CN111632143A - 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用 - Google Patents

一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用 Download PDF

Info

Publication number
CN111632143A
CN111632143A CN202010599724.8A CN202010599724A CN111632143A CN 111632143 A CN111632143 A CN 111632143A CN 202010599724 A CN202010599724 A CN 202010599724A CN 111632143 A CN111632143 A CN 111632143A
Authority
CN
China
Prior art keywords
polypyrrole
ppy
metal organic
organic framework
iron metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010599724.8A
Other languages
English (en)
Inventor
刘辉
徐路恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010599724.8A priority Critical patent/CN111632143A/zh
Publication of CN111632143A publication Critical patent/CN111632143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及一种聚吡咯‑铁金属有机框架复合纳米颗粒的制备及应用,包括:以聚吡咯为核,以MIL‑100(Fe)为壳,制备了一种尺寸均匀的聚吡咯‑铁金属有机框架复合纳米颗粒;对所得最终产品进行体外性能评价。本发明方法简单易行,制备得到的聚吡咯‑铁金属有机框架复合纳米颗粒具有良好的近红外光响应能力,具备光热转化的潜力,且可以有效产生羟基自由基,有望实现肿瘤的光热/化学动力联合治疗。

Description

一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用
技术领域
本发明属于肿瘤治疗剂制备领域,特别涉及一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用。
背景技术
由于肿瘤发展的复杂性和多样性,肿瘤的有效治疗对全世界的临床医生和研究人员来说仍然是一个巨大的挑战。纳米医学平台具有体积小、成本低、生物相容性好、生物降解性好、特别是多功能性的优点,在新型癌症治疗方法的开发中受到了广泛的关注。光热转化纳米颗粒(Nanoparticles,NPs)可在近红外(Near infrared,NIR)光的照射下实施光热治疗(Photothermal therapy,PTT),选择性杀伤肿瘤细胞并且不损伤周围健康组织,在替代放射治疗和化学治疗等传统癌症治疗方法方面显示出了巨大的潜力。由于近红外光具有局部聚焦于特定区域的能力,且正常组织和细胞吸收近红外光的能力较弱,因此近红外光(650−900 nm)可以对较深的组织进行无创渗透。到目前为止,已有多种性能优良的光热转化剂被研究和报道,其中基于聚合物的光热转化剂因其良好的生物相容性而受到广泛的关注。值得一提的是,聚吡咯(Polypyrrole,PPy)纳米颗粒具有优良的光热稳定性、较强的近红外光吸收能力和较高的光热转化效率,在体内外光热治疗癌症方面有很大的应用潜力。以聚乙烯醇(Polyvinyl alcohol,PVA)为稳定剂,可以实现聚吡咯纳米颗粒(PPy NPs)的可控制备。
然而,以前的研究大多集中在PPy NPs的合成方法上,并且使用单纯的PPy NPs作为光热转化剂。将两种或两种以上的治疗方法结合在单一的药物传递纳米平台上,比单一治疗更能提高治疗效果,这在纳米医学领域引起了广泛的关注。例如,与单纯化疗或PTT相比,PTT联合化疗可进一步提高抗癌效率。因此,设计一种不仅可以携带化疗药物分子,还可以利用光热转化剂通过光热效应杀死癌细胞的多功能医学纳米平台,是一个非常理想的研究方向。单纯的PPy NPs难以实现化疗联合光热治疗,是因为缺乏装载抗癌药物的结构。通过给PPy NPs包覆上多孔外壳就可以装载抗癌药物来提供额外的化学治疗功能。例如,在之前的报告中已经制备出了聚吡咯@聚丙烯酸/荧光介孔二氧化硅纳米颗粒作为化学动力/光热联合治疗的药物载体。
金属有机框架(Metal-organic frameworks,MOFs)是由金属离子与有机配体配位构筑而成的一种具有特殊性质的纳米尺寸骨架材料。作为一种新兴的自组装多孔结构材料, MOFs因其超高的孔隙率和极高的比表面积而受到广泛的关注。目前,大多数的研究工作都是为了制备新的MOFs结构和探索它们的各种应用,但化学稳定性差等缺点阻碍了它的广泛应用。近年来,将具有MOFs和其它功能材料进行结合,被认为是一条结合两种材料优点的有效途径。为此,各种无机或有机纳米颗粒被用于制备MOFs复合材料,包括量子点、金属/金属氧化物NPs、聚合物、石墨烯、碳纳米管等。一方面,具有超高孔隙率和较大比表面积的MOFs是独特的纳米载体平台。另一方面,该材料具有独特的光学、电学、磁性和催化性能等优点也可以引入到复合材料中。因此,将MOFs与功能材料相结合,可以创造出新型的多功能复合材料。在这个基础上,铁(III)基羧酸盐材料构建的MOFs(MIL-100(Fe))因具有良好的生物相容性、高孔隙率和pH响应药物释放能力等特性,成为化疗药物储存和控释的独特候选材料。因此,利用具有高光热转化效率和良好生物相容性的PPy NPs设计多功能MOFs纳米载体,进行化学动力/光热联合治疗,是一种有效可行的策略。
检索国内外有关聚吡咯纳米颗粒用于癌症治疗方面的文献和专利结果发现:在本发明完成之前,还没有发现一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及其化学动力/光热联合治疗方面的研究报道。
发明内容
本发明所要解决的技术问题是提供一种聚吡咯-铁金属有机框架复合纳米颗粒的制备方法,该方法制备过程温和,简单易行,制备得到的聚吡咯-铁金属有机框架复合纳米颗粒具有良好的近红外光响应能力,具备光热转化的潜力,且可以有效产生羟基自由基,有望实现肿瘤的光热/化学动力联合治疗。
本发明以聚乙烯醇为稳定剂制备聚吡咯纳米颗粒PPy,随后以PPy表面吸附的Fe(III)离子为MIL-100(Fe)的生长反应位点,制备得到以PPy为核,以MIL-100(Fe)为壳的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe) NPs。本发明涉及了两个基本原理:
(1)利用氧化剂三氯化铁为金属位点,在聚吡咯表面原位生长金属有机框架。
(2)所得金属有机框架可以极大提高纳米颗粒的比表面积,利用抗癌药物负载。
一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于,包括如下步骤:
(1)将聚乙烯醇PVA置于反应瓶中,并加入去离子水加热溶解10 min;再加入六水三氯化铁FeCl3·6H2O,然后将反应瓶置于装有足量水的皿中,在磁力搅拌条件下滴加配好的三氯化铁溶液,进行水浴反应1 h;然后在上述反应溶液中,在冰浴条件下加入吡咯单体,聚合立即开始;继续冰浴进行4 h的氧化聚合反应,离心纯化后得到聚吡咯纳米颗粒PPy;
(2)在均苯三甲酸H3btc溶液存在下,以PPy表面吸附的Fe(III)离子为MIL-100(Fe)的生长反应位点,制备得到以PPy为核,以MIL-100(Fe)为壳的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe);按照PPy NPs:H3btc = 1:1的质量比,取出相应量的聚吡咯纳米颗粒PPy置于反应瓶中,将反应瓶置于磁力加热搅拌器进行加热搅拌反应;透析纯化得到最终的产物聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe)。
进一步,所述步骤(1)中聚乙烯醇的Mw为9-10 K,加入三氯化铁和吡咯单体后反应体系中聚乙烯醇的最终浓度为8 mg/mL。
进一步,所述步骤(2)中加热反应温度为70 oC,反应时间为30 min。
进一步,所述步骤(2)中纯化方法为透析法,透析时间为24 h,换水间隔为4、8、12h。
进一步,所述步骤(2)中H3btc溶液的溶剂为无水乙醇。
进一步,根据上述聚吡咯-铁金属有机框架复合纳米颗粒的制备方法,得到稳定的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe)。
进一步,聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe),作为光热转化剂/芬顿催化剂,具有潜在的肿瘤光热/化学动力联合治疗应用潜力。
有益效果
(1)本发明的制备过程简单易行;
(2)本发明方法制备的聚吡咯-铁金属有机框架复合纳米颗粒具有良好的光热效应和羟基自由基产生能力。
附图说明
图1为实施例1制备的PPy和PPy@MIL-100(Fe)的水合粒径和表面电势数据。
图2为实施例2中的PPy和PPy@MIL-100(Fe)的电镜照片。
图3为实施例3中的PPy和PPy@MIL-100(Fe)的紫外-可见-近红外吸收光谱。
图4为实施例4中的PPy@MIL-100(Fe)在有过氧化氢和无过氧化氢存在条件下,以亚甲基蓝为探针,产生羟基自由基的测试结果。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
称取158.6 mg的聚乙烯醇(Polyvinyl alcohol,PVA)置于反应瓶中,并加入13.217 mL的去离子水加热溶解10 min。再称量1239.3 mg的六水三氯化铁(Ferric chloridehexahydrate,FeCl3·6H2O),然后将反应瓶置于装有足量水的皿中,在磁力搅拌条件下滴加配好的三氯化铁溶液,进行水浴反应1 h。然后在上述反应溶液中,在冰浴条件下加入137.7μL吡咯单体,聚合立即开始。继续冰浴搅拌,进行4 h的氧化聚合反应,离心纯化后得到聚吡咯纳米颗粒。按照PPy NPs:H3btc = 1:1的质量比,取出相应量的PPy溶液置于反应瓶中,将反应瓶置于磁力搅拌器进行加热搅拌反应。透析纯化得到最终的产物PPy@MIL-100(Fe)NPs。
激光粒度仪(DLS)测试结果显示了所得复合纳米颗粒的水动力学尺寸及其电势。参照说明书附图1。图1表明PPy的水合粒径为80.4 ± 2.2 nm,PPy@MIL-100(Fe)的水合粒径为82.7 ± 2.8 nm,同时PPy的电势电位为23.9 ± 2.7 mV,PPy@MIL-100(Fe)的电势电位为-3.7 ± 0.6 mV;
实施例2
取实施例1制备的PPy@MIL-100(Fe)纳米颗粒,通过透射电子显微镜观察产物的形貌。如图2a所示,PPy呈球形,粒径均匀,分散性良好。如图2b所示,在PPy NPs表面覆上一层MIL-100(Fe)后得到PPy@MIL-100(Fe) NPs形貌也呈球形,粒径均匀,但分散性略有降低。
实施例3
取实施例1制备的PPy@MIL-100(Fe)纳米颗粒,分散于蒸馏水中,测试产物的吸收光谱。从紫外-可见-近红外吸收光谱图(图3)可以看出,两种纳米颗粒都能吸收近红外光,有光热转化潜力,吸收峰位没有太大变化,而吸收峰值的变化可能与样品的浓度相关。
实施例4
取实施例1制备的PPy@MIL-100(Fe)纳米颗粒,分别置于存在和不存在过氧化氢的环境中,0、1、2、3 h后以亚甲基蓝为探针检测羟基自由基的产生情况。从紫外-可见-近红外吸收光谱(图4a)可以看出,随着反应时间的延长,亚甲基蓝的吸收峰值逐渐降低。这是因为羟基自由基与亚甲基蓝作用后,会使亚甲基蓝的颜色减弱,吸光度降低。实验结果表明,PPy@MIL-100(Fe)在过氧化氢存在的情况下产生了羟基自由基。同时,PPy@MIL-100(Fe)与过氧化氢反应的时间越长,所产生的羟基自由基越多,使得亚甲基蓝的吸光度越低。图4b作为对照组,其结果显示在无过氧化氢时亚甲基蓝的紫外-可见-近红外吸收光谱没有发生变化,这表明PPy@MIL-100(Fe)在无过氧化氢时材料本身不会产生羟基自由基。由于肿瘤部位存在过量表达的过氧化氢,PPy@MIL-100(Fe)具有定点产生羟基自由基,利用强氧化性杀死肿瘤细胞的应用潜力。

Claims (7)

1.一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于,包括如下步骤:
(1)将聚乙烯醇PVA置于反应瓶中,并加入去离子水加热溶解10 min;再加入六水三氯化铁FeCl3·6H2O,然后将反应瓶置于装有足量水的皿中,在磁力搅拌条件下滴加配好的三氯化铁溶液,进行水浴反应1 h;然后在上述反应溶液中,在冰浴条件下加入吡咯单体,聚合立即开始;继续冰浴进行4 h的氧化聚合反应,离心纯化后得到聚吡咯纳米颗粒PPy;
(2)在均苯三甲酸H3btc溶液存在下,以PPy表面吸附的Fe(III)离子为MIL-100(Fe)的生长反应位点,制备得到以PPy为核,以MIL-100(Fe)为壳的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe);按照PPy NPs:H3btc = 1:1的质量比,取出相应量的聚吡咯纳米颗粒PPy置于反应瓶中,将反应瓶置于磁力加热搅拌器进行加热搅拌反应;透析纯化得到最终的产物聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe)。
2. 根据权利要求1所述的一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于:所述步骤(1)中聚乙烯醇的Mw为9-10 K,加入三氯化铁和吡咯单体后反应体系中聚乙烯醇的最终浓度为8 mg/mL。
3. 根据权利要求1所述的一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于:所述步骤(2)中加热反应温度为70 oC,反应时间为30 min。
4. 根据权利要求1所述的一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于:所述步骤(2)中纯化方法为透析法,透析时间为24 h,换水间隔为4、8、12 h。
5.根据权利要求1所述的一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,其特征在于:所述步骤(2)中H3btc溶液的溶剂为无水乙醇。
6.根据权利要求1-5所述的一种聚吡咯-铁金属有机框架复合纳米颗粒的制备,得到稳定的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe)。
7.根据权利要求6所述的聚吡咯-铁金属有机框架复合纳米颗粒PPy@MIL-100(Fe),作为光热转化剂/芬顿催化剂,具有潜在的肿瘤光热/化学动力联合治疗应用潜力。
CN202010599724.8A 2020-06-29 2020-06-29 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用 Pending CN111632143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010599724.8A CN111632143A (zh) 2020-06-29 2020-06-29 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010599724.8A CN111632143A (zh) 2020-06-29 2020-06-29 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用

Publications (1)

Publication Number Publication Date
CN111632143A true CN111632143A (zh) 2020-09-08

Family

ID=72323365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010599724.8A Pending CN111632143A (zh) 2020-06-29 2020-06-29 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用

Country Status (1)

Country Link
CN (1) CN111632143A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206221A (zh) * 2020-11-06 2021-01-12 大连理工大学 一种负载斑蝥素的巨噬细胞膜包封的金属有机框架纳米颗粒及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206221A (zh) * 2020-11-06 2021-01-12 大连理工大学 一种负载斑蝥素的巨噬细胞膜包封的金属有机框架纳米颗粒及其制备方法
CN112206221B (zh) * 2020-11-06 2021-10-15 大连理工大学 一种负载斑蝥素的巨噬细胞膜包封的金属有机框架纳米颗粒及其制备方法

Similar Documents

Publication Publication Date Title
Feng et al. Spherical mesoporous Fe-NC single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy
Wang et al. Boosting h2o2‐guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic fenton nanocatalysts and the second near‐infrared light irradiation
Li et al. ROS‐catalytic transition‐metal‐based enzymatic nanoagents for tumor and bacterial eradication
Zhao et al. Synthesis of metal–organic framework nanosheets with high relaxation rate and singlet oxygen yield
Xu et al. Self-assembly of a 3D hollow BiOBr@ Bi-MOF heterostructure with enhanced photocatalytic degradation of dyes
Geng et al. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic cancer therapy in the NIR-II window
Hua et al. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement
Zhou et al. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy
Geng et al. MOF-derived CuS@ Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy
Ye et al. Tumor response and NIR‐II photonic thermal co‐enhanced catalytic therapy based on single‐atom manganese nanozyme
Li et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells
Wang et al. Biodegradable hollow MoSe2/Fe3O4 nanospheres as the photodynamic therapy-enhanced agent for multimode CT/MR/IR imaging and synergistic antitumor therapy
Zhu et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold–silver nanocage heterostructures for antimicrobial applications
CN113368240B (zh) 一种二茂铁基金属有机框架纳米粒及其制备方法
CN110101858B (zh) 一种铂@聚多巴胺-二氢卟吩纳米复合材料及其制备方法和应用
Yao et al. π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework
He et al. Recent developments of inorganic nanosensitizers for sonodynamic therapy
Wang et al. Nanocarbon Framework-Supported Ultrafine Mo2C@ MoO x Nanoclusters for Photothermal-Enhanced Tumor-Specific Tandem Catalysis Therapy
Gao et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment
Yin et al. Recent development of MOF-based photothermal agent for tumor ablation
Liu et al. Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy
CN113332426B (zh) 一种硅载体内负载铁单原子的纳米治疗剂的制备方法、由此得到的纳米治疗剂及其应用
Shao et al. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy
CN111632143A (zh) 一种聚吡咯-铁金属有机框架复合纳米颗粒的制备及应用
Lv et al. Biodegradation Mn-CoS@ carbon di-shell nanoheterostructure with enhanced nanozymemediated phototherapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200908