CN111625994A - 一种基于动态集成神经网络的多源信息融合火灾预测方法 - Google Patents
一种基于动态集成神经网络的多源信息融合火灾预测方法 Download PDFInfo
- Publication number
- CN111625994A CN111625994A CN202010448952.5A CN202010448952A CN111625994A CN 111625994 A CN111625994 A CN 111625994A CN 202010448952 A CN202010448952 A CN 202010448952A CN 111625994 A CN111625994 A CN 111625994A
- Authority
- CN
- China
- Prior art keywords
- neural network
- fire
- data
- prediction
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000004927 fusion Effects 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims description 27
- 238000012549 training Methods 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 7
- 239000000779 smoke Substances 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000008901 benefit Effects 0.000 claims description 3
- 210000004205 output neuron Anatomy 0.000 claims description 3
- 239000003016 pheromone Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 5
- 238000013135 deep learning Methods 0.000 abstract description 3
- 238000007500 overflow downdraw method Methods 0.000 abstract description 3
- 238000012351 Integrated analysis Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003062 neural network model Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010448952.5A CN111625994B (zh) | 2020-05-25 | 2020-05-25 | 一种基于动态集成神经网络的多源信息融合火灾预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010448952.5A CN111625994B (zh) | 2020-05-25 | 2020-05-25 | 一种基于动态集成神经网络的多源信息融合火灾预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111625994A true CN111625994A (zh) | 2020-09-04 |
CN111625994B CN111625994B (zh) | 2022-10-25 |
Family
ID=72259942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010448952.5A Active CN111625994B (zh) | 2020-05-25 | 2020-05-25 | 一种基于动态集成神经网络的多源信息融合火灾预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111625994B (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112270122A (zh) * | 2020-10-10 | 2021-01-26 | 清华大学 | 一种建筑火灾火源参数反演评估方法 |
CN112287990A (zh) * | 2020-10-23 | 2021-01-29 | 杭州卷积云科技有限公司 | 一种基于在线学习的边云协同支持向量机的模型优化方法 |
CN112419650A (zh) * | 2020-11-11 | 2021-02-26 | 国网福建省电力有限公司电力科学研究院 | 基于神经网络与图像识别技术的火灾探测方法及系统 |
CN112434971A (zh) * | 2020-12-10 | 2021-03-02 | 天津大学 | 基于神经网络的区域消防风险计算方法 |
CN112561200A (zh) * | 2020-12-22 | 2021-03-26 | 国网甘肃省电力公司电力科学研究院 | 基于完备集合经验模态分解和改进蚁群优化的长短期记忆网络的风电站出力混合预测技术 |
CN112885021A (zh) * | 2021-01-27 | 2021-06-01 | 上海大学 | 一种基于复合算法的多传感器火灾预测方法及系统 |
CN113223264A (zh) * | 2021-05-08 | 2021-08-06 | 南通理工学院 | 基于qpso-bp神经网络的火灾智能预警系统及方法 |
CN113420803A (zh) * | 2021-06-16 | 2021-09-21 | 杭州申弘智能科技有限公司 | 一种适用于变电站的多探测器联合火警判定方法 |
CN113516837A (zh) * | 2021-07-21 | 2021-10-19 | 重庆大学 | 一种基于多源信息融合的城市火灾判断方法、系统及其存储介质 |
CN113743328A (zh) * | 2021-09-08 | 2021-12-03 | 无锡格林通安全装备有限公司 | 一种基于长短期记忆模型的火焰探测方法及装置 |
CN113807031A (zh) * | 2021-11-18 | 2021-12-17 | 广东智云工程科技有限公司 | 基于lstm与深度残差神经网络的基坑灾害预测预警方法 |
CN113985913A (zh) * | 2021-09-24 | 2022-01-28 | 大连海事大学 | 一种基于城市火势蔓延预测的集分式多无人机救援系统 |
CN114046179A (zh) * | 2021-09-15 | 2022-02-15 | 山东省计算中心(国家超级计算济南中心) | 一种基于co监测数据智能识别和预测井下安全事故的方法 |
CN114390376A (zh) * | 2021-12-20 | 2022-04-22 | 淮阴工学院 | 火灾大数据远程探测与预警系统 |
CN115754008A (zh) * | 2022-09-28 | 2023-03-07 | 哈尔滨工业大学(威海) | 结构损伤联合监测方法、系统、计算机设备和存储介质 |
CN116362139A (zh) * | 2023-04-14 | 2023-06-30 | 应急管理部沈阳消防研究所 | 基于层次化长短时记忆网络的多参量火灾检测方法 |
CN116977909A (zh) * | 2023-09-22 | 2023-10-31 | 中南民族大学 | 一种基于多模态数据的深度学习火灾强度识别方法及系统 |
CN118038141A (zh) * | 2024-02-01 | 2024-05-14 | 上海辉控电子科技有限公司 | 红外、紫外和图像火灾探测系统和方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200074325A1 (en) * | 2018-08-29 | 2020-03-05 | National Chiao Tung University | Systems and Methods for Creating an Optimal Prediction Model and Obtaining Optimal Prediction Results Based on Machine Learning |
CN110956807A (zh) * | 2019-12-05 | 2020-04-03 | 中通服咨询设计研究院有限公司 | 基于多源数据与滑动窗口组合的高速公路流量预测方法 |
-
2020
- 2020-05-25 CN CN202010448952.5A patent/CN111625994B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200074325A1 (en) * | 2018-08-29 | 2020-03-05 | National Chiao Tung University | Systems and Methods for Creating an Optimal Prediction Model and Obtaining Optimal Prediction Results Based on Machine Learning |
CN110956807A (zh) * | 2019-12-05 | 2020-04-03 | 中通服咨询设计研究院有限公司 | 基于多源数据与滑动窗口组合的高速公路流量预测方法 |
Non-Patent Citations (3)
Title |
---|
史增芳: "多传感器信息融合火灾探测器的研究", 《自动化技术与应用》 * |
李仿华: "基于遗传优化的RBF-BP网络的实时故障检测", 《微型机与应用》 * |
李明明: "基于LSTM-BP组合模型的短时交通流预测", 《计算机系统应用》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112270122A (zh) * | 2020-10-10 | 2021-01-26 | 清华大学 | 一种建筑火灾火源参数反演评估方法 |
CN112270122B (zh) * | 2020-10-10 | 2022-04-29 | 清华大学 | 一种建筑火灾火源参数反演评估方法 |
CN112287990A (zh) * | 2020-10-23 | 2021-01-29 | 杭州卷积云科技有限公司 | 一种基于在线学习的边云协同支持向量机的模型优化方法 |
CN112419650A (zh) * | 2020-11-11 | 2021-02-26 | 国网福建省电力有限公司电力科学研究院 | 基于神经网络与图像识别技术的火灾探测方法及系统 |
CN112434971A (zh) * | 2020-12-10 | 2021-03-02 | 天津大学 | 基于神经网络的区域消防风险计算方法 |
CN112561200A (zh) * | 2020-12-22 | 2021-03-26 | 国网甘肃省电力公司电力科学研究院 | 基于完备集合经验模态分解和改进蚁群优化的长短期记忆网络的风电站出力混合预测技术 |
CN112885021A (zh) * | 2021-01-27 | 2021-06-01 | 上海大学 | 一种基于复合算法的多传感器火灾预测方法及系统 |
CN113223264A (zh) * | 2021-05-08 | 2021-08-06 | 南通理工学院 | 基于qpso-bp神经网络的火灾智能预警系统及方法 |
CN113420803A (zh) * | 2021-06-16 | 2021-09-21 | 杭州申弘智能科技有限公司 | 一种适用于变电站的多探测器联合火警判定方法 |
CN113516837A (zh) * | 2021-07-21 | 2021-10-19 | 重庆大学 | 一种基于多源信息融合的城市火灾判断方法、系统及其存储介质 |
CN113516837B (zh) * | 2021-07-21 | 2022-09-23 | 重庆大学 | 一种基于多源信息融合的城市火灾判断方法、系统及其存储介质 |
CN113743328A (zh) * | 2021-09-08 | 2021-12-03 | 无锡格林通安全装备有限公司 | 一种基于长短期记忆模型的火焰探测方法及装置 |
CN114046179A (zh) * | 2021-09-15 | 2022-02-15 | 山东省计算中心(国家超级计算济南中心) | 一种基于co监测数据智能识别和预测井下安全事故的方法 |
CN114046179B (zh) * | 2021-09-15 | 2023-09-22 | 山东省计算中心(国家超级计算济南中心) | 一种基于co监测数据智能识别和预测井下安全事故的方法 |
CN113985913A (zh) * | 2021-09-24 | 2022-01-28 | 大连海事大学 | 一种基于城市火势蔓延预测的集分式多无人机救援系统 |
CN113985913B (zh) * | 2021-09-24 | 2024-04-12 | 大连海事大学 | 一种基于城市火势蔓延预测的集分式多无人机救援系统 |
CN113807031A (zh) * | 2021-11-18 | 2021-12-17 | 广东智云工程科技有限公司 | 基于lstm与深度残差神经网络的基坑灾害预测预警方法 |
CN114390376A (zh) * | 2021-12-20 | 2022-04-22 | 淮阴工学院 | 火灾大数据远程探测与预警系统 |
CN115754008A (zh) * | 2022-09-28 | 2023-03-07 | 哈尔滨工业大学(威海) | 结构损伤联合监测方法、系统、计算机设备和存储介质 |
CN116362139A (zh) * | 2023-04-14 | 2023-06-30 | 应急管理部沈阳消防研究所 | 基于层次化长短时记忆网络的多参量火灾检测方法 |
CN116362139B (zh) * | 2023-04-14 | 2024-01-30 | 应急管理部沈阳消防研究所 | 基于层次化长短时记忆网络的多参量火灾检测方法 |
CN116977909A (zh) * | 2023-09-22 | 2023-10-31 | 中南民族大学 | 一种基于多模态数据的深度学习火灾强度识别方法及系统 |
CN116977909B (zh) * | 2023-09-22 | 2023-12-19 | 中南民族大学 | 一种基于多模态数据的深度学习火灾强度识别方法及系统 |
CN118038141A (zh) * | 2024-02-01 | 2024-05-14 | 上海辉控电子科技有限公司 | 红外、紫外和图像火灾探测系统和方法 |
CN118038141B (zh) * | 2024-02-01 | 2024-07-19 | 上海辉控电子科技有限公司 | 红外、紫外和图像火灾探测系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111625994B (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111625994B (zh) | 一种基于动态集成神经网络的多源信息融合火灾预测方法 | |
CN107465664B (zh) | 基于并行多人工蜂群算法和支持向量机的入侵检测方法 | |
CN111834010B (zh) | 一种基于属性约简和XGBoost的病毒检测假阴性识别方法 | |
CN105160249B (zh) | 一种基于改进的神经网络集成的病毒检测方法 | |
CN112087442B (zh) | 基于注意力机制的时序相关网络入侵检测方法 | |
CN106656357B (zh) | 一种工频通信信道状态评估系统和方法 | |
CN107121926A (zh) | 一种基于深度学习的工业机器人可靠性建模方法 | |
CN115422995A (zh) | 一种改进社交网络和神经网络的入侵检测方法 | |
CN114065933B (zh) | 一种基于人工免疫思想的未知威胁检测方法 | |
CN115964503B (zh) | 基于社区设备设施的安全风险预测方法及系统 | |
CN104092503B (zh) | 一种基于狼群优化的人工神经网络频谱感知方法 | |
Zhang et al. | Radar signal recognition based on TPOT and LIME | |
CN114915496B (zh) | 基于时间权重和深度神经网络的网络入侵检测方法和装置 | |
CN115996135B (zh) | 一种基于特征组合优化的工业互联网恶意行为实时检测方法 | |
Hu et al. | An electromagnetic environment situation assessment and abnormal detection technology | |
CN115052018A (zh) | 物联网烟雾与环境参数大数据系统 | |
Sun et al. | A novel genetic Algorithm-XGBoost based intrusion detection method | |
CN114970745A (zh) | 物联网智能安防与环境大数据系统 | |
Yu | A new model of intelligent hybrid network intrusion detection system | |
Uppala | Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio. | |
Wang et al. | Semi-supervised malicious traffic detection with improved wasserstein generative adversarial network with gradient penalty | |
CN113365282B (zh) | 一种wsn障碍性区域覆盖部署方法 | |
Musthafa et al. | Evaluation of IDS model by improving accuracy and reducing overfitting using stacking LSTM | |
Hu et al. | Evaluation and Comparison of Ten Machine Learning Classification Models Based on the Mobile Users Experience | |
Wang et al. | Network Intrusion Detection Based on VDCNN and GRU Fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee after: Qilu University of Technology (Shandong Academy of Sciences) Country or region after: China Patentee after: ASSA ABLOY Guoqiang (Shandong) Hardware Technology Co.,Ltd. Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee before: Qilu University of Technology Country or region before: China Patentee before: ASSA ABLOY Guoqiang (Shandong) Hardware Technology Co.,Ltd. |