CN111626496B - 一种柔性装配作业车间调度的混合优化方法 - Google Patents

一种柔性装配作业车间调度的混合优化方法 Download PDF

Info

Publication number
CN111626496B
CN111626496B CN202010446415.7A CN202010446415A CN111626496B CN 111626496 B CN111626496 B CN 111626496B CN 202010446415 A CN202010446415 A CN 202010446415A CN 111626496 B CN111626496 B CN 111626496B
Authority
CN
China
Prior art keywords
workpiece
population
task
scheduling
feasible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010446415.7A
Other languages
English (en)
Other versions
CN111626496A (zh
Inventor
张思成
张博文
李想
刘佳明
马红光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202010446415.7A priority Critical patent/CN111626496B/zh
Publication of CN111626496A publication Critical patent/CN111626496A/zh
Application granted granted Critical
Publication of CN111626496B publication Critical patent/CN111626496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06316Sequencing of tasks or work
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Educational Administration (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Factory Administration (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出一种柔性装配作业车间调度的混合优化方法,包括如下步骤:S1.确定柔性装配车间调度的已知信息和算法参数;S2.为工件添加标签以备后续使用;S3.利用问题的已知信息,生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码;S4.通过竞争从种群中选择一些个体,对其交叉和变异的基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解;S5.对于种群中的每个可行解,使用约束编程模型,优化加工顺序,形成新的解并更新种群;S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制。

Description

一种柔性装配作业车间调度的混合优化方法
技术领域
本发明属于生产运作管理领域,涉及一种解决动态柔性装配车间调度问题的方法,强调了各装配部件的柔性、非线性加工过程,多个相同部件的批次分拆问题,以及不同装配产品间的部件共享。
背景技术
伴随经济的快速发展,我国建成了种类齐全、独立完整的制造业体系,推动了工业化进程,其中智能制造工程受到学术界和产业界的广泛关注。调度问题是智能制造系统中的一类重要问题,也是学术研究的热点,主要关注人员、材料、机器等制造资源的利用,其目标是确定制造对象的加工路线、操作规程、时间安排等,同时满足加工工艺和资源的约束,尽可能高效地利用资源,实现降本增效。
由于生产规模的日益扩大和定制化生产的大量出现,制造系统正变得愈发复杂,其中的调度问题也呈现出诸多新的特点,如动态性、非线性、任务间存在约束、多目标并存、规模巨大等。以柔性装配作业车间调度问题为例,该问题的目标是制定一系列产品的生产计划,每个产品由多个复杂部件装配而成,不同产品间存在共同部件;每个部件需要经过非线性的加工路径生产出来(可能存在多种可行的加工方案),最后再由装配车间的装配机器组装成产品。该问题是调度问题中相当复杂的一类,与经典的作业车间调度、流水线调度均有共性,但又有很大的不同。首先,由于最终产品需要由部件装配而成,并且不同产品之间存在共同部件,因此需要对同一批次中的相同部件进行拆分,将其当成不同的任务,这与传统的作业车间调度中将相同工件处理成同一任务不同。其次,作业车间调度很少对最终的装配阶段加以考虑;相对而言,在流水线调度中,对于装配的考虑较为多见,然而后者往往忽略工件间加工路线的差异性和非线性,仍与实际的定制化生产过程存在差距。再者,以往多数研究基于静态环境,对于生产计划实际执行过程中出现的各种不确定因素考虑较少,例如机器故障、流水线阻塞、加工时间波动等等,这些因素将导致原先已经制定好的排程绩效显著降低,甚至变得不可行;而动态的装配环境要求各装配部件应在实际生产过程中被灵活取用,而非预先指定给特定产品,以排除不确定性带了的不利影响。以上这些是当前该领域学术研究的短板所在。
发明内容
为解决以上问题,本发明设计了一种柔性装配作业车间调度的混合优化方法,包含基因算法和约束编程的混合求解方法,包括以下步骤:
S1.确定柔性装配车间调度的已知信息和算法参数;
S2.为工件添加标签以备后续使用;
S3.利用问题的已知信息,生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码;
S4.通过竞争从种群中选择一些个体,对其交叉和变异的基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解;
S5.对于种群中的每个可行解,使用约束编程模型,优化加工顺序,形成新的解并更新种群;
S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制。
有益效果:
本发明充分考虑了装配作业车间调度的多种柔性因素,设计了一种对部件进行标签化的方法,从而可以方便地对共享装配部件的使用进行表述;在此基础上,使用约束编程方法建立了柔性装配作业车间调度问题的加工顺序优化进行了建模,结合基因算法,实现大规模问题的高效求解。
附图说明
图1约束编程中常用的四种区间变量函数;
图2约束编程函数span;
图3约束编程函数noOverlap;
图4混合求解算法流程图;
图5样例问题:工件加工路线图;
图6样例问题:工序处理时间;
图7样例问题的两个随机解及其对应的甘特图、任务序列及零件分配;
图8染色体基因操作——交叉;
图9染色体基因操作——变异;
图10使用约束编程模型优化加工顺序:优化前的解(制造周期=321);
图11使用约束编程模型优化加工顺序:优化后的解(制造周期=235);
图12样例问题最优解甘特图(制造周期=171)。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明设计了一种对部件进行标签化的方法,从而可以方便地对共享装配部件的使用进行表述;在此基础上,使用约束编程方法建立了柔性装配作业车间调度问题的加工顺序优化进行了建模,结合基因算法,实现大规模问题的高效求解。以下列出此类问题中常用的一些概念:
·工件:指单个基本零件,或是多个零件组合成的高级部件,或是最终产品;每个零件可由多种可能的加工路线完成,每条路线由多个工序组成;由于共同部件的存在,可存在多个同种类别完全一样的工件。工件类别以索引字母i表示,单个工件以索引字母j表示。
·工序:分两类,加工工序是指用来完成工件特征的步骤,例如切削、钻孔等;装配工序是指将多个工件组装在一起的步骤。以索引字母u表示一般工序,索引字母o表示虚拟工序。
·机器:分两类,加工机器执行加工工序,装配机器执行装配工序,以索引字母m表示。
·任务:定义为已分派机器的工序,即工序-机器对,以索引字母v=<uv,mv>表示,以jv表示其所属工件,uv表示其工序,mv表示其所用机器。
·次序约束:定义为形如<u,u′>的工序对,存在于两个工序间,表示工序u须在工序u′前完成。工序u为工序u′的前驱工序,工序u′为工序u的后续工序。
为实现上述目的,本发明设计了一种柔性装配作业车间调度的混合优化方法,包括基因算法和约束编程的混合求解方法,参见图4,具体包括以下步骤:
S1.确定柔性装配车间调度的已知信息和算法参数;
S2.为工件添加标签以备后续使用;
S3.利用问题的已知信息,生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码;
S4.通过竞争从种群中选择一些个体,对其交叉和变异等基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解;
S5.对于种群中的每个可行解,使用约束编程模型,优化加工顺序,形成新的解并更新种群;
S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制。
各个详细步骤如下:
S1.确定柔性装配车间调度的已知信息和算法参数;
S1.1确定已知信息
Figure GDA0002561863670000041
工件集合;
Figure GDA0002561863670000042
机器集合;
Figure GDA0002561863670000043
工序集合;
Figure GDA0002561863670000044
任务集合;
Figure GDA0002561863670000045
次序约束集合,
Figure GDA0002561863670000046
Pv任务v所需的处理时间;
Sm,u,u′机器m在处理工序u后,继续处理工序u′所需准备时间,需包括所有的Sm,o,u,即u为m处理的首个工序时所需的准备时间;
Tj,m,m′工件j从机器m转移到m′所需时间。
S1.2确定算法参数
K种群大小;
rc交叉率;
rm变异率;
Tmax最大运行时间;
Imax最大迭代次数。
S2.为工件添加标签以备后续使用
本步骤分为两部分。首先为每个工件j添加标签<Lj,Rj>,而后可通过标签获取工件所需要的各组件类型和数量,在后续约束编程模型中使用,用以保证每个组装工件恰好用到所需数量的部件,见步骤S5:S5.1.3约束(8)。
S2.1为每个工件添加标签;
S2.1.1对于各类别i的工件,设ni,i′为另一类别i′工件所需要的类别i组件的数量,令
Figure GDA0002561863670000051
S2.1.2将工件类别按照Ni非降序排列;按此序列,所有Li=0的类别,Li=0;其后首个Ni≠的类别,其标签Li=1;其后类别,按照Li+1=(Ni+1)Li赋值;
S2.1.3对所有类别i,
Figure GDA0002561863670000052
S2.1.4最后,按照类型为工件添加标签值:对每个类型为i的工件j,令Lj=Li,Rj=Ri
S2.2从Rj的取值获知工件j所需要的各组件类型和数量;
S2.2.1按照类别从最大的li开始检视,找到满足Li<Rj的最大Li,这意味着工件j需要类别i的组件;
S2.2.2执行Rj=Rj-Li,若仍有Rj≥Li,则继续执行直到Rj<Li,记录执行次数ki,可知工件j需要ki个类别i的组件;
S2.2.3若Rj=0则终止,否则返回步骤1。当Rj=0时,即获得类别i的工件所需的全部类型的组件及其数量。
S3.生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码
S3.1按照以下步骤,生成一个随机解:
S3.1.1初始化一个空的可选任务集
Figure GDA0002561863670000053
和一个空的可用工件集
Figure GDA0002561863670000054
对所有无前驱工序的工序
Figure GDA0002561863670000055
将其所有可选机器对应的任务加入其中;
S3.1.2随机选择一个任务加入排程,然后将这个任务对应工序的其他任务移出可选任务集
Figure GDA0002561863670000056
若该工序有后续工序,则将其所有任务加入
Figure GDA0002561863670000057
S3.1.3重复上述过程,若某个工件的某条加工路线上的所有工序均已完成,则意味着该工件已完成,将其加入
Figure GDA0002561863670000058
检视所有以该工件为部件的高级工件或产品所需的组件,可选任务集中已有足够的部件组装若某个高级工件或产品,则将此装配工序的任务加入可选任务集
Figure GDA0002561863670000059
并将消耗的部件移出
Figure GDA00025618636700000510
S3.1.4循环进行前两个步骤,直至可选任务集
Figure GDA00025618636700000511
为空,此时即生成一个问题的可行解。
S3.2继续生成更多的可行解,共计K个,构成基因算法初始种群。
S3.3对种群中的每个个体,将其排程中的任务按开始时间先后排序,生成任务序列,即为编码后的染色体,用于后续的基因算法操作。
S4.通过竞争从种群中选择一些个体,对其交叉和变异等基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解
S4.1竞争:将种群中的个体按照目标函数适应度排序,并按照以下机制之一选出发生交叉与变异的染色体。可以采用随机选择、高适应度优先、低适应度优先、对半匹配等机制,视具体问题而定。
S4.2交叉:发生在一对染色体(p1,p2)之间。
S4.2.1对每个工件
Figure GDA0002561863670000061
按照一定的概率(即交叉率)进行标记;
S4.2.2复制p1作为子染色体c1,对于其中属于被标记的工件的任务,使用p2中的相应部分替换,其余部分保留;同理得到另一个子染色体c2
S4.3变异:发生在单独一条染色体c上。
S4.3.1对于c上的每个任务,按照一定的概率(即变异率)进行标记;
S4.3.2对于被标记任务的工序,改变其机器选择,即得到变异后的染色体c′。
S4.4对每个新生成的染色体进行解码,将其上所有任务按顺序放入排程,即得新的可行解,将获得的新的可行解加入种群。
S5.对于种群中的每个可行解,使用约束编程模型,优化加工顺序,形成新的解并更新种群
约束编程(constraint programming,也称约束规划)是一种较为新颖的数学建模和编程范式,其核心思想是将原优化问题转化为一个约束满足问题:首先确定变量的可行域,用约束来描述变量之间的关系,使用一部分约束来缩减变量取值范围,检验另一部分约束是否满足。值得一提的是,除了常见的整型、浮点型、布尔型以外,约束编程还允许使用“区间”类型的变量,包含数个属性,常用的主要有四种:开始startOf(数值)、结束endOf(数值)、尺度sizeOf(数值)和存在性presenceOf(布尔值),此外还可以使用noOverlap、span等区间约束函数表示区间变量之间的关系,参见附图1~3。
图1约束编程中常用的四种区间变量函数:
startOf(πv)、endOf(πv)分别返回区间πv的开始时间、结束时间,presenceOf(πv)返回其长度,presenceOf(πv)返回其在排程中存在性。如图1所示,区间πv、πv′的存在性为取值1,πv″的存在性为0,意味着任务v″实际上未被执行。startOf、endOf函数可加上第二个参数t,加上后形如startOf(πv,t)、endOf(πv,t),表示该函数在区间πv不存在时返回t值,用于在区间变量不存在时松弛约束,如模型中的约束(5),若πv不存在,则该约束变为
Figure GDA0002561863670000071
总是成立。显然,对任意区间变量πv,若presenceOf(πv)取值为1,则有startOf(πv)+sizeOf(πv)=endOf(πv)。
图2约束编程函数span:该函数有两个输入参数,第一个为一个区间变量,第二个为一组区间变量的集合,定义如下约束:使得第一个参数区间变量与第二个参数中所有区间变量中最先开始的一个同时开始,与最后结束的同时结束。如图2所示,假设v、v′、v″均为工件j的任务,则span(τj,(πv,πv′,πv″})使得τj与最先开始的v″同时开始,与最后结束的v′同时结束。
图3约束编程函数noOverlap:该函数有一个或两个输入参数,第一个为一对区间变量,第二个(可选)为一对数值,定义如下约束:使第一个参数中的区间变量相互不重叠,且时间间隔最少为第二个参数中的数值(若省略第二个参数则最短时间间隔为0)。如图3所示,
Figure GDA0002561863670000072
使得分配给同一机器m的两个任务v、v′不可同时进行,并且时间间隔至少为机器连续处理这两个工序uv、uv′的准备时间。这里分别给出了两种情况:v先于v′处理,则最短时间间隔为
Figure GDA0002561863670000073
v′先于v处理,则最短时间间隔为
Figure GDA0002561863670000074
类似地,属于同一工件的不同任务之间的不重叠约束也可以用此函数表述。
S5.1建立如下约束编程模型
下述模型用于优化单个染色体c即任务序列中的任务执行顺序,以
Figure GDA0002561863670000075
表示其中包含的任务集合。
S5.1.1决策变量
πv任务v对应的区间变量;
τj工件j对应的区间变量;
zj,j′0/1变量,表示工件j是否用作j′的组件。
S5.1.2目标函数
以制造周期为例。实际上,总延误时间、平均流水时间、机器利用率等其他目标函数也可以用本发明中的模型加以优化:
Figure GDA0002561863670000076
S5.1.3约束条件
Figure GDA0002561863670000077
Figure GDA0002561863670000081
Figure GDA0002561863670000082
Figure GDA0002561863670000083
Figure GDA0002561863670000084
Figure GDA0002561863670000085
Figure GDA0002561863670000086
Figure GDA0002561863670000087
Figure GDA0002561863670000088
Figure GDA0002561863670000089
Figure GDA00025618636700000810
Figure GDA00025618636700000811
其中,目标函数(1)种的Cmax表示制造周期,即为所有工件的最大完成时间;约束(2)使得每个对应于任务v的区间变量πv,若在可行解中存在,则其长度等于该任务的处理时间Pv;约束(3)、(4)分别为机器、工件的任务时间不重叠约束,即任意机器同一时间只能处理一个任务、任意工件同时只能被一台机器处理,且相邻任务的最短时间间隔分别为相应的机器准备时间
Figure GDA00025618636700000812
(任务v先于v′)或
Figure GDA00025618636700000813
(任务v′先于v)、工件转移时间
Figure GDA00025618636700000814
(任务v先于v′)或
Figure GDA00025618636700000815
(任务v′先于v);约束(5)要求任意任务v,如果排在机器mv的排程首位,则需要经过时长为
Figure GDA00025618636700000816
的准备时间才能开始,若任务不存在则松弛该约束;约束(6)确保顺序约束的工序任务之间的时间先后性,其中M为一个足够大的正数,若其中任意一个任务不存在则松弛该约束;约束(7)使对应于每个工件j的区间变量恰好覆盖其所有任务的区间变量(与第一个任务同时开始,与最后一个任务同时结束);约束(8)利用了步骤S2中生成的标签,保证每个组装工件恰好用到所需数量的部件;约束(9)体现组装工件及其部件的任务之间的时间先后性——若工件j用作j′的部件(zj,j′=1),则j的所有任务必须先于j′的所有任务完成,且时间间隔至少为工件j的在机器间转移时间
Figure GDA00025618636700000817
若任务对中任意一个不存在则松弛该约束;约束(10)表示每个工件最多只能被用作一个其他工件的部件;约束(11)、(12)防止工件的循环使用和自使用;约束(13)为决策变量zj,j′的0/1性约束。
S5.2对种群中的各个解,以CPLEX等支持约束编程的软件包求解模型,获得最优顺序,并以优化后的新解替换原解。
S5.3淘汰部分适应度低的解,使得种群大小保持在K。
S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制。
根据本发明的一个具体实施例,以包含6个工件(2个产品、4个零件,零件共有3种类别)、4个机器(3个加工机器、1个装配机器)和20个工序(18个加工工序、2个装配工序)的小规模问题为例。
S1.已知信息:
各工件的加工路线图如图5所示,分别使用圆角矩形、圆形和菱形表示工件加工的开始和结束、加工工序以及装配工序。先后次序约束以箭头表示。工件1~4各包含4个工序,具有可变的加工顺序,从而可能产生不同的加工路线(如工件1可采用1→2→4或3→4,工件2可采用5→6→7→8、5→7→6→8、5→6→8→7、5→7→8→6、5→8→6→7、5→8→7→6、8→5→6→7或8→5→7→6)。工件2和3完全相同(都属于零件2),因此二者在装配成产品时可以互换(工件2也可以与工件4装配,工件3也可以与工件1装配)。工序17、19分别为产品1、2的装配工序,要求相应的零件完成以后才能开始进行。
各工序的处理时间如图6所示。各机器准备时间均满足如下关系:1.机器的首个工序的准备时长为7;2.如连续的两个工序属于同一个工件,则无需准备时间;3.如连续的两个工序属于不同工件,类别相同(即工件2和工件3),则准备时长为3;4.如连续的两个工序属于不同工件,类别不同,则准备时长为10。各工件在机器间的转移时间满足:1.同一机器,转移时间为0;2.不同加工机器,转移时间为5;3.加工机器和装配机器之间,转移时间为15。
S2.为工件添加标签如下:
工件j 1 2 3 4 5 6
零件类别i 1 2 2 3 4 5
N<sub>i</sub> 1 1 1 1 0 0
L<sub>i</sub>,L<sub>j</sub> 1 2 2 4 0 0
R<sub>i</sub>,R<sub>j</sub> 0 0 0 0 3 6
从R5=3、R6=6即可得知,工件5(即产品1)由1个零件1和1个零件2组装而成,工件6(即产品2)由1个零件2和1个零件3组装而成。
S3.按照图4中的流程执行混合优化求解方法,先生成初始可行解的种群,其中两个解及其对应的任务序列和零件分配如图7所示。
S4.对种群中的解执行基因操作,图7中两个染色体p1、p2交叉后的子染色体c1、c2如图8所示,c2经过变异后的c2′如图9所示。
S5.使用约束规划模型优化各染色体中工序的处理顺序。例如c2′直接解码和优化之后的c2″解码结果分别如图10和图11所示,可见经过顺序优化,制造周期改善了26.79%(321→235)。
S6.继续迭代直至达成终止条件。对于样例问题,使用种群大小K=20,交叉率rc=0.1,变异率rm=0.1,在迭代约120次后找到问题的最优解(耗时约7秒),制造周期为171,甘特图如图12所示。经过更大规模的算例测试,本方法可以为较大规模的问题(约20个工件、15个机器、300个工序)求得最优解(耗时约2分钟)。对于更大规模的问题(100个以上工件、30个以上机器、1000个以上工序),可以在较短时间(约10分钟)内获得较好的可行解。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (4)

1.一种柔性装配作业车间调度的混合优化方法,其特征在于,包括如下步骤:
S1.确定柔性装配车间调度的已知信息和算法参数;
S2.为工件添加标签以备后续使用;
S3.利用问题的已知信息,生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码;
S4.通过竞争从种群中选择一些个体,对其交叉和变异的基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解;
S5.对于种群中的每个可行解,使用约束编程模型,优化加工顺序,形成新的解并更新种群;
S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制;
所述步骤S1.确定柔性装配车间调度的已知信息和算法参数,具体如下:
S1.1确定已知信息
Figure FDA0003921361650000011
工件集合;
Figure FDA0003921361650000012
机器集合;
Figure FDA0003921361650000013
工序集合;
Figure FDA0003921361650000014
任务集合;
Figure FDA0003921361650000015
次序约束集合,
Figure FDA0003921361650000016
Pv任务v所需的处理时间;
Sm,u,u′机器m在处理工序u后,继续处理工序u′所需准备时间,需包括所有的Sm,o,u,Sm,o,u为m处理的首个工序时所需的准备时间;
Tj,m,m′工件j从机器m转移到m′所需时间;
S1.2确定算法参数
K种群大小;
rc交叉率;
rm变异率;
Tmax最大运行时间;
Imax最大迭代次数;
所述步骤S2.为工件添加标签以备后续使用,具体分为两部分;首先为每个工件j添加标签<Lj,Rj>,而后可通过标签获取工件所需要的各组件类型和数量,在后续约束编程模型中使用,用以保证每个组装工件恰好用到所需数量的部件;
S2.1为每个工件添加标签
S2.1.1对于各类别i的工件,设ni,i′为另一类别i′工件所需要的类别i组件的数量,令
Figure FDA0003921361650000021
S2.1.2将工件类别按照Ni非降序排列;按此序列,所有Ni=0的类别,Li=0;其后首个Ni≠0的类别,其标签Li=1;其后类别,按照Li+1=(Ni+1)Li赋值;
S2.1.3对所有类别i,
Figure FDA0003921361650000022
S2.1.4最后,按照类型为工件添加标签值:对每个类型为i的工件j,令Lj=Li,Rj=Ri
S2.2从Rj的取值获知工件j所需要的各组件类型和数量
S2.2.1按照类别从最大的li开始检视,找到满足Li<Rj的最大Li,这意味着工件j需要类别i的组件;
S2.2.2执行Rj=Rj-Li,若仍有Rj≥Li,则继续执行直到Rj<Li,记录执行次数ki,可知工件j需要ki个类别i的组件;
S2.2.3若Rj=0则终止,否则返回步骤1;当Rj=0时,即获得类别i的工件所需的全部类型的组件及其数量。
2.根据权利要求1所述的一种柔性装配作业车间调度的混合优化方法,其特征在于,所述步骤S3.生成可行解的初始种群,并以任务序列的形式对种群中每个可行解的排程进行编码,具体包括如下步骤:
S3.1按照以下步骤,生成一个随机解:
S3.1.1初始化一个空的可选任务集
Figure FDA0003921361650000023
和一个空的可用工件集
Figure FDA0003921361650000024
对所有无前驱工序的工序u,将其所有可选机器对应的任务加入其中;
S3.1.2随机选择一个任务加入排程,然后将这个任务对应工序的其他任务移出可选任务集
Figure FDA0003921361650000025
若该工序有后续工序,则将其所有任务加入
Figure FDA0003921361650000026
S3.1.3重复上述S3.1.2过程,若某个工件的某条加工路线上的所有工序均已完成,则意味着该工件已完成,将其加入
Figure FDA0003921361650000031
检视所有以该工件为部件的高级工件或产品所需的组件,可选任务集中已有足够的部件组装若某个高级工件或产品,则将此装配工序的任务加入可选任务集
Figure FDA0003921361650000032
并将消耗的部件移出
Figure FDA0003921361650000033
S3.1.4循环进行S3.1.2-S3.1.3前两个步骤,直至可选任务集
Figure FDA0003921361650000034
为空,此时即生成一个问题的可行解;
S3.2继续生成更多的可行解,共计K个,构成基因算法初始种群;
S3.3对种群中的每个个体,将其排程中的任务按开始时间先后排序,生成任务序列,即为编码后的染色体,用于后续的基因算法操作。
3.根据权利要求1所述的一种柔性装配作业车间调度的混合优化方法,其特征在于,所述步骤S4.通过竞争从种群中选择一些个体,对其交叉和变异基因操作,通过改变加工计划、机器选择,在这些已知可行解的邻域进行搜索,获得新的可行解,具体包括:
S4.1竞争:将种群中的个体按照目标函数适应度排序,并按照以下机制之一选出发生交叉与变异的染色体——随机选择、高适应度优先、低适应度优先、或对半匹配机制,视具体问题而定;
S4.2交叉:发生在一对染色体(p1,p2)之间;
S4.2.1对每个工件
Figure FDA0003921361650000035
按照一定的概率即交叉率进行标记;
S4.2.2复制p1作为子染色体c1,对于其中属于被标记的工件的任务,使用p2中的相应部分替换,其余部分保留;同理得到另一个子染色体c2
S4.3变异:发生在单独一条染色体c1或c2上;
S4.3.1对于c上的每个任务,按照一定的概率即变异率进行标记;
S4.3.2对于被标记任务的工序,改变其机器选择,即得到变异后的染色体c′;
S4.4对每个新生成的染色体进行解码,将其上所有任务按顺序放入排程,即得新的可行解,将获得的新的可行解加入种群。
4.根据权利要求1所述的一种柔性装配作业车间调度的混合优化方法,其特征在于,所述步骤S6.重复步骤S4、S5,进行迭代直到达成终止条件——总运行时间或总迭代次数达到预设限制。
CN202010446415.7A 2020-05-25 2020-05-25 一种柔性装配作业车间调度的混合优化方法 Active CN111626496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010446415.7A CN111626496B (zh) 2020-05-25 2020-05-25 一种柔性装配作业车间调度的混合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010446415.7A CN111626496B (zh) 2020-05-25 2020-05-25 一种柔性装配作业车间调度的混合优化方法

Publications (2)

Publication Number Publication Date
CN111626496A CN111626496A (zh) 2020-09-04
CN111626496B true CN111626496B (zh) 2023-02-03

Family

ID=72270990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010446415.7A Active CN111626496B (zh) 2020-05-25 2020-05-25 一种柔性装配作业车间调度的混合优化方法

Country Status (1)

Country Link
CN (1) CN111626496B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112330221A (zh) * 2020-11-30 2021-02-05 华中科技大学 一种具有充分必要条件邻域结构的作业车间调度优化方法
CN112862207B (zh) * 2021-03-04 2022-05-13 广东工业大学 针对机器调整时间未知且序列相关的任务调度求解方法
CN114638479B (zh) * 2022-02-23 2024-09-27 华中科技大学 作业车间调度问题工序交换可行性判定和局部搜索方法
CN115879782B (zh) * 2023-01-05 2023-05-09 深圳市鼎山科技有限公司 一种基于物联网的生产供应链监测管理系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678623A (zh) * 2014-11-17 2016-06-15 沈阳高精数控智能技术股份有限公司 一种解决柔性车间作业调度的元启发式搜索方法
CN108803519A (zh) * 2018-06-23 2018-11-13 郑州航空工业管理学院 一种改良的帝国竞争算法解决柔性作业车间调度问题的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678623A (zh) * 2014-11-17 2016-06-15 沈阳高精数控智能技术股份有限公司 一种解决柔性车间作业调度的元启发式搜索方法
CN108803519A (zh) * 2018-06-23 2018-11-13 郑州航空工业管理学院 一种改良的帝国竞争算法解决柔性作业车间调度问题的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Flexible Assembly Job-Shop Scheduling With Sequence-Dependent Setup Times and Part Sharing in a Dynamic Environment: Constraint Programming Model, Mixed-Integer Programming Model, and Dispatching Rules;Sicheng Zhang 等;《IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT》;20180831;全文 *
Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system;Sicheng Zhang 等;《European Journal of Operational Research》;20191127;全文 *

Also Published As

Publication number Publication date
CN111626496A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111626496B (zh) 一种柔性装配作业车间调度的混合优化方法
Hamzadayi et al. Modeling and solving static m identical parallel machines scheduling problem with a common server and sequence dependent setup times
Hezer et al. A network-based shortest route model for parallel disassembly line balancing problem
Ozsoydan et al. Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: a case study at a manufacturing plant
Zare et al. Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: A fuzzy approach
CN112990515A (zh) 一种基于启发式优化算法的车间资源调度方法
Lin et al. Multi-level genetic algorithm for the resource-constrained re-entrant scheduling problem in the flow shop
Das et al. An algorithm for scheduling batches of parts in a multi-cell flexible manufacturing system
Pesch et al. Constraint propagation based scheduling of job shops
CN117707083A (zh) 分布式装配流水车间的调度方法、终端设备及存储介质
Jiang et al. Complex and intelligent systems in manufacturing
Liu et al. Integrating theory of constraints and particle swarm optimization in order planning and scheduling for machine tool production
Pei et al. Coordination of production and transportation in supply chain scheduling
Razmjooei et al. A hybrid multi-objective algorithm to solve a cellular manufacturing scheduling problem with human resource allocation
Egilmez et al. Group scheduling in a cellular manufacturing shop to minimise total tardiness and nT: a comparative genetic algorithm and mathematical modelling approach
Huo et al. A Benders’ Decomposition Algorithm for Balancing and Sequencing of the Mixed-Model Multi-Manned Assembly Lines
Turgay et al. An Effective Heuristic Algorithm for Flexible Flow Shop Scheduling Problems with Parallel Batch Processing
Ying et al. Revisiting the development trajectory of parallel machine scheduling
Wang et al. INTEGRATED ARTIFICIAL IMMUNE SYSTEM AND TAGUCHI APPROACH FOR PRODUCTION SCHEDULING IN THE GARMENT INDUSTRY
Chan et al. Distributed scheduling in multiple-factory production with machine maintenance
KR20140055837A (ko) 유전자 알고리즘을 이용한 프로젝트 스케줄링 방법 및 시스템
Dohale et al. Application of TOC strategy using simulation: case of the Indian automobile component manufacturing firm
Hassanzadeh Nodeh et al. Simultaneous production planning and scheduling in a hybrid flow shop with time periods and work shifts
Vozhakov et al. Synchronization and management of material flows in small-scale production
Wang et al. A row-and-column generation method to a batch machine scheduling problem

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant