CN111635391A - Fluorene compound and electronic device - Google Patents
Fluorene compound and electronic device Download PDFInfo
- Publication number
- CN111635391A CN111635391A CN202010641172.2A CN202010641172A CN111635391A CN 111635391 A CN111635391 A CN 111635391A CN 202010641172 A CN202010641172 A CN 202010641172A CN 111635391 A CN111635391 A CN 111635391A
- Authority
- CN
- China
- Prior art keywords
- group
- carbon atoms
- fluorene
- layer
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 Fluorene compound Chemical class 0.000 title claims abstract description 177
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 claims abstract description 57
- 238000002347 injection Methods 0.000 claims abstract description 26
- 239000007924 injection Substances 0.000 claims abstract description 26
- 230000000903 blocking effect Effects 0.000 claims abstract description 25
- 230000005525 hole transport Effects 0.000 claims abstract description 18
- 230000005669 field effect Effects 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 142
- 125000004432 carbon atom Chemical group C* 0.000 claims description 89
- 150000001875 compounds Chemical class 0.000 claims description 81
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 31
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 26
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 15
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 15
- 239000012044 organic layer Substances 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 9
- 125000004431 deuterium atom Chemical group 0.000 claims description 9
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 9
- 125000001153 fluoro group Chemical group F* 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000004305 biphenyl Substances 0.000 claims description 8
- 235000010290 biphenyl Nutrition 0.000 claims description 8
- 229910052805 deuterium Inorganic materials 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 7
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 5
- 125000000304 alkynyl group Chemical group 0.000 claims description 5
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 5
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 125000004306 triazinyl group Chemical group 0.000 claims description 5
- 125000006267 biphenyl group Chemical group 0.000 claims description 3
- UCLOAJGCFQIQQW-UHFFFAOYSA-N diphenylboron Chemical group C=1C=CC=CC=1[B]C1=CC=CC=C1 UCLOAJGCFQIQQW-UHFFFAOYSA-N 0.000 claims description 3
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 claims 1
- DERKMBVPWKXOHM-UHFFFAOYSA-N 12h-[1]benzofuro[3,2-a]carbazole Chemical compound O1C2=CC=CC=C2C2=C1C=CC1=C2NC2=CC=CC=C12 DERKMBVPWKXOHM-UHFFFAOYSA-N 0.000 claims 1
- GLYYLMBVQZMMMS-UHFFFAOYSA-N 12h-[1]benzothiolo[3,2-a]carbazole Chemical compound S1C2=CC=CC=C2C2=C1C=CC1=C2NC2=CC=CC=C12 GLYYLMBVQZMMMS-UHFFFAOYSA-N 0.000 claims 1
- BAWARCCDOBENCG-UHFFFAOYSA-N 19-azaheptacyclo[15.11.0.02,14.03,11.05,10.018,26.020,25]octacosa-1(28),2,4,6,8,10,12,14,16,18,20,22,24,26-tetradecaene Chemical compound C1=CC=CC=2N=C3C=4C(=CC=C3C1=2)C=1C(C=CC2=C3C=CC=CC3=CC=12)=CC=4 BAWARCCDOBENCG-UHFFFAOYSA-N 0.000 claims 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 claims 1
- 125000004429 atom Chemical group 0.000 claims 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 claims 1
- JLAVCPKULITDHO-UHFFFAOYSA-N tetraphenylsilane Chemical group C1=CC=CC=C1[Si](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 JLAVCPKULITDHO-UHFFFAOYSA-N 0.000 claims 1
- 125000005580 triphenylene group Chemical group 0.000 claims 1
- BZLZKLMROPIZSR-UHFFFAOYSA-N triphenylsilicon Chemical group C1=CC=CC=C1[Si](C=1C=CC=CC=1)C1=CC=CC=C1 BZLZKLMROPIZSR-UHFFFAOYSA-N 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 6
- 230000003111 delayed effect Effects 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000007725 thermal activation Methods 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 63
- 238000006243 chemical reaction Methods 0.000 description 46
- 239000010408 film Substances 0.000 description 36
- 230000015572 biosynthetic process Effects 0.000 description 32
- 238000010992 reflux Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 31
- 239000007787 solid Substances 0.000 description 31
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 29
- 125000001424 substituent group Chemical group 0.000 description 29
- 238000003756 stirring Methods 0.000 description 23
- 238000003786 synthesis reaction Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 238000004440 column chromatography Methods 0.000 description 16
- 239000000741 silica gel Substances 0.000 description 16
- 229910002027 silica gel Inorganic materials 0.000 description 16
- 239000003208 petroleum Substances 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 14
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- 239000003480 eluent Substances 0.000 description 14
- 238000002156 mixing Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 229960000583 acetic acid Drugs 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- 239000012362 glacial acetic acid Substances 0.000 description 7
- 239000005457 ice water Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 5
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 5
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 125000001041 indolyl group Chemical group 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- UQPUONNXJVWHRM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UQPUONNXJVWHRM-UHFFFAOYSA-N 0.000 description 4
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 4
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 4
- 125000005493 quinolyl group Chemical group 0.000 description 4
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 4
- YPIANBZIVBPMJS-UHFFFAOYSA-N 2-bromo-n,n-diphenylaniline Chemical compound BrC1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 YPIANBZIVBPMJS-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001454 anthracenes Chemical class 0.000 description 3
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 3
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 3
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 3
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000001194 electroluminescence spectrum Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000005956 isoquinolyl group Chemical group 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 3
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 3
- 125000005561 phenanthryl group Chemical group 0.000 description 3
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 125000003373 pyrazinyl group Chemical group 0.000 description 3
- 125000003226 pyrazolyl group Chemical group 0.000 description 3
- 125000001725 pyrenyl group Chemical group 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- KTADSLDAUJLZGL-UHFFFAOYSA-N 1-bromo-2-phenylbenzene Chemical group BrC1=CC=CC=C1C1=CC=CC=C1 KTADSLDAUJLZGL-UHFFFAOYSA-N 0.000 description 2
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 2
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- QEIVWSRXBYOTAZ-UHFFFAOYSA-N 4-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-N-phenylpiperidine-1-carboxamide Chemical compound NCC1=CC(=NC(=C1)C(F)(F)F)OC1CCN(CC1)C(=O)NC1=CC=CC=C1 QEIVWSRXBYOTAZ-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000004987 dibenzofuryl group Chemical group C1(=CC=CC=2OC3=C(C21)C=CC=C3)* 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical group C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 2
- 125000005990 isobenzothienyl group Chemical group 0.000 description 2
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- SKEDXQSRJSUMRP-UHFFFAOYSA-N lithium;quinolin-8-ol Chemical compound [Li].C1=CN=C2C(O)=CC=CC2=C1 SKEDXQSRJSUMRP-UHFFFAOYSA-N 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 125000003933 pentacenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12)* 0.000 description 2
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 2
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 2
- 150000003220 pyrenes Chemical class 0.000 description 2
- 150000004322 quinolinols Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- SDEAGACSNFSZCU-UHFFFAOYSA-N (3-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(Cl)=C1 SDEAGACSNFSZCU-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical class C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 1
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 description 1
- 125000004529 1,2,3-triazinyl group Chemical group N1=NN=C(C=C1)* 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 1
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 description 1
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- BBYJEAKHNVUYMN-UHFFFAOYSA-N 1-phenyl-2h-1,3,5-triazine Chemical compound C1N=CN=CN1C1=CC=CC=C1 BBYJEAKHNVUYMN-UHFFFAOYSA-N 0.000 description 1
- IVCGJOSPVGENCT-UHFFFAOYSA-N 1h-pyrrolo[2,3-f]quinoline Chemical class N1=CC=CC2=C(NC=C3)C3=CC=C21 IVCGJOSPVGENCT-UHFFFAOYSA-N 0.000 description 1
- YOCSCRSTBWZYLM-UHFFFAOYSA-N 2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-ol Chemical compound CC1C(O)C(C)C(C=2C=CC(Cl)=CC=2)NC1C1=CC=C(Cl)C=C1 YOCSCRSTBWZYLM-UHFFFAOYSA-N 0.000 description 1
- JBLIDPPHFGWTKU-UHFFFAOYSA-N 2,6-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=C(Cl)C=CC=C1Cl JBLIDPPHFGWTKU-UHFFFAOYSA-N 0.000 description 1
- AYHGAQGOMUQMTR-UHFFFAOYSA-N 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine Chemical compound C1=CC(Br)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 AYHGAQGOMUQMTR-UHFFFAOYSA-N 0.000 description 1
- RIKNNBBGYSDYAX-UHFFFAOYSA-N 2-[1-[2-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C(=CC=CC=1)C1(CCCCC1)C=1C(=CC=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 RIKNNBBGYSDYAX-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- VOZBMWWMIQGZGM-UHFFFAOYSA-N 2-[4-(9,10-dinaphthalen-2-ylanthracen-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC=C(C=2C=C3C(C=4C=C5C=CC=CC5=CC=4)=C4C=CC=CC4=C(C=4C=C5C=CC=CC5=CC=4)C3=CC=2)C=C1 VOZBMWWMIQGZGM-UHFFFAOYSA-N 0.000 description 1
- IJICRIUYZZESMW-UHFFFAOYSA-N 2-bromodibenzothiophene Chemical compound C1=CC=C2C3=CC(Br)=CC=C3SC2=C1 IJICRIUYZZESMW-UHFFFAOYSA-N 0.000 description 1
- DDGPPAMADXTGTN-UHFFFAOYSA-N 2-chloro-4,6-diphenyl-1,3,5-triazine Chemical compound N=1C(Cl)=NC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 DDGPPAMADXTGTN-UHFFFAOYSA-N 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical class C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N 9-(3-carbazol-9-ylphenyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC=C1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- QJZJIWYDCCBNTH-UHFFFAOYSA-N 9-[4-(9H-fluoren-1-yl)phenyl]carbazole Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)C1=CC=C(C=C1)C1=CC=CC=2C3=CC=CC=C3CC1=2 QJZJIWYDCCBNTH-UHFFFAOYSA-N 0.000 description 1
- FOUNKDBOYUMWNP-UHFFFAOYSA-N 9-[4-[2-(4-carbazol-9-ylphenyl)-2-adamantyl]phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C(C=C1)=CC=C1C1(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C(C2)CC3CC1CC2C3 FOUNKDBOYUMWNP-UHFFFAOYSA-N 0.000 description 1
- FXKMXDQBHDTQII-UHFFFAOYSA-N 9-phenyl-3,6-bis(9-phenylcarbazol-3-yl)carbazole Chemical compound C1=CC=CC=C1N1C2=CC=C(C=3C=C4C5=CC(=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=3C=C4C5=CC=CC=C5N(C=5C=CC=CC=5)C4=CC=3)C=C2C2=CC=CC=C21 FXKMXDQBHDTQII-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 125000006416 CBr Chemical group BrC* 0.000 description 1
- INFXPBWIBMNSKF-UHFFFAOYSA-N CC1=NC2=C(C=CC=C2C=C1)O.CC1=NC2=C(C=CC=C2C=C1)O.[Al+3] Chemical compound CC1=NC2=C(C=CC=C2C=C1)O.CC1=NC2=C(C=CC=C2C=C1)O.[Al+3] INFXPBWIBMNSKF-UHFFFAOYSA-N 0.000 description 1
- 125000006414 CCl Chemical group ClC* 0.000 description 1
- 125000006415 CF Chemical group FC* 0.000 description 1
- 125000006417 CH Chemical group [H]C* 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FUHDUDFIRJUPIV-UHFFFAOYSA-N [4-[9-(4-carbazol-9-ylphenyl)fluoren-9-yl]phenyl]-triphenylsilane Chemical compound C1=CC=CC=C1[Si](C=1C=CC(=CC=1)C1(C2=CC=CC=C2C2=CC=CC=C21)C=1C=CC(=CC=1)N1C2=CC=CC=C2C2=CC=CC=C21)(C=1C=CC=CC=1)C1=CC=CC=C1 FUHDUDFIRJUPIV-UHFFFAOYSA-N 0.000 description 1
- PKEOEAOIGCIWIJ-UHFFFAOYSA-N [C].C1=CC=CC=C1C1=CC=CC=C1 Chemical group [C].C1=CC=CC=C1C1=CC=CC=C1 PKEOEAOIGCIWIJ-UHFFFAOYSA-N 0.000 description 1
- JZXXUZWBECTQIC-UHFFFAOYSA-N [Li].C1=CC=CC2=NC(O)=CC=C21 Chemical compound [Li].C1=CC=CC2=NC(O)=CC=C21 JZXXUZWBECTQIC-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- KQDCFCNAAUGBMS-UHFFFAOYSA-N [Sb].BrC1=C(N(Br)Br)C=CC=C1 Chemical compound [Sb].BrC1=C(N(Br)Br)C=CC=C1 KQDCFCNAAUGBMS-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 150000001562 benzopyrans Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- UNXISIRQWPTTSN-UHFFFAOYSA-N boron;2,3-dimethylbutane-2,3-diol Chemical compound [B].[B].CC(C)(O)C(C)(C)O UNXISIRQWPTTSN-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004623 carbolinyl group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichlorine monoxide Inorganic materials ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- ZTLUNQYQSIQSFK-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]naphthalen-1-amine Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1=CC=CC2=CC=CC=C12 ZTLUNQYQSIQSFK-UHFFFAOYSA-N 0.000 description 1
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical class C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 125000005071 nonynyl group Chemical group C(#CCCCCCCC)* 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- XEXYATIPBLUGSF-UHFFFAOYSA-N phenanthro[9,10-b]pyridine-2,3,4,5,6,7-hexacarbonitrile Chemical group N1=C(C#N)C(C#N)=C(C#N)C2=C(C(C#N)=C(C(C#N)=C3)C#N)C3=C(C=CC=C3)C3=C21 XEXYATIPBLUGSF-UHFFFAOYSA-N 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical class C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000005040 tridecenyl group Chemical group C(=CCCCCCCCCCCC)* 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/96—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/54—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
- C07C13/547—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
- C07C13/567—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/62—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/62—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
- C07C13/66—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/57—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
- C07C211/61—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/94—[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/04—Ortho- or peri-condensed ring systems
- C07D221/06—Ring systems of three rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/26—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/36—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
- C07D241/38—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/14—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
- C07D251/24—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/28—1,4-Oxazines; Hydrogenated 1,4-oxazines
- C07D265/34—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
- C07D265/38—[b, e]-condensed with two six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/91—Dibenzofurans; Hydrogenated dibenzofurans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D327/00—Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
- C07D327/02—Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
- C07D327/06—Six-membered rings
- C07D327/08—[b,e]-condensed with two six-membered carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/50—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
- C07D333/76—Dibenzothiophenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/10—Spiro-condensed systems
- C07D491/107—Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/0805—Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/653—Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The invention provides a fluorene compound and an electronic device. The fluorene compound has excellent film forming property and thermal stability by introducing a fluorene rigid structure, and can be used for preparing organic electroluminescent devices, organic field effect transistors and organic solar cells. The fluorene compound of the present invention can be used as a material constituting a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer, or an electron transport layer, and can reduce a driving voltage, improve efficiency, luminance, and lifetime. More importantly, the fluorene compound can effectively isolate donor groups from acceptor groups, so that the fluorene compound is an ideal framework for constructing a thermal activation delayed fluorescence material. The preparation method of the fluorene compound is simple, the raw materials are easy to obtain, and the industrial development requirement can be met.
Description
Technical Field
The invention belongs to the technical field of organic photoelectric materials, and relates to a fluorene compound and an electronic device containing the fluorene compound. More particularly, the present invention relates to a 1, 8-disubstituted fluorene-based compound suitable for electronic devices, particularly organic electroluminescent devices, organic field effect transistors and organic solar cells, and an electronic device using the fluorene-based compound.
Background
The organic electroluminescent device has a series of advantages of self-luminescence, low-voltage driving, full curing, wide viewing angle, simple composition and process and the like, and compared with a liquid crystal display, the organic electroluminescent device does not need a backlight source. Therefore, the organic electroluminescent device has wide application prospect.
Organic electroluminescent devices generally comprise an anode, a metal cathode and an organic layer sandwiched therebetween. The organic layer mainly comprises a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer and an electron injection layer. In addition, a host-guest structure is often used for the light-emitting layer. That is, the light emitting material is doped in the host material at a certain concentration to avoid concentration quenching and triplet-triplet annihilation, improving the light emitting efficiency. Therefore, the host material is generally required to have a higher triplet energy level and, at the same time, a higher stability.
At present, research on organic electroluminescent materials has been widely conducted in academia and industry, and a large number of organic electroluminescent materials with excellent performance have been developed. Third generation organic electroluminescent materials, generally having a small singlet-triplet energy level difference (Δ E)ST) The triplet excitons may be converted into singlet excitons through reverse intersystem crossing (RISC) to emit light, which may simultaneously utilize singlet excitons and triplet excitons formed under electrical excitation, and the internal quantum efficiency of the device may reach 100%, thus being considered as one of organic light emitting materials widely used in the future. However, the operational lifetime of devices, particularly blue devices, remains an open problem in this area. In view of the above, the future direction of organic electroluminescent devices is to develop high efficiency, long lifetime, low cost white light devices and full color display devices, but the industrialization of the technology still faces many key problems. Therefore, designing and searching a stable and efficient compound as a novel material of an organic electroluminescent device to overcome the defects of the organic electroluminescent device in the practical application process is a key point in the research work of the organic electroluminescent device material and the future research and development trend.
Disclosure of Invention
Problems to be solved by the invention
The invention aims to provide a fluorene compound. The fluorene compound has the advantages of high thermal stability, good transmission performance, high triplet state, simple preparation method, high fluorescence quantum yield and small singlet state-triplet state energy level difference, and an organic light-emitting device prepared from the fluorene compound has the advantages of high light-emitting efficiency, long service life and low driving voltage, and is an organic electroluminescent material with excellent performance.
It is another object of the present invention to provide an electronic device using the fluorene-based compound, which has advantages of high efficiency, high durability and long life span.
Means for solving the problems
The fluorene compound has a special biphenyl structure, has high thermal stability, chemical stability and carrier transport property, and more importantly, has appropriate singlet state, triplet state and molecular orbital energy level. Therefore, the organic electroluminescent material is introduced into molecules with electroluminescent characteristics, so that the stability and the luminous efficiency of a device are improved, and the driving voltage of the device is reduced.
That is, the present invention is as defined in the above-mentioned embodiments.
ADVANTAGEOUS EFFECTS OF INVENTION
The fluorene compound has good film forming property and thermal stability by introducing a fluorene rigid structure, can be used for preparing electronic devices such as organic electroluminescent devices, organic field effect transistors and organic solar cells, particularly used as a constituent material of a hole injection layer, a hole transport layer, a luminescent layer, an electron blocking layer, a hole blocking layer or an electron transport layer and a thermal activation delayed fluorescence material in the organic electroluminescent devices, can show the advantages of high luminous efficiency, long service life and low driving voltage, and is obviously superior to the existing organic electroluminescent devices.
In addition, the preparation method of the fluorene compound is simple, raw materials are easy to obtain, and the industrial development requirement can be met.
The fluorene compound has good application effect in electronic devices such as organic electroluminescent devices, organic field effect transistors, organic solar cells and the like, and has wide industrialization prospect.
The fluorene compound of the present invention has high electron injection and movement rates. Therefore, with the organic electroluminescent device having an electron injection layer and/or an electron transport layer prepared using the fluorene-based compound of the present invention, the electron transport efficiency from the electron transport layer to the light emitting layer is improved, thereby improving the light emitting efficiency. And, the driving voltage is reduced, thereby enhancing durability of the resulting organic electroluminescent device.
The fluorene compound of the present invention has excellent hole blocking ability, excellent electron transporting property, and is stable in a thin film state. Therefore, the organic electroluminescent device having a hole blocking layer prepared using the fluorene-based compound of the present invention has high luminous efficiency, a reduced driving voltage, and improved current resistance, so that the maximum luminous brightness of the organic electroluminescent device is increased.
The fluorene compound can be used as a thermally activated delayed fluorescence guest material to be applied to a light emitting layer of an organic electroluminescent device, and the organic electroluminescent device with high light emitting efficiency, low driving voltage and long device service life can be obtained by using the compound to manufacture the organic electroluminescent device.
The fluorene compound of the present invention can be used as a constituent material of a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer or an electron transport layer of an organic electroluminescent device. With the organic electroluminescent device of the present invention, excitons generated in the light emitting layer can be confined, and the possibility of recombination of holes and electrons can be further increased to obtain high luminous efficiency. In addition, the driving voltage is so low that high durability can be achieved.
Drawings
FIG. 1 is a thermogravimetric plot (TGA) of examples 2 and 3 (compounds 2-40 and 2-23) of the present invention.
FIG. 2 shows organic electroluminescence spectra of the organic electroluminescence devices 1 to 3 and 8 in examples 8 to 10 and 15 of the present invention.
FIG. 3 is a view showing the structures of organic electroluminescent devices of examples 8 to 16 and organic electroluminescent devices of comparative examples 1 and 2.
Description of the reference numerals
1 substrate
2 anode
3 hole injection layer
4 hole transport layer
5 Electron blocking layer
6 light-emitting layer
7 hole blocking layer
8 electron transport layer
9 electron injection layer
10 cathode
Detailed Description
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
The fluorene compound of the present invention is a novel compound having a fluorene ring structure, and is represented by the following general formula (1).
Specifically, the fluorene compound of the present invention has the following general formula (I) or (II):
in the above general formulae (1), (I) and (II),
L1and L2Each independently represents one or more of a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms;
Ar1~Ar4each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1One or more substituted aromatic heterocyclic groups having 5 to 30 carbon atoms;
z represents CR1Or N;
m represents C (R)1)2Or a group represented by any one of the following structural formulae (a) to (E):
wherein the dotted line represents a bond;
x represents an alkyl group having 1 to 8 carbon atoms or a single bond;
y represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond;
w represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond;
R1represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)2、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3One or more of a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms;
R2represents one or more of a hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms;
z in the structural formulae (B) to (E) has the meaning as defined in the general formula (1).
<L1And L2>
L1And L2Each independently represents one or more of a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms.
In the present invention, the hetero atom in the aromatic heterocyclic group having 5 to 18 carbon atoms is preferably selected from N, O and/or S. In the present invention, the number of hetero atoms may be 1 to 5. An aromatic hydrocarbon group or aromatic heterocyclic group in the sense of the present invention means a system which does not necessarily contain only aryl or heteroaryl groups, but in which a plurality of aryl or heteroaryl groups may also be interrupted by non-aromatic units (preferably less than 10% of non-hydrogen atoms), which may be, for example, carbon atoms, nitrogen atoms, oxygen atoms or carbonyl groups. For example, systems of 9, 9' -spirobifluorenes, 9, 9-diarylfluorenes, triarylamines, diaryl ethers, etc., as well as systems in which two or more aryl groups are interrupted, for example by linear or cyclic alkyl groups or by silyl groups, are also intended to be considered aromatic hydrocarbon groups in the sense of the present invention. Furthermore, systems in which two or more aryl or heteroaryl groups are bonded directly to one another, such as biphenyl, terphenyl or quaterphenyl, are likewise intended to be regarded as aromatic hydrocarbon groups or aromatic heterocyclic groups.
From L1And L2The aromatic hydrocarbon group having 6 to 18 carbon atoms or the aromatic heterocyclic group having 5 to 18 carbon atoms represented may be exemplified by: phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, perylenyl, fluoranthenyl, benzofluoranthenyl, tetracenyl, pentacenyl, benzopyrenyl, biphenyl, idophenyl, terphenyl, quaterphenyl, pentabiphenyl, terphenyl, fluorenyl, spirobifluorenyl, dihydrophenanthrenyl, hydropyranyl, cis-or trans-indenofluorenyl, cis-or trans-monobenzindenofluorenyl, cis-or trans-dibenzoindenofluorenyl, trimeric indenyl, isotridecyl, spirotrimeric indenyl, spiroisotridecyl, furanyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, thienyl, benzothienyl, isobenzothienyl, dibenzothienyl, pyrrolyl, indolyl, isoindolyl, carbazolyl, indolocarbazolyl, indenocarbazolyl, pyridyl, quinolyl, isoquinolyl, acridinyl, perylenyl, anthryl, benzopyrenyl, terphenylenyl, terphenylindenyl, etc, Phenanthridinyl, benzo-5, 6-quinolinyl, benzo-6, 7-quinolinyl, benzo-7, 8-quinolinyl, phenothiazinyl, phenoxazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazolyl, pyridoimidazolyl, pyrazinoimidazolyl, quinoxaloimidazolyl, oxazolyl, benzoxazolyl, naphthooxazolyl, anthraoxazolyl, phenanthroixazolyl, isoxazolyl, 1, 2-thiazolyl, 1, 3-thiazolyl, benzothiazolyl, pyridazinylOxazinyl, benzopyrazinyl, pyrimidinyl, benzopyrimidinyl, quinoxalinyl, 1, 5-diazanthryl, 2, 7-diazpyrenyl, 2, 3-diazpyrenyl, 1, 6-diazpyrenyl, 1, 8-diazpyrenyl, 4,5,9, 10-tetraazaperylenyl, pyrazinyl, phenazinyl, phenoxazinyl, phenothiazinyl, fluorerynyl, naphthyridinyl, azacarbazolyl, benzocarbazinyl, phenanthrolinyl, 1,2, 3-triazolyl, 1,2, 4-triazolyl, benzotriazolyl, 1,2, 3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2, 5-oxadiazolyl, 1,3, 4-oxadiazolyl, 1,2, 3-thiadiazolyl, 1,2, 4-thiadiazolyl, pyrazinyl, phenazinyl, phena, 1,2, 5-thiadiazolyl, 1,3, 4-thiadiazolyl, 1,3, 5-triazinyl, 1,2, 4-triazinyl, 1,2, 3-triazinyl, tetrazolyl, 1,2,4, 5-tetrazinyl, 1,2,3, 4-tetrazinyl, 1,2,3, 5-tetrazinyl, purinyl, pteridinyl, indolizinyl, benzothiadiazolyl, and the like.
In the present invention, preferably, L1And L2Each independently represents one or more of a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 5 to 12 carbon atoms. More preferably, L1And L2Each independently represents one or more of a single bond, a carbonyl group, a phenyl group, a triazinyl group or a biphenyl group.
From L1And L2The aromatic hydrocarbon group having 6 to 18 carbon atoms or the aromatic heterocyclic group having 5 to 18 carbon atoms represented may be unsubstituted, but may also have a substituent. The substituents may be exemplified by the following: a deuterium atom; a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an alkyl group having 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a neopentyl group, or a n-hexyl group; alkoxy having 1 to 6 carbon atoms such as methoxy, ethoxy or propoxy; alkenyl, such as vinyl or allyl; aryloxy groups such as phenoxy or tolyloxy; arylalkoxy, such as benzyloxy or phenethyloxy; aromatic hydrocarbon radicals or condensed polycyclic aromatic radicals, e.g. phenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthryl, benzeneAnd [9,10 ]]Phenanthryl or spirobifluorenyl; an aromatic heterocyclic group such as pyridyl, thienyl, furyl, pyrrolyl, quinolyl, isoquinolyl, benzofuryl, benzothienyl, indolyl, carbazolyl, benzoxazolyl, benzothiazolyl, quinoxalyl, benzimidazolyl, pyrazolyl, dibenzofuryl, dibenzothienyl, azafluorenyl, diazafluorenyl, carbolinyl, azaspirobifluorenyl or diazaspiro-bifluorenyl; arylethenyl, such as styryl or naphthylethenyl; and acyl groups such as acetyl or benzoyl and the like.
The alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may be linear or branched. Any of the above substituents may be further substituted with the above exemplary substituents. The above substituents may be present independently of each other, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom, or a sulfur atom to form a ring.
<A1And A2>
(Ar1To Ar4)
Ar1~Ar4Each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1One or more substituted aromatic heterocyclic groups having 5 to 30 carbon atoms.
From Ar1~Ar4The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented may be exemplified by: phenyl, naphthyl, anthryl, benzanthryl, phenanthryl, benzophenanthryl, pyrenyl, perylenyl, fluoranthenyl, benzofluoranthenyl, tetracenyl, pentacenyl, benzopyrenyl, biphenyl, idophenyl, terphenyl, quaterphenyl, pentabiphenyl, terphenyl, fluorenyl, spirocyclic groupBisfluorenyl, dihydrophenanthryl, dihydropyrenyl, tetrahydropyrenyl, cis-or trans-indenofluorenyl, cis-or trans-monobenzindenofluorenyl, cis-or trans-dibenzoindenofluorenyl, trimerization indenyl, isotridecyl, spirotrimerization indenyl, spiroisotridecyl, furyl, benzofuryl, isobenzofuryl, dibenzofuryl, thienyl, benzothienyl, isobenzothienyl, dibenzothienyl, benzothienocarbazolyl, pyrrolyl, indolyl, isoindolyl, carbazolyl, indocarbazolyl, indenocarbazolyl, pyridyl, bipyridyl, terpyridyl, quinolyl, isoquinolyl, acridinyl, phenanthridinyl, benzo-5, 6-quinolyl, benzo-6, 7-quinolyl, benzo-7, 8-quinolyl, phenothiazinyl, phenoxazinyl, pyrazolyl, phenanthridinyl, and the like, Indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazolyl, pyridoimidazolyl, pyrazinoimidazolyl, quinoxalinimidazolyl, oxazolyl, benzoxazolyl, benzoxadiazolyl, naphthooxazolyl, anthraoxazolyl, phenanthrooxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, benzothiadiazolyl, pyridazinyl, benzopyrazinyl, pyrimidinyl, benzopyrimidinyl, quinoxalinyl, quinazolinyl, azafluorenyl, diazahnthracenyl, diazapyranyl, tetraazaperynyl, naphthyridinyl, pyrazinyl, phenazinyl, phenoxazinyl, phenothiazinyl, fluoresceinyl, naphthyridinyl, azacarbazolyl, benzocaineyl, phenanthrolinyl, triazolyl, benzotriazolyl, oxadiazolyl, thiadiazolyl, triazinyl, tetrazolyl, tetrazinyl, purinyl, pteridinyl, indolizinyl, Benzothiadiazolyl, pyridopyrrolyl, pyridotriazolyl, xanthyl, benzofurocarbazolyl, benzofluorenocarbazolyl, N-phenylcarbazolyl, diphenyl-benzimidazolyl, diphenyl-oxadiazolyl, diphenyl boron group, triphenylphosphoxy group, diphenylphosphinoxy group, triphenylsilyl group, tetraphenylsilyl group and the like.
In the present invention, preferably, Ar1、Ar2、Ar3And Ar4Each independently selected from a hydrogen atom, a cyano group or the following group:
wherein the dotted line represents and L1、L2Or a N-bonded bond, R1Have the meaning defined above.
From Ar1~Ar4The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented may be unsubstituted, but may also have a substituent. Preferably, from Ar1~Ar4The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented by1Substituted, aromatic hydrocarbon radicals having 5 to 30 carbon atoms or substituted by one or more R1A substituted aromatic heterocyclic group having 5 to 30 carbon atoms.
(R1)
R1Represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3One or more of a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms.
From R1Having 1 to 20 carbon atomsAlkyl groups may be exemplified by: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, 2-methylhexyl, n-octyl, isooctyl, tert-octyl, 2-ethylhexyl, 3-methylheptyl, n-nonyl, n-decyl, hexadecyl, octadecyl, eicosyl, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2, 3-dimethylcyclohexyl, 3,4, 5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl and the like. The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic.
From R1The alkyl group having 1 to 20 carbon atoms represented may be unsubstituted, but may also have a substituent. Preferably, from R1Alkyl having 1 to 20 carbon atoms represented by one or more of the following R2And (4) substitution. In addition, one or more non-adjacent CH in the alkyl group2The group can be represented by R2C=CR2、C≡C、Si(R2)3、C=O、C=NR2、P(=O)R2、SO、SO2、NR2O, S or CONR2And wherein one or more hydrogen atoms may be replaced by deuterium atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, cyano groups, nitro groups.
From R1The alkenyl group having 2 to 20 carbon atoms represented may be exemplified by: vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, 2-ethylhexenyl, allyl, cyclohexenyl and the like. The alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic.
From R1The alkenyl group having 2 to 20 carbon atoms represented may be unsubstituted or may have a substituent. The substituents can be exemplified by the group consisting of R1A substituent optionally having an alkyl group having 1 to 20 carbon atoms represented byThe same substituents are shown. The substituents may take the same pattern as that of the exemplary substituents.
From R1The alkynyl group having 2 to 20 carbon atoms represented may be exemplified by: ethynyl, isopropynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like.
From R1The alkynyl group having 2 to 20 carbon atoms represented may be unsubstituted or may have a substituent. The substituents can be exemplified by the group consisting of R1The alkyl group having 1 to 20 carbon atoms represented by (b) may have the same substituent as that represented by the substituent(s). The substituents may take the same pattern as that of the exemplary substituents.
From R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented by the above formula may be exemplified by the group consisting of Ar1~Ar4The aromatic hydrocarbon group having 6 to 30 carbon atoms or the aromatic heterocyclic group having 5 to 30 carbon atoms represented by the above formula represent the same groups.
From R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented may be unsubstituted or may have a substituent. The substituents can be exemplified by the group consisting of R1The alkyl group having 1 to 20 carbon atoms represented by (b) may have the same substituent as that represented by the substituent(s). The substituents may take the same pattern as that of the exemplary substituents. In addition, two adjacent R1Substituents or two adjacent R2The substituents optionally may form a mono-or polycyclic aliphatic, aromatic or heteroaromatic ring system, which may be substituted by one or more R2Substitution; where two or more substituents R1May be connected to each other and may form a ring.
Preferably represented by R1The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms represented by (a) may be exemplified by: phenyl, biphenyl, terphenyl, quaterphenyl, pentabiphenyl, benzothienocarbazolyl, benzofurocarbazolylBenzofluorenocarbazolyl, benzanthracenyl, benzophenanthryl, fluorenyl, spirobifluorenyl, triazinyl, dibenzofuranyl, dibenzothienyl, carbazolyl, N-phenylcarbazolyl, indenocarbazolyl, benzimidazolyl, diphenyl-oxadiazolyl, diphenyl boron, triphenylphosphoxy, diphenylphosphineoxy, triphenylsilyl, tetraphenylsilyl, and the like. The aromatic hydrocarbon group having 6 to 40 carbon atoms or the aromatic heterocyclic group having 5 to 40 carbon atoms may be substituted with one or more R2And (4) substitution.
(R2)
R2Represents one or more of a hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
From R2The alkyl group having 1 to 20 carbon atoms represented by R1The alkyl groups represented by the formulae having 1 to 20 carbon atoms represent the same groups.
From R2The aromatic hydrocarbon group having 6 to 30 carbon atoms or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms represented by the formula1The same groups as those shown for the aromatic hydrocarbon group having 6 to 30 carbon atoms or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms.
From R2The alkyl group having 1 to 20 carbon atoms, the aromatic hydrocarbon group having 6 to 30 carbon atoms, or the substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms represented may be unsubstituted, or may also have a substituent. The substituents may be exemplified by: a deuterium atom; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; cyano, and the like.
(Z)
Z represents CR1Or N, e.g. N, C-H, C-F, C-Cl, C-Br, C-I, C-CN, C-NO2Carbon-phenyl, carbon-biphenyl, and the like.
R1Have the meaning as defined above.
(M)
M represents C (R)1)2Or a group represented by any one of the following structural formulae (a) to (E):
wherein the dotted line represents a bond;
x represents an alkyl group having 1 to 8 carbon atoms or a single bond; such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, 2-methylhexyl, n-octyl, and the like;
y represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond; such as an oxygen atom, a sulfur atom, a sulfone group, a phosphorus oxy group, a dimethyl group, etc.;
w represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond; such as an oxygen atom, a sulfur atom, a sulfone group, a phosphorus oxy group, a dimethyl group, etc.;
Z、R1and R2Have the meaning as defined above.
< production method >
The fluorene compound of the present invention can be produced, for example, by the following method:
the obtained compound can be purified by, for example, purification by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, or the like, recrystallization or crystallization using a solvent, sublimation purification, or the like. Identification of compounds can be carried out by mass spectrometry, elemental analysis.
Specific examples of preferred compounds among the fluorene compounds of the present invention are shown below, but the present invention is by no means limited to these compounds.
< electronic device >
Various electronic devices containing the fluorene-based compound of the present invention can be produced using the fluorene-based compound according to the present invention for producing an organic material that can be particularly configured in the form of a layer. In particular, the fluorene compound of the present invention can be used in organic electroluminescent devices, organic solar cells, organic diodes, and particularly organic field effect transistors. Particularly in the case of an organic electroluminescent device or a solar cell, the assembly may have a plug structure (the device has one or more p-doped hole transport layers and/or one or more n-doped electron transport layers) or an inverted structure (the upper electrode and the hole transport layer are located on the same side while the substrate is on the opposite side as viewed from the light emitting layer), without being limited to these structures. The injection layer, the transport layer, the light emitting layer, the barrier layer, and the like may be fabricated, for example, by forming a layer including or consisting of the fluorene-based compound according to the present invention between electrodes. However, the use of the fluorene-based compound according to the present invention is not limited to the above exemplary embodiments.
< organic electroluminescent device >
The organic electroluminescent device of the present invention comprises: the organic electroluminescence device includes a first electrode, a second electrode provided so as to face the first electrode, and at least one organic layer interposed between the first electrode and the second electrode, wherein the at least one organic layer includes a fluorene-based compound of the present invention.
Fig. 3 is a view showing the configuration of an organic electroluminescent device of the present invention. As shown in fig. 3, in the organic electroluminescent device of the present invention, for example, an anode 2, a hole injection layer 3, a hole transport layer 4, an electron blocking layer 5, a light emitting layer 6, a hole blocking layer 7, an electron transport layer 8, an electron injection layer 9, and a cathode 10 are sequentially disposed on a substrate 1.
The organic electroluminescent device of the present invention is not limited to such a structure, and for example, some organic layers may be omitted in the multi-layer structure. For example, it may be a configuration in which the hole injection layer 3 between the anode 2 and the hole transport layer 4, the hole blocking layer 7 between the light emitting layer 6 and the electron transport layer 8, and the electron injection layer 9 between the electron transport layer 8 and the cathode 10 are omitted, and the anode 2, the hole transport layer 4, the light emitting layer 6, the electron transport layer 8, and the cathode 10 are sequentially provided on the substrate 1.
The organic electroluminescent device according to the present invention may be manufactured by materials and methods well known in the art, except that the above organic layer contains the compound represented by the above general formula (1). In addition, in the case where the organic electroluminescent device includes a plurality of organic layers, the organic layers may be formed of the same substance or different substances.
For example, the organic electroluminescent device according to the present invention may be manufactured by sequentially laminating a first electrode, an organic layer, and a second electrode on a substrate. At this time, the following can be made: an anode is formed by depositing metal, a metal oxide having conductivity, or an alloy thereof on a substrate by a PVD (physical vapor deposition) method such as a sputtering method or an electron beam evaporation method, an organic layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer is formed on the anode, and a substance which can be used as a cathode is deposited on the organic layer. However, the production method is not limited thereto.
In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
The anode of the organic electroluminescent device of the present invention may be made of a known electrode material. For example, an electrode material having a large work function, such as a metal of vanadium, chromium, copper, zinc, gold, or an alloy thereof; metal oxides such as zinc oxide, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and the like; such as ZnO, Al or SNO2A combination of a metal such as Sb and an oxide; poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene]And conductive polymers such as PEDOT, polypyrrole, and polyaniline. Among these, ITO is preferable.
As the hole injection layer of the organic electroluminescent device of the present invention, a known material having a hole injection property can be used. Examples thereof include: porphyrin compounds represented by copper phthalocyanine, naphthalenediamine compounds, star-shaped triphenylamine compounds, triphenylamine trimers such as arylamine compounds having a structure in which 3 or more triphenylamine structures are connected by a single bond or a divalent group containing no hetero atom in the molecule, tetramers, receptor-type heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
The fluorene compound of the present invention is preferably contained as the hole transport layer of the organic electroluminescent device of the present invention. In addition, other known materials having a hole-transporting property can be used. Examples thereof include: a compound containing a m-carbazolylphenyl group; benzidine derivatives such as N, N ' -diphenyl-N, N ' -di (m-tolyl) benzidine (TPD), N ' -diphenyl-N, N ' - (1-naphthyl) -1,1' -biphenyl-4, 4' -diamine (NPB), N ' -tetrakisbiphenylylbenzidine, and the like; 1, 1-bis [ (di-4-tolylamino) phenyl ] cyclohexane (TAPC); various triphenylamine trimers and tetramers; 9,9 ', 9 "-triphenyl-9H, 9' H, 9" H-3,3 ': 6', 3 "-tricarbazole (Tris-PCz), and the like. These may be used as a single layer formed by separately forming a film or by mixing them with other materials to form a film, or may be used as a laminated structure of layers formed by separately forming a film, a laminated structure of layers formed by mixing films, or a laminated structure of layers formed by separately forming a film and layers formed by mixing films. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
In addition, in the hole injection layer or the hole transport layer, a material obtained by further P-doping tribromoaniline antimony hexachloride, an axial olefin derivative, or the like to a material generally used in the layer, a polymer compound having a structure of a benzidine derivative such as TPD in a partial structure thereof, or the like may be used.
The fluorene compound of the present invention is preferably contained as the electron blocking layer of the organic electroluminescent device of the present invention. In addition, other known compounds having an electron blocking effect may be used. For example, there may be mentioned: carbazole derivatives such as 4,4', 4 ″ -tris (N-carbazolyl) triphenylamine (TCTA), 9-bis [4- (carbazol-9-yl) phenyl ] fluorene, 1, 3-bis (carbazol-9-yl) benzene (mCP), and 2, 2-bis (4-carbazol-9-ylphenyl) adamantane (Ad-Cz); a compound having a triphenylsilyl and triarylamine structure represented by 9- [4- (carbazol-9-yl) phenyl ] -9- [4- (triphenylsilyl) phenyl ] -9H-fluorene; and compounds having an electron-blocking effect, such as monoamine compounds having a high electron-blocking property and various triphenylamine dimers. These may be used as a single layer formed by film formation alone or by mixing with other materials to form a film, or may be used as a laminated structure of layers formed by film formation alone, a laminated structure of layers formed by mixing into a film, or a laminated structure of layers formed by film formation alone and layers formed by mixing into a film. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
The light-emitting layer of the organic electroluminescent device of the present invention preferably contains the fluorene compound of the present invention. In addition to this, Alq can also be used3Various metal complexes such as metal complexes of a first hydroxyquinoline derivative, compounds having a pyrimidine ring structure, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like.
The light emitting layer may be composed of a host material and a dopant material. The fluorene compound of the present invention is preferably contained as the host material. In addition to these, mCBP, mCP, thiazole derivatives, benzimidazole derivatives, polydialkylfluorene derivatives, heterocyclic compounds having a partial structure in which an indole ring is a condensed ring, and the like can be used.
As the doping material, the fluorene derivative of the present invention is preferably contained. In addition to these, aromatic amine derivatives, styryl amine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like can be used. Examples thereof include pyrene derivatives, anthracene derivatives, quinacridones, coumarins, rubrenes, perylenes and their derivatives, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, spirobifluorene derivatives, and the like. These may be used as a single layer formed by film formation alone or by mixing with other materials to form a film, or may be used as a laminated structure of layers formed by film formation alone, a laminated structure of layers formed by mixing into a film, or a laminated structure of layers formed by film formation alone and layers formed by mixing into a film. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
The fluorene compound of the present invention is preferably contained as a hole blocking layer of the organic electroluminescent device of the present invention. In addition, the hole-blocking layer may be formed using another compound having a hole-blocking property. For example, a phenanthroline derivative such as 2,4, 6-tris (3-phenyl) -1,3, 5-triazine (T2T), 1,3, 5-tris (1-phenyl-1H-benzimidazol-2-yl) benzene (TPBi), Bathocuproine (BCP), a metal complex of a quinolyl derivative such as aluminum (III) bis (2-methyl-8-hydroxyquinoline) -4-phenylphenate (BAlq), and a compound having a hole-blocking effect such as various rare earth complexes, oxazole derivatives, triazole derivatives, and triazine derivatives can be used. These may be used as a single layer formed by separately forming a film or by mixing them with other materials to form a film, or may be used as a laminated structure of layers formed by separately forming a film, a laminated structure of layers formed by mixing films, or a laminated structure of layers formed by separately forming a film and layers formed by mixing films. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
The above-described material having a hole-blocking property can also be used for formation of an electron transport layer described below. That is, by using the known material having a hole-blocking property, a layer which serves as both a hole-blocking layer and an electron-transporting layer can be formed.
The fluorene compound of the present invention is preferably contained in the electron transport layer of the organic electroluminescent device of the present invention. In addition, the compound may be formed using other compounds having an electron-transporting property. For example, Alq can be used3Metal complexes of quinolinol derivatives including BAlq; various metal complexes; a triazole derivative; a triazine derivative; an oxadiazole derivative; a pyridine derivative; bis (10-hydroxybenzo [ H ]]Quinoline) beryllium (Be (bq)2) (ii) a Such as 2- [4- (9, 10-dinaphthalen-2-anthracen-2-yl) phenyl]Benzimidazole derivatives such as-1-phenyl-1H-benzimidazole (ZADN); a thiadiazole derivative; an anthracene derivative; a carbodiimide derivative; quinoxaline derivatives; pyridoindole derivatives; phenanthroline derivatives; silole derivatives and the like. They may be formed into films alone or mixed with other materialsThe film may be used in the form of a single layer, or may be formed in a stacked structure of layers formed by film formation alone, a stacked structure of layers formed by film mixing, or a stacked structure of layers formed by film formation alone and layers formed by film mixing. These materials can be formed into a thin film by a known method such as a vapor deposition method, a spin coating method, and an ink jet method.
As the electron injection layer of the organic electroluminescent device of the present invention, a material known per se can be used. For example, alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal complexes of quinolinol derivatives such as lithium quinolinol; and metal oxides such as alumina.
In the electron injection layer or the electron transport layer, a material obtained by further N-doping a metal such as cesium, a triarylphosphine oxide derivative, or the like can be used as a material generally used for the layer.
As the cathode of the organic electroluminescent device of the present invention, an electrode material having a low work function such as aluminum, magnesium, or an alloy having a low work function such as magnesium-silver alloy, magnesium-indium alloy, aluminum-magnesium alloy is preferably used as the electrode material.
As the substrate of the present invention, a substrate in a conventional organic light emitting device, such as glass or plastic, can be used. In the present invention, a glass substrate is selected.
Examples
The production of the compound represented by the above general formula (1) and the organic electroluminescent device comprising the same is specifically described in the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
Example 1: synthesis of Compounds 1-41
(Synthesis of intermediate M1)
The synthetic route for intermediate M1 is shown below:
to a clean 100mL single-neck flask were added 30mL of methylene chloride, 7.2g of (71.3mmol) of diisopropylamine and 10.0g (95.0mmol) of triethylamine, 10.0g (47.5mmol) of 2, 6-dichlorobenzoyl chloride are then slowly added dropwise to the single-neck flask in dichloromethane solution. The system was gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. A white solid was formed, collected by suction filtration, compressed, dried and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 15: 1(V/V)) to give 10.8g of a white solid in 83% yield. Ms (ei): m/z: 273.26[ M ]+]。Anal.calcd for C13H17Cl2NO(%):C 56.95,H 6.25;found:C56.83,H 6.20。
(Synthesis of intermediate M2)
The synthetic route for intermediate M2 is shown below:
to a clean 250mL three-necked flask, 7.4g (47.8mmol) of 3-chlorobenzeneboronic acid, 8.4g (79.6mmol) of anhydrous sodium carbonate, 10.9g (39.8mmol) of M1, 470.8mg (4.8mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added under nitrogen. The system was gradually warmed to reflux and reacted under reflux overnight. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 15: 1(V/V)) to obtain 11.6g of a white solid in 83% yield. Ms (ei): m/z: 349.26[ M ]+]。Anal.calcd for C19H21Cl2NO(%):C 65.15,H 6.04;found:C 65.10,H 6.01。
(Synthesis of intermediate M3)
The synthetic route for intermediate M3 is shown below:
to a dry, clean, 250mL three-necked flask, 3.1g (8.9mmol) of M1 and 150mL of anhydrous tetrahydrofuran were added under nitrogen, and dissolved at room temperature with stirring. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 20 minutes after addition was complete. After the reaction was complete, the mixture was quenched with 5% HCl at-78 ℃. The product was washed with water, dried and spin-dried to give a white solid which was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane: 15: 1(V/V)) to give 1.9g of a white solid in 90% yield. Ms (ei): m/z: 248.08[ M ]+]。Anal.calcd for C13H6Cl2O(%):C 62.69,H 2.43;found:C 62.51,H 2.40。
(Synthesis of intermediate M4)
The synthetic route for intermediate M4 is shown below:
a dry, clean 250mL three-necked flask was charged with 5.7g (23mmol) of intermediate M3, 8.5g (50.6mmol) of carbazole, and 12.7g (92mmol) of anhydrous potassium carbonate in that order. The system was back and forth replaced with nitrogen three times to remove air therefrom. 150mL of N-methylpyrrolidone was added, the temperature was gradually raised to 180 ℃ and the reaction was allowed to proceed at that temperature overnight. After the reaction is cooled, inorganic salt is removed by suction filtration, and the filtrate is distilled under reduced pressure to obtain reddish brown residue. The crude product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 4: 1(V/V)) to give 11.0g of a yellow solid in 95% yield. Ms (ei): m/z: 510.58[ M ]+]。Anal.calcd for C37H22N2O(%):C 87.04,H 4.34,N 5.49;found:C 87.01,H4.36,N 5.47。
(Synthesis of intermediate M5)
The synthetic route for intermediate M5 is shown below:
adding 1g (5.9mmol) of iodine simple substance and 100mL of glacial acetic acid into a 250mL three-neck flask provided with a reflux condenser tube and a dropping funnel under the protection of nitrogen, stirring for dissolving, adding about 3.9g (29.6mmol) of hypophosphorous acid, and heating to 120 ℃ for reacting until the system color is faded. Then 7.5g (14.8mmol) of M4 was added in one portion, and after further heating and refluxing for 4h, cooling to room temperature, pouring into water to precipitate a large amount of white solid, filtering, washing with water and drying to obtain 6.0g of white crystalline solid with a yield of 82%. Ms (ei): m/z: 496.48[ M ]+]。Anal.calcd for C37H24N2(%):C 89.49,H 4.87,N 5.64;found:C 89.46,H4.89,N 5.63。
(Synthesis of Compounds 1-41)
The synthetic routes for compounds 1-41 are shown below:
6.9g (13.9mmol) of the M5 solid are transferred into a 250mL three-necked flask equipped with a dropping funnel, 100mL of tetrahydrofuran are added under nitrogen, dissolved with stirring and cooled in an ice-water bath. 4.0g (41.7mmol) of sodium tert-butoxide was added while cooling on ice, and after stirring for 10min while maintaining the temperature, 5.9g (41.7mmol) of methyl iodide were added. The system was stirred for 30min and then the ice bath was removed, the system allowed to warm to room temperature and the reaction continued overnight at room temperature. After the reaction, insoluble matter was removed by suction filtration, and the filtrate was concentrated and purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 10: 1(V/V)) to obtain 6.0g of white crystals, with a yield of 82%. Ms (ei): m/z: 524.48[ M ]+]。Anal.calcd for C39H28N2(%):C 89.28,H 5.38,N 5.34;found:C 89.25,H 5.43;N 5.31。
Example 2: synthesis of Compounds 2-40
(Synthesis of Compounds 2 to 40)
The synthetic routes for compounds 2-40 are shown below:
to a dry, clean, 250mL three-necked flask, 2.0g (8.9mmol) of 2-bromobiphenyl and 150mL of anhydrous tetrahydrofuran are added under nitrogen and dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 4.1g (8.1mmol) of M4 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a white solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction, the heating was turned off, the reaction mixture was cooled to room temperature, poured into ice water, and filtered to obtain a white solid. The crude product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane: 5: 1(V/V)) to give 4.5g of white crystals in 85% yield. Ms (ei): m/z: 646.78[ M ]+]。Anal.calcdfor C49H30N2(%):C 90.99,H 4.68,N 4.33;found:C 90.96,H 4.72,N 4.30。
The thermogravimetric curves of the compounds 2 to 40 were measured using a model SDT-2960 thermogravimetric analyzer.
Example 3: synthesis of Compounds 2-23
(Synthesis of intermediate M6)
The synthetic route for intermediate M6 is shown below:
to a 250mL three-necked flask equipped with a reflux condenser, under nitrogen protection, were added 2.49g (10.0mmol) of M3, 10.2g (40.0mmol) of pinacol diboron diboride, 823.5mg (0.9mmol) of tris (dibenzylideneacetone) dipalladium, 858.6mg (1.8mmol) of 2-dicyclohexylphosphorus-2, 4, 6-triisopropylbiphenyl, 5.8g (60.0mmol) of potassium acetate, and 100mL of anhydrous dioxane, in that order. The system was warmed to reflux and reacted overnight. Filtering after the reaction is finished, spin-drying the filtrate, and separating by column chromatography (350-mesh silica gel)The leacheate is petroleum ether: dichloromethane ═ 4: 1(V/V)) gave 2.4g of a yellow solid in 56% yield. Ms (ei): m/z: 432.12[ M ]+]。Anal.calcd for C25H30B2O5(%):C 69.49,H 7.00;found:C 69.45,H 7.04。
(Synthesis of intermediate M7)
The synthetic route for intermediate M7 is shown below:
to a clean 250mL three-necked flask, 4.3g (10mmol) of M6, 4.2g (40mmol) of anhydrous sodium carbonate, 6.7g (25mmol) of 2-chloro-4, 6-diphenyl-1, 3, 5-triazine, 115.4mg (0.1mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added under nitrogen, and the system was heated to reflux and reacted overnight under reflux. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 4: 1(V/V)) to obtain 5.5g of a yellow solid in 85% yield. Ms (ei): m/z: 642.59[ M ]+]。Anal.calcd for C43H26N6O(%):C80.36,H 4.08,N 13.08;found:C 80.34,H4.11,N 13.06。
(Synthesis of Compounds 2 to 23)
The synthetic routes for compounds 2-23 are shown below:
to a dry, clean, 250mL three-necked flask, 2.0g (8.9mmol) of 2-bromobiphenyl and 150mL of anhydrous tetrahydrofuran are added under nitrogen and dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 5.2g (8.1mmol) of M7 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a white solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction, the heating was turned off, the reaction mixture was cooled to room temperature, poured into ice water, and filtered to obtain a white solid. The crude product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane: 5: 1(V/V)) to give 5.3g of white crystals in 84% yield. MS (EI) M/z 778.20[ M ]+]。Anal.calcdfor C55H34N6(%):C 84.81,H 4.40,N 10.79;found:C 84.77,H 4.39,N 10.75。
The thermogravimetric curves of the compounds 2 to 23 were measured using a model SDT-2960 thermogravimetric analyzer.
Example 4: synthesis of Compounds 3-23
(Synthesis of Compounds 3 to 23)
The synthetic route for compounds 3-23 is shown below:
to a dry, clean, 250mL three-necked flask, 2.9g (8.9mmol) of 2-bromotriphenylamine and 150mL of anhydrous tetrahydrofuran were added under nitrogen, and dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 5.2g (8.1mmol) of M7 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a green solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction is finished, the heating is closed, the reaction solution is cooled to room temperature, poured into ice water, and filtered to obtain a green solid. CoarseThe product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane: 5: 1(V/V)) to give 5.9g of green crystals in 84% yield. MS (EI) M/z 869.20[ M ]+]。Anal.calcdfor C61H39N7(%):C 84.21,H 4.52,N 11.27;found:C 84.15,H 4.51,N 11.25。
Example 5: synthesis of Compounds 6-23
(Synthesis of Compounds 6 to 23)
The synthetic route for compounds 6-23 is shown below:
to a dry, clean, 250mL three-necked flask, 3.2g (8.9mmol) of 10- (2-bromobenzene) -9, 9-dimethyl-9, 10-dihydroacridine and 150mL of anhydrous tetrahydrofuran were added under nitrogen, and the mixture was dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 5.2g (8.1mmol) of M7 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a green solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction, the heating was turned off, the reaction mixture was cooled to room temperature, poured into ice water, and filtered to a green solid. The crude product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 5: 1(V/V)) to give 6.2g of green crystals in 84% yield. MS (EI) M/z 909.20[ M ]+]。Anal.calcdfor C64H43N7(%):C 84.46,H 4.76,N 10.77;found:C 84.40,H 4.72,N 10.75。
Example 6: synthesis of Compounds 3-21
(Synthesis of intermediate M8)
The synthetic route for intermediate M8 is shown below:
to a clean 250mL three-necked flask, 4.3g (10mmol) of M7, 4.2g (40mmol) of anhydrous sodium carbonate, 6.5g (25mmol) of 2-bromodibenzothiophene, 115.4mg (0.1mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added under nitrogen, and the system was heated to reflux and reacted overnight under reflux. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 4: 1(V/V)) to obtain 4.6g of a yellow solid in 85% yield. Ms (ei): m/z: 544.59[ M ]+]。Anal.calcd for C37H20OS2(%):C 81.59,H 3.70;found:C 81.54,H 3.68。
(Synthesis of Compounds 3 to 21)
The synthetic route for compounds 3-21 is shown below:
to a dry, clean, 250mL three-necked flask, 2.9g (8.9mmol) of 2-bromotriphenylamine and 150mL of anhydrous tetrahydrofuran were added under nitrogen, and dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 4.4g (8.1mmol) of M8 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a white solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction, the heating was turned off, the reaction mixture was cooled to room temperature, poured into ice water, and filtered to obtain a white solid. CoarseThe product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane: 5: 1(V/V)) to give 5.2g of white crystals in 84% yield. MS (EI) M/z 771.20[ M ]+]。Anal.calcdfor C55H33NS2(%):C 85.57,H 4.31,N 1.81;found:C 85.50,H 4.30,N 1.80。
Example 7: synthesis of Compounds 3 to 27
(Synthesis of intermediate M9)
The synthetic route for intermediate M9 is shown below:
to a clean 250mL three-necked flask, 4.3g (10mmol) of M6, 4.2g (40mmol) of anhydrous sodium carbonate, 9.7g (25mmol) of 2- (4-bromophenyl) -4, 6-diphenyl-1, 3, 5-triazine, 115.4mg (0.1mmol) of tetrakis (triphenylphosphine palladium), and 100mL of a mixed solvent (toluene: water: ethanol ═ 5: 1: 1(V/V)) were sequentially added under nitrogen, and the system was heated to reflux and reacted overnight under reflux. After the reaction is finished, stopping heating, and automatically cooling the reaction system to room temperature. The reaction solution was poured into about 200mL of water and extracted with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane 4: 1(V/V)) to obtain 6.7g of a yellow solid in 85% yield. Ms (ei): m/z: 794.59[ M ]+]。Anal.calcd for C55H34N6O(%):C 83.10,H 4.31,N 10.57;found:C83.01,H 4.30,N 10.51。
(Synthesis of Compounds 3 to 27)
The synthetic routes for compounds 3-27 are shown below:
to a dry, clean, 250mL three-necked flask, 2.9g (8.9mmol) of 2-bromotriphenylamine and 150mL of anhydrous tetrahydrofuran were added under nitrogen, and dissolved with stirring at room temperature. The system was cooled to-78 ℃ and 3.9mL (2.5M, 9.8mmol) of n-butyllithium were added dropwise at this temperature and stirring continued at this temperature for 1.5 h. 6.4g (8.1mmol) of M9 were then added in one portion, the cold bath was removed after addition, the reaction warmed to room temperature by itself and stirring was continued overnight. And after the reaction is finished, washing with water, drying and spin-drying to obtain a green solid.
The white solid was transferred to a 250mL single-neck flask equipped with a reflux condenser, 100mL glacial acetic acid was added and heated to reflux, 3mL concentrated HCl was added dropwise, and the reaction was continued under reflux overnight. After the reaction is finished, the heating is closed, the reaction solution is cooled to room temperature, poured into ice water, and filtered to obtain a green solid. The crude product was further purified by column chromatography (350 mesh silica gel, eluent petroleum ether: dichloromethane ═ 5: 1(V/V)) to give 6.9g of green crystals in 84% yield. MS (EI) M/z 1021.20[ M ]+]。Anal.calcd for C73H47N7(%):C 85.77,H 4.63,N 9.59;found:C 85.65,H 4.61,N 9.55。
Example 8: preparation of organic electroluminescent device 1 (organic EL device 1)
A hole injection layer 3, a hole transport layer 4, an electron blocking layer 5, a light emitting layer 6, a hole blocking layer 7, an electron transport layer 8, an electron injection layer 9 and a cathode 10 were sequentially formed on a transparent anode 2 previously formed on a glass substrate 1 to prepare an organic electroluminescent device as shown in fig. 3.
Specifically, a glass substrate on which an ITO film having a film thickness of 100nm was formed was subjected to ultrasonic treatment in Decon 90 alkaline cleaning solution, rinsed in deionized water, washed three times in acetone and ethanol, baked in a clean environment to completely remove moisture, washed with ultraviolet light and ozone, and bombarded on the surface with a low-energy cation beam, the glass substrate with an ITO electrode was placed in a vacuum chamber, and evacuated to 4 × 10-4-2×10-5Pa. Then, 2,3,6,7,10, 11-hexacyano-1, 4,5,8,9, 12-hexaazatriphenylene (HAT-CN) was deposited on the ITO electrode-equipped glass substrate at a deposition rate of 0.2 nm/sec to form a layer having a film thickness of 10nm as a hole injection layer. The compound (compounds 3 to 21) of example 6 was vapor-deposited on the hole injection layer at a vapor deposition rate of 0.2nm/s to form a layer having a thickness of 30nm as a hole transport layer.The compound (compound 1-41) of example 1 was vapor-deposited on the hole-transporting layer at a vapor deposition rate of 0.2nm/s to form a layer having a thickness of 10nm as an electron-blocking layer. On the electron blocking layer, double-source co-evaporation was performed at a deposition rate of 0.2nm/s for the compound of example 1 (compound 1-41) as a host material and at a deposition rate of 0.2nm/s for GD1 as a dopant material to form a layer having a thickness of 20nm as a light-emitting layer, and the doping weight ratio of GD1 was 8 wt%. The compound (compound 2-23) of example 3 was vapor-deposited on the light-emitting layer at a vapor deposition rate of 0.2nm/s to form a layer having a thickness of 10nm as a hole-blocking layer. The compound (compound 2-23) of example 3 was vapor-deposited on the hole-blocking layer at a vapor deposition rate of 0.2nm/s to form a layer having a thickness of 40nm as an electron-transporting layer. On the electron transport layer, 8-hydroxyquinoline-lithium (Liq) was vapor-deposited at a vapor deposition rate of 0.02nm/s to form a layer having a film thickness of 2nm as an electron injection layer. Finally, aluminum is vapor-deposited at a vapor deposition rate of 0.5nm/s or more to form a cathode having a film thickness of 100 nm.
Examples 9 to 16: preparation of organic EL devices 2 to 9
An organic EL device was produced under the same conditions as the organic EL device 1 except that the compounds in table 1 below were used instead of the compounds in each layer of example 8, respectively.
Comparative examples 1 to 2: preparation of organic EL device comparative examples 1 to 2
Comparative examples of organic EL devices were prepared under the same conditions as the organic EL device 1 except that the compounds in table 1 below were used instead of the compounds in each layer of example 8, respectively.
The examples and comparative examples relate to the following structures of compounds:
TABLE 1
The light emission characteristics of the organic EL devices 1 to 9 produced in examples 8 to 16 and the organic EL devices produced in comparative examples 1 to 2 were measured when a dc voltage was applied in the atmosphere at normal temperature. The measurement results are shown in table 2.
The current-luminance-voltage characteristics of the device were obtained from a Keithley source measuring system (Keithley 2400Sourcemeter, Keithley 2000Currentmeter) with calibrated silicon photodiodes, the electroluminescence spectra were measured by a Photo research PR655 spectrometer, and the external quantum efficiencies of the devices were calculated by the method of the documents adv.mater, 2003,15, 1043-.
The lifetime of the device was measured as: the emission luminance (initial luminance) at the start of light emission was set to 10000cd/m2Constant current driving is performed until the light emission luminance decays to 9000cd/m2(corresponding to 90%, where the initial brightness is taken as 100%: 90% decay). Device lifetime with GD1 as dopant is in the order of 10000cd/m2For initial luminance, attenuation is to 9000cd/m2(corresponding to 90%, where the initial brightness is taken as 100%: 90% decay). The lifetime of the device with BD1 as the dopant was 5000cd/m2For initial luminance, decay to 4500cd/m2(corresponding to 90%, where the initial brightness is taken as 100%: 90% decay). All devices were encapsulated in a nitrogen atmosphere.
TABLE 2
As can be seen from Table 2, the fluorene compounds of the present invention obtained excellent performance data.
Organic EL device comparative example 1 and organic EL device 3 each used BD1 as a dopant, and the constituent materials of the hole transport layer, host material, and electron transport layer of the organic EL device 3 were compounds 3 to 21, compounds 1 to 41, and compounds 2 to 23 of the present invention. The comparison of device performance data shows that the organic EL device 3 has lower working voltage, the external quantum efficiency is relatively improved by more than 3 times, the service life (90%) of the device is also obviously improved, and the service life is changed from 2h to 640 h.
In addition, the organic EL device of comparative example 2 and the organic EL device 7 each used GD1 as a dopant, and the hole transport material, the host material, and the electron transport material of the organic EL device 7 were compounds 2 to 40, compounds 1 to 41, and compounds 3 to 23 of the present invention, and as can be seen from a comparison of the device performance data, the organic EL device 7 had a longer device life.
Further, fig. 2 is an organic electroluminescence spectrum of the organic EL devices 1 to 3 and 8 of the present invention. As can be seen from fig. 2, it has a strong emission intensity, in which the organic EL device 3 employs the blue fluorescent material BD1 as a guest, and its blue light peak is at 455nm and has a very narrow half-peak width, demonstrating that the color purity of its blue light is high.
In addition, the organic EL devices 8 and 9 respectively adopt the compounds 3 to 23 and 3 to 27 as dopants, which are very good in blue light efficiency and lifetime, and prove to have application prospects as guest luminescent materials.
Compared with the common materials in the prior art, the fluorene compound can effectively reduce the working voltage, improve the external quantum efficiency and prolong the service life of devices.
Industrial applicability
The fluorene compound of the present invention has excellent luminous efficiency and life characteristics, and a low driving voltage. Therefore, an organic electroluminescent device having an excellent lifetime can be prepared from the compound.
Claims (10)
1. A fluorene compound represented by the following general formula (1):
wherein L is1And L2Each independently represents one or more of a single bond, a carbonyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 5 to 18 carbon atoms;
Ar1~Ar4each independently represents a hydrogen atom, a cyano group or optionally substituted by one or more R1Substituted, aromatic hydrocarbon radical having 6 to 30 carbon atoms or optionally substituted by one or more R1One or more substituted aromatic heterocyclic groups having 5 to 30 carbon atoms;
z represents CR1Or N;
m represents C (R)1)2Or a group represented by any one of the following structural formulae (a) to (E):
wherein the dotted line represents a bond;
x represents an alkyl group having 1 to 8 carbon atoms or a single bond;
y represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond;
w represents C (R)1)2、NR1、O、S、SO2、P(=O)R1、Si(R1)2、Ge(R1)2Or a single bond;
R1represents a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, NO2、N(R2)2、OR2、SR2、C(=O)R2、P(=O)R2、Si(R2)3One or more of a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 40 carbon atoms;
R2represents hydrogenOne or more of an atom, a deuterium atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 carbon atoms;
z in the structural formulae (B) to (E) has the meaning as defined in the general formula (1).
4. The fluorene-based compound according to any one of claims 1 to 3,
L1and L2Each independently represents one or more of a single bond, a carbonyl group, a phenyl group, a triazinyl group or a biphenyl group;
R1and R2Each independently represents one or more of phenyl, biphenyl, terphenyl, quaterphenyl, pentabiphenyl, benzothienocarbazole, benzofurocarbazole, benzofluorenocarbazole, benzanthracene, triphenylene, fluorenyl, spirobifluorenyl, triazinyl, dibenzofuranyl, dibenzothiophenyl, carbazolyl, N-phenylcarbazolyl, indenocarbazolyl, benzimidazolyl, diphenyl-oxadiazolyl, diphenyl boron group, triphenyl phosphoxy, diphenyl phosphoxy, triphenyl silicon group, or tetraphenyl silicon group.
6. an electronic device comprising the fluorene-based compound according to any one of claims 1 to 5.
7. The electronic device according to claim 6, wherein the electronic device is an organic electroluminescent device, an organic field effect transistor, or an organic solar cell;
wherein the organic electroluminescent device comprises: a first electrode, a second electrode provided so as to face the first electrode, and at least one organic layer interposed between the first electrode and the second electrode, wherein the at least one organic layer contains the fluorene-based compound according to any one of claims 1 to 5.
8. The electronic device of claim 7, wherein the at least one organic layer is a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, a hole blocking layer, or an electron transport layer.
9. Use of the fluorene compound according to any one of claims 1 to 5 as a light emitting material, an electron transporting material, an electron blocking material, a hole injecting material or a hole blocking material in an electronic device.
10. Use according to claim 9, characterized in that the electronic device is an organic electroluminescent device, an organic field effect transistor or an organic solar cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010641172.2A CN111635391A (en) | 2020-07-06 | 2020-07-06 | Fluorene compound and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010641172.2A CN111635391A (en) | 2020-07-06 | 2020-07-06 | Fluorene compound and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111635391A true CN111635391A (en) | 2020-09-08 |
Family
ID=72326033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010641172.2A Pending CN111635391A (en) | 2020-07-06 | 2020-07-06 | Fluorene compound and electronic device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111635391A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111635413A (en) * | 2020-06-12 | 2020-09-08 | 苏州大学 | Compound, organic electronic device comprising same, and display device or lighting device |
CN112094170A (en) * | 2020-09-29 | 2020-12-18 | 苏州久显新材料有限公司 | Fluorene compound and light emitting device thereof |
CN113087675A (en) * | 2021-03-29 | 2021-07-09 | 武汉华星光电半导体显示技术有限公司 | Organic compound, manufacturing method thereof and display panel |
CN113149912A (en) * | 2021-04-01 | 2021-07-23 | 苏州久显新材料有限公司 | Cycloalkanepyrimidine derivative and preparation method and application thereof |
CN115433233A (en) * | 2021-06-03 | 2022-12-06 | 黑龙江大学 | Aromatic phosphine thermal-oxidative excitation delayed fluorescence host material containing spiroacridine group and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109734608A (en) * | 2018-11-29 | 2019-05-10 | 宇瑞(上海)化学有限公司 | A kind of organic compound and its organic electroluminescence device using the compound |
CN109761877A (en) * | 2018-11-29 | 2019-05-17 | 宇瑞(上海)化学有限公司 | A kind of organic compound and its organic electroluminescence device using the compound |
CN110612293A (en) * | 2017-07-10 | 2019-12-24 | 株式会社Lg化学 | Novel compound and organic light emitting device comprising the same |
CN111217715A (en) * | 2018-11-26 | 2020-06-02 | 常州强力电子新材料股份有限公司 | Diarylamine substituted spirobifluorene compound and application thereof in OLED device |
-
2020
- 2020-07-06 CN CN202010641172.2A patent/CN111635391A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110612293A (en) * | 2017-07-10 | 2019-12-24 | 株式会社Lg化学 | Novel compound and organic light emitting device comprising the same |
CN111217715A (en) * | 2018-11-26 | 2020-06-02 | 常州强力电子新材料股份有限公司 | Diarylamine substituted spirobifluorene compound and application thereof in OLED device |
CN109734608A (en) * | 2018-11-29 | 2019-05-10 | 宇瑞(上海)化学有限公司 | A kind of organic compound and its organic electroluminescence device using the compound |
CN109761877A (en) * | 2018-11-29 | 2019-05-17 | 宇瑞(上海)化学有限公司 | A kind of organic compound and its organic electroluminescence device using the compound |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111635413A (en) * | 2020-06-12 | 2020-09-08 | 苏州大学 | Compound, organic electronic device comprising same, and display device or lighting device |
CN111635413B (en) * | 2020-06-12 | 2023-08-01 | 苏州大学 | Compound, organic electronic device including the same, and display device or lighting device including the same |
CN112094170A (en) * | 2020-09-29 | 2020-12-18 | 苏州久显新材料有限公司 | Fluorene compound and light emitting device thereof |
CN112094170B (en) * | 2020-09-29 | 2023-04-18 | 苏州久显新材料有限公司 | Fluorene compound and light emitting device thereof |
CN113087675A (en) * | 2021-03-29 | 2021-07-09 | 武汉华星光电半导体显示技术有限公司 | Organic compound, manufacturing method thereof and display panel |
WO2022205587A1 (en) * | 2021-03-29 | 2022-10-06 | 武汉华星光电半导体显示技术有限公司 | Organic compound and production method therefor, and display panel |
CN113149912A (en) * | 2021-04-01 | 2021-07-23 | 苏州久显新材料有限公司 | Cycloalkanepyrimidine derivative and preparation method and application thereof |
CN115433233A (en) * | 2021-06-03 | 2022-12-06 | 黑龙江大学 | Aromatic phosphine thermal-oxidative excitation delayed fluorescence host material containing spiroacridine group and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109761822B (en) | Fluorene derivative and electronic device | |
CN111647009B (en) | Boron-containing compound and electronic device thereof | |
CN110903311B (en) | Polycyclic organoboron derivatives and electronic devices | |
CN111057005A (en) | Fluorene derivative and electronic device | |
CN111056960A (en) | Fluorene derivative and electronic device | |
CN110981899B (en) | Polycyclic organoboron derivatives and electronic devices | |
CN111056959A (en) | Fluorene derivative and electronic device | |
CN110835328A (en) | Spirobenzofluorenone derivatives and electronic devices | |
CN111635391A (en) | Fluorene compound and electronic device | |
CN111647010A (en) | Polycyclic boron-containing compound and electronic device thereof | |
CN110776496A (en) | 3, 4-diazaspiro fluorene derivative and synthesis method thereof, and electronic device containing 3, 4-diazaspiro fluorene derivative | |
CN110950829A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN111393436A (en) | Phenanthroazanaphthalene derivative, preparation method thereof and electronic device | |
CN110818635A (en) | Spirobenzofluorenone derivatives and electronic devices | |
CN113999256A (en) | Boron-containing organic compound and light-emitting device | |
CN111018783A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN110950763A (en) | Spirobenzanthrone derivatives and electronic devices | |
CN111533736A (en) | Azainaphthalene derivatives, synthesis method thereof and electronic device thereof | |
CN111574519A (en) | Closed-loop triphenylamine compound and electronic device | |
CN110746406A (en) | 3, 4-diazafluorenone derivatives, method for synthesizing the same, and electronic device containing the 3, 4-diazafluorenone derivatives | |
CN111333657A (en) | Azainaphthalene derivative, preparation method thereof and electronic device | |
CN114195813A (en) | Boron-containing fused ring compound and electronic device | |
CN110627834A (en) | Phosphaphenanthridinone derivatives, synthesis method thereof, and electronic device containing the same | |
CN110698430A (en) | Thiaphenanthrone derivative, method for synthesizing the same, and electronic device containing the same | |
CN110698400A (en) | Phenanthridinone derivative, synthesis method thereof and electronic device containing phenanthridinone derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200908 |