, traverse each of the target label information in turn, determine that the current target label information currently traversed corresponds to a plurality of index values of different types, and use each of the index values as an evaluation index corresponding to the current target label information, until The traversal of the target tag information is completed.

在本实施例中,在获取评估指标时,需要依次遍历各个目标标签信息,确定当前遍历的当前目标标签信息,并需要确定当前目标标签信息对应的多个不同类型的指标量值(如案例所在库、业务场景、测试专家经验分、Tctp Test平台实际使用次数排名名次等),并将这些指标量值一起作为当前目标标签信息对应的评估指标,直至各个目标标签信息遍历完成,即获取到各个目标标签信息对应的评估指标。In this embodiment, when obtaining the evaluation index, it is necessary to traverse each target label information in turn, to determine the current target label information currently traversed, and to determine a plurality of different types of index values corresponding to the current target label information (such as in the case of the case). database, business scenarios, test expert experience points, ranking of the actual usage times of the Tctp Test platform, etc.), and use these indicators together as the evaluation indicators corresponding to the current target label information, until the traversal of each target label information is completed, that is, each target label information is obtained. The evaluation index corresponding to the target label information.

在本实施例中,通过依次遍历各个目标标签信息,并将当前遍历的当前目标标签信息对应的多个指标量值作为当前目标标签信息对应的评估指标,直至各个目标标签信息遍历完成,从而保障了获取到的评估指标的准确性。In this embodiment, by traversing each target tag information in turn, and using multiple index values corresponding to the currently traversed current target tag information as evaluation indicators corresponding to the current target tag information, until the traversal of each target tag information is completed, thereby ensuring the accuracy of the obtained evaluation indicators.

进一步地,获取各所述评估指标对应的指标影响因子的步骤,包括:Further, the step of obtaining the index impact factor corresponding to each of the evaluation indexes includes:

步骤h,依次遍历各所述评估指标,确定当前遍历的当前评估指标中的所有指标量值,并根据各所述指标量值确定所述当前评估指标对应的指标影响因子,直至各所述评估指标遍历完成。Step h, traverse each of the evaluation indexes in turn, determine all the index values in the current evaluation indexes currently traversed, and determine the index influence factor corresponding to the current evaluation index according to the index values, until each evaluation The indicator traversal is complete.

在获取到目标标签信息对应的评估指标后,依次遍历各个评估指标,并确定当前遍历的当前评估指标中携带的所有指标量值,并根据各个指标量值对当前评估指标的重要程度来确定当前评估指标对应的指标影响因子。直至各个评估指标遍历完成。After obtaining the evaluation index corresponding to the target label information, traverse each evaluation index in turn, and determine all the index values carried in the current evaluation index currently traversed, and determine the current evaluation index according to the importance of each index value to the current evaluation index. The index impact factor corresponding to the evaluation index. Until the traversal of each evaluation index is completed.

在本实施例中,通过遍历各个评估指标,并确定当前评估指标中的所有指标量值,以确定指标影响因子,直至各个评估指标遍历完成,从而保障了获取到的指标影响因子的准确性。In this embodiment, by traversing each evaluation index and determining all index values in the current evaluation index, the index influence factor is determined until the traversal of each evaluation index is completed, thereby ensuring the accuracy of the obtained index influence factor.

进一步地,根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息的步骤,包括:Further, the step of obtaining a first preset number of target label information in the untrained label information of the knowledge graph according to the data input source includes:

步骤m,获取知识图谱中的多个未训练标签信息,并根据所述数据输入源对各所述未训练标签信息进行排序;Step m, obtaining a plurality of untrained label information in the knowledge graph, and sorting each of the untrained label information according to the data input source;

在本实施例中,需要在知识图谱中取近M次flag为(未被训练)的训练数据(约M*100),得到业务场景类型下的训练案例标签信息(即未训练标签信息),并根据数据输入源中的父级功能类型+子级功能类型的使用次数为关键字对各个未训练标签信息进行排序。In this embodiment, it is necessary to take the training data (about M*100) whose flag is (untrained) for M times in the knowledge graph to obtain the training case label information (that is, the untrained label information) under the business scenario type, And sort each untrained label information according to the use times of parent function type + child function type in the data input source as keywords.

步骤n,根据所述排序的排序结果在各所述未训练标签信息中获取第一预设数量的目标标签信息。Step n: Obtain a first preset number of target label information from each of the untrained label information according to the sorting result of the sorting.

再根据排序的排序结果在各个未训练标签信息中获取使用次数多的,第一预设数量的目标标签信息。Then, according to the sorting result of the sorting, the first preset number of target tag information that is used more frequently is obtained from each untrained tag information.

在本实施例中,通过根据数据输入源对知识图谱中的多个未训练标签信息进行排序,并根据排序结果获取第一预设数量的目标标签信息,从而保障了获取到的目标标签信息的准确性。In this embodiment, by sorting a plurality of untrained tag information in the knowledge graph according to the data input source, and obtaining a first preset number of target tag information according to the sorting result, the obtained target tag information is guaranteed to be accurate. accuracy.

本发明还提供一种测试装置,参照图3,所述测试装置包括:The present invention also provides a test device, referring to FIG. 3 , the test device includes:

确定模块A10,用于根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;A determination module A10, configured to determine a data input source according to the input business scenario type, and obtain a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source;

获取模块A20,用于获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;The obtaining module A20 is used for obtaining the evaluation index corresponding to each of the target label information, and obtaining the index influence factor corresponding to each of the evaluation indexes;

校正模块A30,用于根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;A correction module A30, configured to calculate a result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and to recommend recommendations corresponding to each of the target label information according to each of the result weight values The score value is corrected;

测试模块A40,用于基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。The testing module A40 is configured to determine a second preset number of target recommendation score values based on each of the corrected recommendation score values, and use the to-be-evaluated solutions corresponding to each of the target recommendation score values as test cases for testing.

可选地,所述校正模块A30,还用于:Optionally, the correction module A30 is also used for:

根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的待评估方案的修正指标总值;Calculate the total value of the revised index of the to-be-evaluated scheme corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator impact factors;

根据各所述修正指标总值和各所述评估指标计算各所述目标标签信息对应的结果权重值。A result weight value corresponding to each of the target label information is calculated according to the total value of each of the correction indicators and each of the evaluation indicators.

可选地,所述校正模块A30,还用于:Optionally, the correction module A30 is also used for:

获取各所述目标标签信息对应的待评估方案的推荐分数值,依次遍历各所述推荐分数值,在各所述结果权重值中确定当前遍历的当前推荐分数值对应的当前结果权重值;Obtaining the recommendation score value of the to-be-evaluated scheme corresponding to each of the target tag information, traversing each of the recommended score values in turn, and determining the current result weight value corresponding to the currently traversed current recommendation score value in each of the result weight values;

基于预设计算公式对所述当前推荐分数值和当前结果权重值进行计算,并根据计算结果对所述当前推荐分数值进行校正,直至各所述推荐分数值遍历完成。The current recommendation score value and the current result weight value are calculated based on a preset calculation formula, and the current recommendation score value is corrected according to the calculation result until the traversal of each recommendation score value is completed.

可选地,所述校正模块A30,还用于:Optionally, the correction module A30 is also used for:

依次遍历各所述目标标签信息对应的待评估方案,确定当前遍历的当前待评估方案在所述知识图谱中的目标库,并获取所述目标库的默认分数值,将所述默认分数值作为所述当前待评估方案的推荐分数值,直至各所述待评估方案遍历完成。Traverse the to-be-evaluated schemes corresponding to the target label information in turn, determine the target library of the currently traversed current to-be-evaluated scheme in the knowledge graph, obtain the default score value of the target library, and use the default score value as The recommended score value of the currently to-be-evaluated scheme until the traversal of each of the to-be-evaluated schemes is completed.

可选地,所述获取模块A20,还用于:Optionally, the obtaining module A20 is also used for:

依次遍历各所述目标标签信息,并确定当前遍历的当前目标标签信息对应多个不同类型的指标量值,将各所述指标量值作为所述当前目标标签信息对应的评估指标,直至各所述目标标签信息遍历完成。Traverse each of the target label information in turn, and determine that the current target label information currently traversed corresponds to a plurality of different types of indicator values, and use each of the indicator values as the evaluation indicators corresponding to the current target label information, until each The target tag information traversal is completed.

可选地,所述获取模块A20,还用于:Optionally, the obtaining module A20 is also used for:

依次遍历各所述评估指标,确定当前遍历的当前评估指标中的所有指标量值,并根据各所述指标量值确定所述当前评估指标对应的指标影响因子,直至各所述评估指标遍历完成。Traverse each of the evaluation indicators in turn, determine all the indicator values in the current evaluation indicators currently traversed, and determine the indicator impact factor corresponding to the current evaluation indicators according to the indicator values, until the traversal of each evaluation indicator is completed. .

可选地,所述确定模块A10,还用于:Optionally, the determining module A10 is further configured to:

获取知识图谱中的多个未训练标签信息,并根据所述数据输入源对各所述未训练标签信息进行排序;Acquire a plurality of untrained label information in the knowledge graph, and sort each of the untrained label information according to the data input source;

根据所述排序的排序结果在各所述未训练标签信息中获取第一预设数量的目标标签信息。A first preset number of target tag information is acquired from each of the untrained tag information according to the sorting result of the sorting.

上述各程序单元所执行的方法可参照本发明测试方法各个实施例,此处不再赘述。For the methods executed by the above program units, reference may be made to the various embodiments of the testing method of the present invention, which will not be repeated here.

本发明还提供一种计算机存储介质。The present invention also provides a computer storage medium.

本发明计算机存储介质上存储有测试程序,所述测试程序被处理器执行时实现如上所述的测试方法的步骤。A test program is stored on the computer storage medium of the present invention, and when the test program is executed by the processor, the steps of the above-mentioned test method are implemented.

其中,在所述处理器上运行的测试程序被执行时所实现的方法可参照本发明测试方法各个实施例,此处不再赘述。For the method implemented when the test program running on the processor is executed, reference may be made to the various embodiments of the test method of the present invention, which will not be repeated here.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course hardware can also be used, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art. The computer software products are stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present invention.

以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.

Claims (10)

1.一种测试方法,其特征在于,所述测试方法包括如下步骤:1. a test method, is characterized in that, described test method comprises the steps: 根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;Determine a data input source according to the input business scenario type, and obtain a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source; 获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;obtaining the evaluation index corresponding to each of the target label information, and obtaining the index impact factor corresponding to each of the evaluation indexes; 根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;Calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and correct the recommendation score value corresponding to each of the target label information according to each of the result weight values; 基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。A second preset number of target recommendation score values are determined based on each of the corrected recommendation score values, and the to-be-evaluated solution corresponding to each of the target recommendation score values is tested as a test case. 2.如权利要求1所述的测试方法,其特征在于,所述根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值的步骤,包括:2. The test method according to claim 1, wherein the step of calculating the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, comprises: 根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的待评估方案的修正指标总值;Calculate the total value of the revised index of the to-be-evaluated scheme corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator impact factors; 根据各所述修正指标总值和各所述评估指标计算各所述目标标签信息对应的结果权重值。A result weight value corresponding to each of the target label information is calculated according to the total value of each of the correction indicators and each of the evaluation indicators. 3.如权利要求1所述的测试方法,其特征在于,所述根据各所述结果权重值对各所述目标标签信息对应的待评估方案的推荐分数值进行校正的步骤,包括:3. The test method according to claim 1, wherein the step of correcting the recommended score value of the to-be-evaluated scheme corresponding to each of the target label information according to each of the result weight values comprises: 获取各所述目标标签信息对应的待评估方案的推荐分数值,依次遍历各所述推荐分数值,在各所述结果权重值中确定当前遍历的当前推荐分数值对应的当前结果权重值;Obtain the recommendation score value of the to-be-evaluated scheme corresponding to each of the target label information, traverse each of the recommended score values in turn, and determine the current result weight value corresponding to the currently traversed current recommendation score value in each of the result weight values; 基于预设计算公式对所述当前推荐分数值和当前结果权重值进行计算,并根据计算结果对所述当前推荐分数值进行校正,直至各所述推荐分数值遍历完成。The current recommendation score value and the current result weight value are calculated based on a preset calculation formula, and the current recommendation score value is corrected according to the calculation result until the traversal of each recommendation score value is completed. 4.如权利要求3所述的测试方法,其特征在于,所述获取各所述目标标签信息对应的待评估方案的推荐分数值的步骤,包括:4. test method as claimed in claim 3, is characterized in that, the described step of obtaining the recommendation score value of the scheme to be evaluated corresponding to each described target label information, comprises: 依次遍历各所述目标标签信息对应的待评估方案,确定当前遍历的当前待评估方案在所述知识图谱中的目标库,并获取所述目标库的默认分数值,将所述默认分数值作为所述当前待评估方案的推荐分数值,直至各所述待评估方案遍历完成。Traverse the to-be-evaluated schemes corresponding to the target label information in turn, determine the target library of the currently traversed current to-be-evaluated scheme in the knowledge graph, obtain the default score value of the target library, and use the default score value as The recommended score value of the currently to-be-evaluated scheme until the traversal of each of the to-be-evaluated schemes is completed. 5.如权利要求1所述的测试方法,其特征在于,所述获取各所述目标标签信息对应的评估指标的步骤,包括:5. The test method according to claim 1, wherein the step of obtaining the evaluation index corresponding to each of the target label information comprises: 依次遍历各所述目标标签信息,并确定当前遍历的当前目标标签信息对应多个不同类型的指标量值,将各所述指标量值作为所述当前目标标签信息对应的评估指标,直至各所述目标标签信息遍历完成。Traverse each of the target label information in turn, and determine that the current target label information currently traversed corresponds to a plurality of different types of indicator values, and use each of the indicator values as the evaluation indicators corresponding to the current target label information, until each The target tag information traversal is completed. 6.如权利要求1所述的测试方法,其特征在于,所述获取各所述评估指标对应的指标影响因子的步骤,包括:6. testing method as claimed in claim 1, is characterized in that, the described step of obtaining the index influence factor corresponding to each described evaluation index, comprises: 依次遍历各所述评估指标,确定当前遍历的当前评估指标中的所有指标量值,并根据各所述指标量值确定所述当前评估指标对应的指标影响因子,直至各所述评估指标遍历完成。Traverse each of the evaluation indicators in turn, determine all the indicator values in the current evaluation indicators currently traversed, and determine the indicator impact factor corresponding to the current evaluation indicators according to the indicator values, until the traversal of each evaluation indicator is completed. . 7.如权利要求1-6任一项所述的测试方法,其特征在于,所述根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息的步骤,包括:7. The test method according to any one of claims 1-6, wherein the step of obtaining a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source ,include: 获取知识图谱中的多个未训练标签信息,并根据所述数据输入源对各所述未训练标签信息进行排序;Acquire a plurality of untrained label information in the knowledge graph, and sort each of the untrained label information according to the data input source; 根据所述排序的排序结果在各所述未训练标签信息中获取第一预设数量的目标标签信息。A first preset number of target tag information is acquired from each of the untrained tag information according to the sorting result of the sorting. 8.一种测试装置,其特征在于,所述测试装置包括:8. A test device, characterized in that the test device comprises: 确定模块,用于根据输入的业务场景类型确定数据输入源,并根据所述数据输入源在知识图谱的未训练标签信息中获取第一预设数量的目标标签信息;a determination module, configured to determine a data input source according to the input business scenario type, and obtain a first preset number of target label information from the untrained label information of the knowledge graph according to the data input source; 获取模块,用于获取各所述目标标签信息对应的评估指标,并获取各所述评估指标对应的指标影响因子;an acquisition module, configured to acquire the evaluation indicators corresponding to each of the target label information, and acquire the index impact factors corresponding to each of the evaluation indicators; 校正模块,用于根据各所述评估指标和各所述指标影响因子计算各所述目标标签信息对应的结果权重值,并根据各所述结果权重值对各所述目标标签信息对应的推荐分数值进行校正;The correction module is configured to calculate the result weight value corresponding to each of the target label information according to each of the evaluation indicators and each of the indicator influence factors, and to assign a recommendation score corresponding to each of the target label information according to each of the result weight values. value is corrected; 测试模块,用于基于校正后的各所述推荐分数值确定第二预设数量的目标推荐分数值,并将各所述目标推荐分数值对应的待评估方案作为测试用例进行测试。A test module, configured to determine a second preset number of target recommendation score values based on the corrected recommendation score values, and use the to-be-evaluated solutions corresponding to the target recommendation score values as test cases for testing. 9.一种测试设备,其特征在于,所述测试设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的测试程序,所述测试程序被所述处理器执行时实现如权利要求1至7中任一项所述的测试方法的步骤。9. A test device, characterized in that the test device comprises: a memory, a processor, and a test program stored on the memory and executable on the processor, the test program being executed by the processor The steps of implementing the test method as claimed in any one of claims 1 to 7 when executed. 10.一种计算机存储介质,其特征在于,所述计算机存储介质上存储有测试程序,所述测试程序被处理器执行时实现如权利要求1至7中任一项所述的测试方法的步骤。10. A computer storage medium, wherein a test program is stored on the computer storage medium, and when the test program is executed by a processor, the steps of the test method according to any one of claims 1 to 7 are realized .
CN202010496229.4A 2020-06-03 2020-06-03 Test method, device, equipment and computer storage medium Pending CN111639034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010496229.4A CN111639034A (en) 2020-06-03 2020-06-03 Test method, device, equipment and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010496229.4A CN111639034A (en) 2020-06-03 2020-06-03 Test method, device, equipment and computer storage medium

Publications (1)

Publication Number Publication Date
CN111639034A true CN111639034A (en) 2020-09-08

Family

ID=72329797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010496229.4A Pending CN111639034A (en) 2020-06-03 2020-06-03 Test method, device, equipment and computer storage medium

Country Status (1)

Country Link
CN (1) CN111639034A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231156A (en) * 2020-09-25 2021-01-15 苏州浪潮智能科技有限公司 SPEC CPU2017 test result estimation method, system, device and medium
CN112667696A (en) * 2020-12-30 2021-04-16 深圳市华傲数据技术有限公司 Data processing method, device and storage medium
CN113326203A (en) * 2021-06-22 2021-08-31 深圳前海微众银行股份有限公司 Information recommendation method, equipment and storage medium
CN113918471A (en) * 2021-11-19 2022-01-11 中国工商银行股份有限公司 Test case processing method and device and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688606A (en) * 2017-07-26 2018-02-13 北京三快在线科技有限公司 The acquisition methods and device of a kind of recommendation information, electronic equipment
CN108897829A (en) * 2018-06-22 2018-11-27 广州多益网络股份有限公司 Modification method, device and the storage medium of data label
CN110287420A (en) * 2019-06-28 2019-09-27 深圳前海微众银行股份有限公司 A training method and device for an information recommendation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688606A (en) * 2017-07-26 2018-02-13 北京三快在线科技有限公司 The acquisition methods and device of a kind of recommendation information, electronic equipment
CN108897829A (en) * 2018-06-22 2018-11-27 广州多益网络股份有限公司 Modification method, device and the storage medium of data label
CN110287420A (en) * 2019-06-28 2019-09-27 深圳前海微众银行股份有限公司 A training method and device for an information recommendation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231156A (en) * 2020-09-25 2021-01-15 苏州浪潮智能科技有限公司 SPEC CPU2017 test result estimation method, system, device and medium
CN112231156B (en) * 2020-09-25 2022-07-08 苏州浪潮智能科技有限公司 SPEC CPU2017 test result estimation method, system, device and medium
CN112667696A (en) * 2020-12-30 2021-04-16 深圳市华傲数据技术有限公司 Data processing method, device and storage medium
CN113326203A (en) * 2021-06-22 2021-08-31 深圳前海微众银行股份有限公司 Information recommendation method, equipment and storage medium
CN113326203B (en) * 2021-06-22 2022-08-12 深圳前海微众银行股份有限公司 Information recommendation method, device and storage medium
WO2022267364A1 (en) * 2021-06-22 2022-12-29 深圳前海微众银行股份有限公司 Information recommendation method and device, and storage medium
CN113918471A (en) * 2021-11-19 2022-01-11 中国工商银行股份有限公司 Test case processing method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
CN111639034A (en) Test method, device, equipment and computer storage medium
US10353703B1 (en) Automated evaluation of computer programming
CN110245089A (en) Stress testing method, device, equipment and computer-readable storage medium
US8942470B2 (en) Sentiment classification using out of domain data
US10789149B2 (en) Duplicate bug report detection using machine learning algorithms and automated feedback incorporation
US9020943B2 (en) Methods, systems, and computer program product for automatically categorizing defects
US12158831B2 (en) Automatic performance evaluation in continuous integration and continuous delivery pipeline
US8577849B2 (en) Guided data repair
US20120209859A1 (en) Methods and systems to profile individuals and organizations, and to evaluate culture fit
US20130091490A1 (en) Method to automatically discover whether new code is covered by tests
US11650903B2 (en) Computer programming assessment
US20200225943A1 (en) Visualizations of software project and contributor activity
CN109739768A (en) Search engine evaluating method, device, equipment and readable storage medium storing program for executing
CN111191879A (en) Comprehensive evaluation method and system
CN117271481B (en) Automatic database optimization method and equipment
US20200097454A1 (en) Dynamic state tracking with query serving in an online content platform
CN112860736A (en) Big data query optimization method and device and readable storage medium
CN111679851B (en) Requirement code management method, device, system and computer-readable storage medium
US8719073B1 (en) Producing a measure regarding cases associated with an issue after one or more events have occurred
CN115018106A (en) Anomaly analysis method, device, equipment and computer-readable storage medium
US20220197901A1 (en) Ai model optimization method and apparatus
CN111311105A (en) Combined product scoring method, device, equipment and readable storage medium
CN113051262B (en) Data quality inspection method, device, equipment and storage medium
CN118860380A (en) An intelligent auxiliary method and system for software development
JP5206268B2 (en) Rule creation program, rule creation method and rule creation device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination