CN111624159A - Elliptical polarization measuring device and measuring method - Google Patents
Elliptical polarization measuring device and measuring method Download PDFInfo
- Publication number
- CN111624159A CN111624159A CN202010626758.1A CN202010626758A CN111624159A CN 111624159 A CN111624159 A CN 111624159A CN 202010626758 A CN202010626758 A CN 202010626758A CN 111624159 A CN111624159 A CN 111624159A
- Authority
- CN
- China
- Prior art keywords
- angle
- switching mechanism
- angle switching
- sample
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 21
- 230000010287 polarization Effects 0.000 title description 5
- 230000007246 mechanism Effects 0.000 claims abstract description 109
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 238000000572 ellipsometry Methods 0.000 claims abstract description 18
- 230000008859 change Effects 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000012360 testing method Methods 0.000 abstract description 22
- 238000005259 measurement Methods 0.000 abstract description 14
- 238000013467 fragmentation Methods 0.000 abstract description 2
- 238000006062 fragmentation reaction Methods 0.000 abstract description 2
- 238000000691 measurement method Methods 0.000 abstract 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本申请公开了一种椭偏测量装置及测量方法,包括基板、样品台、检测部件、角度切换机构和角度定位机构;样品台固定安装在基板上,样品台台面为平面;角度切换机构转动安装在基板上,角度切换机构的转动轴线位于检测面内;检测部件包括起偏臂和检偏臂,起偏臂和检偏臂安装在角度切换机构上;角度定位机构安装在工作平台上,通过刚性抵触限位或自锁结构限定角度切换机构的转动角度。本申请的椭偏测量装置及测量方法,无需再变换样品台或改变样品台方位,具有结构简单、操作简捷、重复定位精度高的优点,可实现多种类样品采用相同放置位置,降低测试过程中样品碎片风险,实现样品的任意点测试,提高测试效率。
The application discloses an ellipsometry measurement device and a measurement method, including a substrate, a sample stage, a detection component, an angle switching mechanism and an angle positioning mechanism; the sample stage is fixedly installed on the base plate, and the sample stage table is flat; the angle switching mechanism is rotated and installed On the base plate, the rotation axis of the angle switching mechanism is located in the detection surface; the detection component includes a deflection arm and an analyzer arm, and the deflection arm and the analyzer arm are installed on the angle switching mechanism; the angle positioning mechanism is installed on the working platform, through the The rigid interference limit or self-locking structure defines the rotation angle of the angle switching mechanism. The ellipsometry measurement device and measurement method of the present application do not need to change the sample stage or change the orientation of the sample stage, and have the advantages of simple structure, simple operation and high repeated positioning accuracy, and can realize the same placement position for various types of samples, reducing the time required for testing. The risk of sample fragmentation can realize any point test of the sample and improve the test efficiency.
Description
技术领域technical field
本申请涉及光学测量仪器技术领域,特别涉及一种椭偏测量装置及测量方法。The present application relates to the technical field of optical measuring instruments, and in particular, to an ellipsometric measuring device and a measuring method.
背景技术Background technique
太阳能电池是一种将光能转换成电能的半导体器件。太阳能电池的种类包括:晶体硅太阳能电池、薄膜太阳能电池、染料敏化太阳能电池等,其中晶体硅太阳能电池为目前最常用的太阳能电池,其基本结构是硅基底上制绒后再镀减反膜。其中,制绒的作用是让太阳能电池有效的吸收太阳光;减反膜的作用是使太阳光在太阳能电池表面的反射降低,使大部分太阳光能到达电池的内部被半导体材料所吸收,从而大大提高了光能的转换。A solar cell is a semiconductor device that converts light energy into electrical energy. The types of solar cells include: crystalline silicon solar cells, thin film solar cells, dye-sensitized solar cells, etc. Among them, crystalline silicon solar cells are the most commonly used solar cells at present. . Among them, the function of texturing is to allow the solar cell to effectively absorb sunlight; the function of the anti-reflection film is to reduce the reflection of sunlight on the surface of the solar cell, so that most of the solar energy reaches the interior of the cell and is absorbed by the semiconductor material, thereby Greatly improve the conversion of light energy.
目前,绒面单晶硅太阳能电池中大多采用碱法制绒,利用晶体受腐蚀时的各向异性,使电池表面上形成规则排列的四面锥金字塔形状的基本结构;而绒面多晶硅太阳能电池大多取用酸腐蚀的方法制绒,使电池表面上形成了不规则的微小起伏。At present, most of the textured monocrystalline silicon solar cells use the alkaline method to make texturing, which uses the anisotropy of the crystal when it is corroded to form a basic structure with a regularly arranged four-sided pyramid shape on the surface of the cell; while the textured polycrystalline silicon solar cells are mostly made of Textured by acid etching, irregular micro-undulations are formed on the surface of the battery.
目前检测绒面晶体硅太阳能电池上减反膜厚度和折射率的常用仪器为椭偏仪。椭偏仪的基本原理是利用光波在样品表面反射时偏振态的变化获得样品的表面信息(如,纳米薄膜的厚度、折射率等)。At present, the commonly used instrument for detecting the thickness and refractive index of the anti-reflection film on the textured crystalline silicon solar cell is the ellipsometer. The basic principle of ellipsometer is to obtain surface information of the sample (such as the thickness of the nano-film, refractive index, etc.) by using the change of the polarization state of the light wave when it is reflected on the surface of the sample.
椭偏仪检测时,要求样品检测面所处的平面垂直于由入射光轴和反射光轴所形成的入射面,并通过二光轴的交点。通常把垂直于由入射光轴和反射光轴所形成的入射面、并通过二光轴的交点的平面称为参考面。检测时,必须满足检测面与参考面重合,此时也满足了系统的入射角等于反射角。When the ellipsometer is used for detection, it is required that the plane where the sample detection surface is located is perpendicular to the incident surface formed by the incident optical axis and the reflected optical axis, and passes through the intersection of the two optical axes. Usually, the plane perpendicular to the incident plane formed by the incident optical axis and the reflected optical axis and passing through the intersection of the two optical axes is called the reference plane. During detection, the detection surface must be coincident with the reference surface. At this time, the incident angle of the system is equal to the reflection angle.
当利用椭偏测量系统对不同晶体硅(如单晶硅、多晶硅)上的减反膜厚度和折射率进行测量时,由于晶体硅上绒面的结构不同,就要求在样品检测时不同晶体硅相对参考面的方位不同,以满足检测面与参考面重合。When using ellipsometry to measure the thickness and refractive index of anti-reflection films on different crystalline silicon (such as single-crystalline silicon, polycrystalline silicon), due to the different textured structures on crystalline silicon, it is required that different crystalline silicon be used during sample detection. The orientation relative to the reference surface is different to satisfy the coincidence of the detection surface and the reference surface.
具体来说,单晶硅太阳能电池表面上形成的四面锥金字塔的锥面与硅基底所夹的锐角大约为54.7°,金字塔的尺寸约为2-5微米。在锥面上镀有减反膜,为了检测减反膜的厚度和折射率,在检测时要求将该金字塔的锥面作为检测面。为了保证此检测面与参考面重合,则需要保证放置单晶硅的样品台放置面与参考平面的倾斜角度为54.7°;并且要调整单晶硅太阳能电池在样品台上的方位,来满足检测面与参考面重合。Specifically, the acute angle between the cone surface of the tetrahedral pyramid formed on the surface of the monocrystalline silicon solar cell and the silicon substrate is about 54.7°, and the size of the pyramid is about 2-5 microns. An anti-reflection film is plated on the cone surface. In order to detect the thickness and refractive index of the anti-reflection film, the cone surface of the pyramid is required to be used as the detection surface. In order to ensure that the detection surface coincides with the reference surface, it is necessary to ensure that the inclination angle between the sample stage placement surface on which the monocrystalline silicon is placed and the reference plane is 54.7°; and the orientation of the monocrystalline silicon solar cell on the sample stage needs to be adjusted to meet the detection requirements. The face is coincident with the reference face.
采用酸法制绒的多晶硅太阳能电池的绒面特征是硅表面有微小的不规则的起伏,起伏的尺寸为微米量级,在硅上镀有减反膜,为了检测减反膜的厚度和折射率,以平行于硅基底并通过样品表面的平面为检测面,所以放置多晶硅的样品台放置面平行于参考平面。The texture feature of the polycrystalline silicon solar cell using acid texturing is that there are tiny irregular undulations on the silicon surface, and the size of the undulations is in the order of microns. , the plane parallel to the silicon substrate and passing through the surface of the sample is the detection surface, so the placement surface of the sample stage where the polysilicon is placed is parallel to the reference plane.
另外,对于未制绒的晶体硅太阳能电池,其检测面为镀有减反膜的上表面,也要求样品台放置面平行于参考平面,与多晶硅太阳能电池的样品台相同。In addition, for untextured crystalline silicon solar cells, the detection surface is the upper surface coated with anti-reflection film, and the sample stage placement surface is also required to be parallel to the reference plane, which is the same as the sample stage for polycrystalline silicon solar cells.
通过以上分析,可以看出,在对单晶硅和多晶硅太阳能电池测试时,电池相对于参考面的放置方位不同,碱法制备的单晶硅放置时其基底与参考面有一个很大的夹角,而酸法制备的多晶硅放置时其基底平行于参考面。From the above analysis, it can be seen that when the monocrystalline silicon and polycrystalline silicon solar cells are tested, the placement orientation of the cell relative to the reference surface is different. angle, while the acid-fabricated polysilicon is placed with its base parallel to the reference plane.
换句话说,即要求在对两种不同表面制绒结构的太阳能电池的减反膜进行检测时,需要改变样品台放置面和参考平面所构成的二面角角度,以使其符合测试需求。In other words, it is required to change the dihedral angle formed by the placement surface of the sample stage and the reference plane when testing the anti-reflection films of solar cells with two different surface textured structures to meet the test requirements.
在实际检测中,比如,在太阳能电池的生产线上,需要对不同类型(单晶、多晶)的太阳能电池进行检测,这就要求椭偏仪能够适应这种变化的检测条件,并且要求在检测过程中操作简单、节约时间、准确度高、重复性好。In actual testing, for example, in the production line of solar cells, it is necessary to test different types of solar cells (single crystal, polycrystalline), which requires the ellipsometer to be able to adapt to such changing testing conditions, and requires the detection of different types of solar cells. In the process, the operation is simple, time saving, high accuracy and good repeatability.
为了满足以上的需求,现有方法有:In order to meet the above requirements, existing methods include:
(1)在椭偏测量系统中设计倾斜角度不同的样品台,根据不同样品的测试需求,通过拆卸样品台的方式更换所需样品台,所述倾斜角度指:样品台的放置面与参考面所夹的锐角。这种方法在椭偏测量系统中应用较为普遍,但其缺点在于样品台的拆卸过程繁琐、更换速度慢且不便于保管拆卸下来的样品台,更换完新的样品台后,整个仪器的样品台在安装的过程中准确度和重复性均没法保证,需要重新校准。(1) Design sample stages with different inclination angles in the ellipsometric measurement system, and replace the required sample stage by disassembling the sample stage according to the test requirements of different samples. The inclination angle refers to the placement surface and the reference surface of the sample stage. Acute angle clamped. This method is widely used in ellipsometry systems, but its disadvantages are that the disassembly process of the sample stage is cumbersome, the replacement speed is slow, and it is inconvenient to store the disassembled sample stage. Accuracy and repeatability cannot be guaranteed during installation and require recalibration.
(2)在椭偏测量系统中设计不用拆卸样品台的方式,即安装两套不同倾斜角度的样品台,这两套样品台之间用电动(手动)导轨连接,当需要用某个倾斜角度的样品台时,通过导轨把该样品台移到安装位置,其他样品台则移出安装位置。但这种通过移动导轨更换不同种类的样品台的方式,速度比较慢且占用空间比较大,准确度和重复性也很难保证。(2) In the ellipsometry measurement system, the method without disassembling the sample stage is designed, that is, two sets of sample stages with different inclination angles are installed, and the two sets of sample stages are connected by electric (manual) guide rails. When a certain inclination angle is required When the sample stage is selected, the sample stage is moved to the installation position through the guide rail, and the other sample stages are moved out of the installation position. However, this method of changing different types of sample stages by moving the guide rail is relatively slow and occupies a large space, and it is difficult to guarantee the accuracy and repeatability.
(3)在椭偏测量系统中设计有两个台面定位面的样品台,这两个台面定位面的二面角夹角为54.7°±5°。通过转动样品台台面的方式,满足不同测试条件对样品台放置面和参考平面所构成的二面角角度的需求。但使用这种方式检测单晶硅太阳能电池时,需将待测样品以倾斜于水平面54.7°±5°的状态放置在样品台上,这无疑加大了样品取放的难度,也加大了损坏待测样品的风险。(3) A sample stage with two table positioning surfaces is designed in the ellipsometric measurement system, and the dihedral angle between the two table positioning surfaces is 54.7°±5°. The dihedral angle formed by the placement surface of the sample stage and the reference plane can be met under different test conditions by rotating the table top of the sample stage. However, when using this method to detect single-crystal silicon solar cells, the sample to be tested needs to be placed on the sample stage in a state inclined by 54.7°±5° from the horizontal plane, which undoubtedly increases the difficulty of taking and placing the sample, and also increases the Risk of damage to the sample to be tested.
由此可见,在椭偏测量系统中,现有的用于椭偏仪中晶体硅太阳能电池样品台存在的问题是:(1)需要改变样品台角度实现样品平放或斜放;(2)样品斜放时不易进行样品移动,故不利于对样品进行均匀度检测;(3)样品斜放时碎片风险高。It can be seen that in the ellipsometry system, the existing problems of the crystalline silicon solar cell sample stage used in the ellipsometer are: (1) the angle of the sample stage needs to be changed to realize the sample flat or inclined; (2) When the sample is placed obliquely, it is not easy to move the sample, so it is not conducive to the uniformity test of the sample; (3) The risk of debris is high when the sample is placed obliquely.
这些问题使某些种类的样品只能测试某个固定点,无法进行任意点测试,并且不便于取放测试样品,对工艺改善和提高测试效率都产生了极大的影响。These problems make certain types of samples can only be tested at a fixed point, and cannot be tested at any point, and it is inconvenient to take and place test samples, which has a great impact on process improvement and test efficiency.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供一种无需变换样品台或改变样品台方位、结构简单、操作简捷、更换迅速、重复定位精度高、可实现多种类样品采用相同放置位置的一种椭偏测量装置及测量方法,其能同时满足单晶太阳能电池和多晶太阳能电池的检测需求,并降低单晶太阳能电池在测试过程中的碎片风险,实现样品的任意点测试,提高测试效率。The purpose of this application is to provide an ellipsometric measuring device and measurement device that does not need to change the sample stage or the orientation of the sample stage, has a simple structure, simple operation, rapid replacement, high repeat positioning accuracy, and can achieve the same placement position for various types of samples. The method can meet the testing requirements of single crystal solar cells and polycrystalline solar cells at the same time, reduce the risk of fragmentation of the single crystal solar cells during the testing process, realize any point testing of samples, and improve testing efficiency.
本申请的上述目的一是通过以下技术方案得以实现的:The above-mentioned purpose one of the present application is achieved through the following technical solutions:
一种椭偏测量装置,包括基板、样品台、检测部件、角度切换机构和角度定位机构;所述样品台固定安装在基板上,所述样品台台面为平面,待测样品放置在样品台台面上;所述检测部件包括用于发射入射光的起偏臂和用于接收反射光的检偏臂,入射光轴和反射光轴形成有入射面;所述角度切换机构转动安装在基板上,所述起偏臂和检偏臂安装在角度切换机构上,所述角度切换机构带动检测部件同步转动,以改变检测部件入射面与待测样品表面的夹角;所述角度定位机构安装在基板上,通过刚性抵触限位或自锁结构限定角度切换机构的转动角度An ellipsometry measurement device includes a substrate, a sample stage, a detection component, an angle switching mechanism and an angle positioning mechanism; the sample stage is fixedly installed on the substrate, the sample stage table is flat, and the sample to be measured is placed on the sample stage table the detection part includes a polarizing arm for emitting incident light and an analyzing arm for receiving reflected light, the incident light axis and the reflected light axis are formed with incident surfaces; the angle switching mechanism is rotatably mounted on the substrate, The polarizing arm and the analyzing arm are installed on the angle switching mechanism, and the angle switching mechanism drives the detection component to rotate synchronously to change the angle between the incident surface of the detection component and the surface of the sample to be measured; the angle positioning mechanism is installed on the base plate On, the rotation angle of the angle switching mechanism is limited by the rigid interference limit or the self-locking structure
通过采用上述技术方案,检测待测样品时,将待测样品平放在样品台上,通过角度定位机构对角度切换机构进行定位,使检测部件的入射面直接与待测样品的检测面相垂直,并使两光轴的交点通过检测面,然后进行后续测量即可;整个过程快速方便,且避免了样品斜放,降低样品损坏的风险。By adopting the above technical solution, when detecting the sample to be tested, the sample to be tested is placed on the sample stage, and the angle switching mechanism is positioned by the angle positioning mechanism, so that the incident surface of the detection component is directly perpendicular to the detection surface of the sample to be tested, Make the intersection of the two optical axes pass through the detection surface, and then perform subsequent measurement; the whole process is fast and convenient, and the sample is avoided to be placed obliquely, reducing the risk of sample damage.
本申请进一步设置为:所述样品台高度可调节设置。The present application is further provided as follows: the height of the sample stage can be adjusted.
通过采用上述技术方案,可实时调节样品台高度,以对应不同类型的样品,使样品台适应性更好。By adopting the above technical solution, the height of the sample stage can be adjusted in real time to correspond to different types of samples, so that the adaptability of the sample stage is better.
本申请进一步设置为:所述角度切换机构包括门型架和轴承座,所述轴承座设为两个,同轴布置在基板上;所述门型架的端部固接有转轴,所述门型架通过穿入轴承座中的转轴与轴承座转动连接;所述检测部件安装在门型架上。The present application is further provided as follows: the angle switching mechanism includes a portal frame and a bearing seat, and two bearing seats are arranged on the base plate coaxially; the end of the portal frame is fixed with a rotating shaft, and the The portal frame is rotatably connected with the bearing seat through a rotating shaft penetrating into the bearing seat; the detection component is installed on the portal frame.
通过采用上述技术方案,门型架为检测部件提供安装基础,门型架通过轴承座转动安装在基板上,以使检测部件能够进行角度调节。By adopting the above technical solution, the portal frame provides an installation basis for the detection component, and the portal frame is rotatably mounted on the base plate through the bearing seat, so that the detection component can be adjusted in angle.
本申请进一步设置为:所述角度定位机构包括倾斜定位件和竖直定位件,所述倾斜定位件和竖直定位件沿角度切换机构转动方向布置在角度切换机构两侧;所述角度切换机构与倾斜定位件刚性抵触配合,将角度切换机构定位至倾斜状态;所述角度切换机构与竖直定位件刚性抵触配合,将角度切换机构定位至竖直状态。The present application further provides that: the angle positioning mechanism includes an inclined positioning member and a vertical positioning member, and the inclined positioning member and the vertical positioning member are arranged on both sides of the angle switching mechanism along the rotation direction of the angle switching mechanism; the angle switching mechanism The angle switching mechanism is positioned in the inclined state by rigid interference and cooperation with the inclined positioning member; the angle switching mechanism is in rigid interference and cooperation with the vertical positioning member to position the angle switching mechanism in the vertical state.
通过采用上述技术方案,竖直定位件限定了角度切换机构的竖直状态,倾斜定位件限定了角度切换机构的倾斜状态,通过与竖直定位件和倾斜定位件配合,实现角度切换机构快速角度定位,从而提高测试效率。By adopting the above technical solution, the vertical positioning member defines the vertical state of the angle switching mechanism, and the inclined positioning member defines the inclined state of the angle switching mechanism. positioning to improve test efficiency.
本申请进一步设置为:所述角度切换机构与倾斜定位件抵触配合,所述检测部件入射面与竖直面之间的夹角为54.7°±5°。The present application is further provided that: the angle switching mechanism is in interference fit with the inclined positioning member, and the angle between the incident surface of the detection component and the vertical surface is 54.7°±5°.
通过采用上述技术方案,入射面与竖直面之间的夹角为54.7°,使得角度切换机构抵靠在倾斜定位件后,检测部件的入射面直接与单晶硅太阳能电池的检测面相垂直,实现标准化角度调节,从而提高测量速率。By adopting the above technical solution, the angle between the incident surface and the vertical surface is 54.7°, so that after the angle switching mechanism abuts the inclined positioning member, the incident surface of the detection component is directly perpendicular to the detection surface of the monocrystalline silicon solar cell, Standardized angle adjustment is achieved to increase measurement rate.
本申请进一步设置为:所述角度定位机构包括安装在基板上的第一驱动件、固接在第一驱动件输出端的曲柄、以及转动连接在曲柄上的中间杆,所述中间杆远离曲柄的一端与角度切换机构相铰接;所述第一驱动件为力矩电机。The present application is further provided as follows: the angle positioning mechanism includes a first driving member mounted on the base plate, a crank fixed on the output end of the first driving member, and an intermediate rod rotatably connected to the crank, the intermediate rod being away from the crankshaft One end is hinged with the angle switching mechanism; the first driving member is a torque motor.
通过采用上述技术方案,驱动件带动曲柄做回转运动,曲柄通过拉动中间杆,带动角度切换机构在某一角度之间往复摆动;对不同类型的太阳能电池检测时,只需控制驱动件驱使曲柄运动至相应位置即可。By adopting the above technical solution, the driving member drives the crank to rotate, and the crank drives the angle switching mechanism to reciprocate between a certain angle by pulling the intermediate rod; when detecting different types of solar cells, only the driving member is required to drive the crank to move. to the corresponding location.
本申请进一步设置为:所述角度定位机构包括安装在基板上的导轨、安装在导轨上的滑块、与滑块铰接的连接杆以及驱使滑块沿导轨作往复运动的第二驱动件,所述连接杆远离滑块的一端与角度切换机构相铰接;所述第二驱动件为力矩电机或电动推杆。The present application is further provided as follows: the angle positioning mechanism includes a guide rail mounted on the base plate, a slider mounted on the guide rail, a connecting rod hinged with the slider, and a second driving member that drives the slider to reciprocate along the guide rail, so One end of the connecting rod away from the slider is hinged with the angle switching mechanism; the second driving member is a torque motor or an electric push rod.
通过采用上述技术方案,利用滑块连杆机构的工作原理,通过第二驱动件带动滑块做往复直线运动,滑块通过拉动连接杆,带动角度切换机构往复摆动,对不同类型的太阳能电池检测时,只需控制第二驱动件使滑块运动到相应位置即可。By adopting the above technical solution, using the working principle of the slider linkage mechanism, the second driving member drives the slider to perform a reciprocating linear motion, and the slider drives the angle switching mechanism to swing reciprocally by pulling the connecting rod to detect different types of solar cells. At the time, it is only necessary to control the second driving member to move the slider to the corresponding position.
本申请进一步设置为:所述角度定位机构为电动推杆,电动推杆底座铰接在基板的基板上,电动推杆输出端铰接在角度切换机构的侧壁上。The present application further provides that: the angle positioning mechanism is an electric push rod, the base of the electric push rod is hinged on the base plate of the base plate, and the output end of the electric push rod is hinged on the side wall of the angle switching mechanism.
通过采用上述技术方案,直接利用驱动件带动角度切换机构做往复摆动运动,实现对角度切换机构的角度调节,调节过程更简便直接。By adopting the above technical solution, the driving member is directly used to drive the angle switching mechanism to perform a reciprocating swing motion, so as to realize the angle adjustment of the angle switching mechanism, and the adjustment process is simpler and more direct.
本申请进一步设置为:所述角度定位机构包括蜗轮和蜗杆,所述蜗轮固接于角度切换机构一侧,与角度切换机构转动轴线同轴设置;所述蜗杆转动安装在基板上,与蜗轮相啮合;所述蜗杆端部设置有驱使其自转的第三驱动件;所述第三驱动件为电机或手动摇把。The present application is further configured as follows: the angle positioning mechanism includes a worm wheel and a worm, the worm wheel is fixed on one side of the angle switching mechanism, and is coaxially arranged with the rotation axis of the angle switching mechanism; the worm is rotatably mounted on the base plate and is in phase with the worm wheel meshing; the end of the worm is provided with a third driving member for driving it to rotate; the third driving member is a motor or a manual crank.
通过采用上述技术方案,利用第三驱动件转动蜗杆,蜗杆与蜗轮啮合传动,驱使蜗轮同步转动,从而带动角度切换机构转动,实现对角度切换机构的角度调节;且蜗杆与蜗轮为多齿啮合,具有传动平稳、噪音小的特点,而且蜗轮蜗杆具有自锁性,对不同类型的太阳能电池检测时,只需控制第三驱动件使蜗轮转动到相应位置即可。By adopting the above technical solution, the third driving member is used to rotate the worm, and the worm and the worm gear are meshed and driven to drive the worm gear to rotate synchronously, thereby driving the angle switching mechanism to rotate, realizing the angle adjustment of the angle switching mechanism; and the worm and the worm gear are multi-tooth meshing, It has the characteristics of stable transmission and low noise, and the worm gear and worm have self-locking properties. When detecting different types of solar cells, it is only necessary to control the third driving part to rotate the worm gear to the corresponding position.
本申请的上述目的二是通过以下技术方案得以实现的:The above-mentioned purpose two of the present application is achieved through the following technical solutions:
一种利用椭偏测量装置的测量方法,包括以下步骤:A measuring method utilizing an ellipsometric measuring device, comprising the following steps:
S1、将待测样品平放在样品台台面上;S1. Place the sample to be tested on the sample table;
S2、依据待测样品类型,转动入射面,使检测部件入射面垂直于待测样品的检测面;S2. Rotate the incident surface according to the type of the sample to be tested, so that the incident surface of the detection component is perpendicular to the detection surface of the sample to be tested;
S3、记录获得的待测样品的表面信息。S3. Record the obtained surface information of the sample to be tested.
综上所述,本申请具有以下有益效果:通过为检测部件配置了角度切换结构,使检测部件相对于样品台和放置在样品台上的待测样品进行角度变化,而非改变待测样品的角度位置,通过标准化调节定位检测部件入射面与参考面的二面角角度,最终达到快速测试样品的目的。To sum up, the present application has the following beneficial effects: by configuring the angle switching structure for the detection part, the angle of the detection part relative to the sample stage and the sample to be tested placed on the sample stage is changed, instead of changing the angle of the sample to be tested. Angular position, by standardizing and adjusting the dihedral angle between the incident surface and the reference surface of the positioning detection component, the purpose of quickly testing the sample is finally achieved.
附图说明Description of drawings
图1是手动变换角度方案的结构示意图;Fig. 1 is the structural representation of the manual change angle scheme;
图2是手动变换角度方案的正视图;Fig. 2 is the front view of manual changing angle scheme;
图3是曲柄摇杆机构方案示意图;3 is a schematic diagram of a crank-rocker mechanism scheme;
图4是滑块连杆机构方案示意图;Figure 4 is a schematic diagram of the slider linkage mechanism scheme;
图5是电动推杆方案示意图;Figure 5 is a schematic diagram of an electric push rod scheme;
图6是蜗轮蜗杆方案示意图。Figure 6 is a schematic diagram of a worm gear scheme.
图中,1、基板;2、样品台;3、检测部件;31、起偏臂;32、检偏臂;4、角度切换机构;41、门型架;42、轴承座;43、转轴;5、角度定位机构;6、倾斜定位件;7、竖直定位件;8、第一驱动件;9、曲柄;10、中间杆;11、导轨;12、滑块;13、连接杆;14、第二驱动件;15、蜗轮;16、蜗杆;17、第三驱动件;20、待测样品。In the figure, 1, base plate; 2, sample stage; 3, detection part; 31, deflection arm; 32, analyzer arm; 4, angle switching mechanism; 41, gantry; 42, bearing seat; 43, rotating shaft; 5. Angle positioning mechanism; 6. Inclined positioning member; 7. Vertical positioning member; 8. First driving member; 9. Crank; 10. Intermediate rod; 11. Guide rail; 12. Slider; 13. Connecting rod; 14 15, the worm gear; 16, the worm; 17, the third driving part; 20, the sample to be tested.
具体实施方式Detailed ways
以下结合附图对本申请作进一步详细说明。The present application will be further described in detail below with reference to the accompanying drawings.
一种椭偏测量装置,相比于现有技术中椭偏测量系统的样品台可拆卸设计或样品台台面转换、角度可调设计,本申请主要作出了以下改进:为检测部件3配置了角度切换结构,使检测部件3相对于样品台2和放置在样品台2上的待测样品20进行角度变化,通过标准化调节定位检测部件3入射面与参考面的二面角角度,达到快速测试样品的目的。An ellipsometry measurement device, compared with the detachable design of the sample stage or the design of the conversion of the sample stage table and the adjustable angle of the sample stage of the ellipsometry measurement system in the prior art, the present application mainly makes the following improvements: the
具体实施方式如下:如图1所示,一种椭偏测量装置,包括基板1、样品台2、检测部件3、角度切换机构4和角度定位机构5。The specific implementation is as follows: As shown in FIG. 1 , an ellipsometry measurement device includes a
其中,基板1顶部设有工作平台,样品台2固定安装在基板1的工作平台上,角度切换机构4转动安装在基板1的工作平台上。样品台2的台面为平面,其自身高度可调节,高度调节方式可采用气缸顶升,也可采用剪叉等机械升降结构;待测样品20平放在样品台2台面上。The top of the
检测部件3包括起偏臂31和检偏臂32,起偏臂31发出入射光,检偏臂32接收反射光;起偏臂31和检偏臂32安装在角度切换机构4上。角度切换机构4的转动轴线位于待测样品20的检测面内。The
当角度切换机构4处于竖直状态时,检测部件3的入射光轴和反射光轴所形成的入射面与样品台2的台面相垂直。When the
角度定位机构5也安装在基板1的工作平台上,用于限定角度切换机构4的转动角度,角度定位机构5可以对角度切换机构4定位单一角度,也可以定位某几个特定角度,还可以定位任意角度;如将安装在角度切换机构4上的检测部件3入射面定位至与竖直面平行或与竖直面形成54.7°二面角。The
本申请的椭偏测量装置对晶体硅太阳能电池测量的工作原理如下:The working principle of the ellipsometry measuring device of the present application for measuring crystalline silicon solar cells is as follows:
检测样品时,必须满足检测面与参考面重合。因此在检测不同类型的样品时,需以检测系统为基准把样品台调整到特定高度,把检测部件3定位并固定到相应的角度上,即通过检测部件3的转动调整参考面的方位;如对单晶硅太阳能电池进行测试时,需将检测部件3入射面定位在与竖直面54.7°的角度上,如对多晶硅太阳能电池进行测试时,则需将检测部件3入射面定位在与竖直面平行的角度上,即可实现对不同类型(单晶、多晶)的太阳能电池的检测,最后记录获得的待测样品的表面信息。When testing the sample, the detection surface must be coincident with the reference surface. Therefore, when detecting different types of samples, the sample stage needs to be adjusted to a specific height based on the detection system, and the
实施例1:如图1、图2所示,角度切换机构4包括门型架41和轴承座42,轴承座42数量设为两个,以样品台2台面中轴线为基准对称布置在基板1的工作平台上;门型架41由一横杆两竖杆组成,门型架41的两竖杆上分别固接有转轴43,转轴43转动安装在轴承座42上,从而使得门型架41能够绕转轴43轴线作圆周转动。检测部件3的起偏臂31和检偏臂32安装在门型架41上。Example 1: As shown in Figures 1 and 2, the
本实施方案中,轴承座42可选用角接触球轴承、深沟球轴承、滚动轴承、滑动轴承等,轴毂连接形式可采用键连接、过盈配合、销连接、胀套连接或型面配合连接等。In this embodiment, the bearing
角度定位机构5包括倾斜定位件6和竖直定位件7,倾斜定位件6为具有倾斜定位面的机械件,倾斜定位件6的倾斜定位面与竖直面之间的夹角为54.7°±5°;竖直定位件7为具有竖直定位面的机械件。倾斜定位件6和竖直定位件7沿角度切换机构4的转动方向,相对布置在角度切换机构4两侧,角度切换机构与倾斜定位件或与竖直定位件刚性抵触配合。The
当角度切换机构4转至竖直状态时,角度切换机构4与竖直定位件7的竖直定位面贴合抵触,此时可对多晶硅太阳能电池进行测试;当角度切换机构4转至与倾斜定位件6的倾斜面贴合抵触时,对单晶硅太阳能电池进行测试;整个角度调节过程手动操作即可完成。When the
角度切换机构4与角度定位机构5的接触面上分别装嵌有磁铁和磁钢,利用磁铁的吸附力实现角度定位机构5与角度切换机构4的牢固连接,降低测量时外力因素对椭偏测量装置稳定性的影响,保证测量过程顺利进行。The contact surfaces of the
实施例2:本实施例与实施例1的区别在于,如图3所示,角度定位机构5包括第一驱动件8、曲柄9和中间杆10,第一驱动件8固定安装在基板1的工作平台上,并位于角度切换机构4转动方向的一侧;本实施方案中,第一驱动件8为具有保持力矩,可以在任意位置停止并且保持在该位置的电机。曲柄9其中一端固接在电机的输出轴上,另一端与中间杆10的端部转动连接;中间杆10的另一端转动安装在角度切换机构4的侧壁上。Embodiment 2: The difference between this embodiment and
本实施方案的工作原理为,第一驱动件8带动曲柄9做回转运动,曲柄9通过拉动中间杆10,带动角度切换机构4在某一角度之间往复摆动(此角度可通过改变曲柄9、中间杆10的长度进行调节);如此,对不同类型(单晶、多晶)的太阳能电池检测时,只需控制第一驱动件8驱使曲柄9运动至相应位置即可。The working principle of this embodiment is that the first driving
实施例3:本实施例与实施例1的区别在于,如图4所示,角度定位机构5包括导轨11、滑块12、连接杆13以及第二驱动件14,导轨11固定安装在基板1的工作平台上,导轨11的长度方向与角度切换机构4的转动方向同向布置;滑块12安装在导轨11上,连接杆13一端与滑块12铰接,另一端与角度切换机构4铰接;第二驱动件14也安装在基板1上,驱使滑块12在导轨11上作往复直线运动。Embodiment 3: The difference between this embodiment and
具体的,导轨11可设置为光杆,滑块12与导轨11滑动连接,第二驱动件14选用电动推杆;电动推杆的输出端与滑块12连接,直接带动滑块12在滑轨上作往复运动;导轨11还可设置为螺杆,其两端转动配合有轴承座,轴承座固定在基板1上,相应的,滑块12与导轨11螺纹连接,第二驱动件14选用电机,电机的输出端与螺杆连接;电机驱使螺杆正反向转动,以带动滑块12在螺杆上作往复运动。Specifically, the
此实施方案利用滑块12连杆机构的工作原理,通过第二驱动件14带动滑块12做往复直线运动,滑块12通过拉动连接杆13,带动角度切换机构4往复摆动(摆动角度可通过改变连接杆13的长度进行调节,也可以通过改变滑块12往复运动的行程进行调节)。此实施方案所选用的第二驱动件14具有保持力矩,可以在任意位置停止并且保持该位置。This embodiment utilizes the working principle of the linkage mechanism of the
对不同类型(单晶、多晶)的太阳能电池检测时,只需控制第二驱动件14使滑块12运动到相应位置即可。When detecting solar cells of different types (single crystal and polycrystalline), it is only necessary to control the second driving
实施例4:本实施例与实施例1的区别在于,如图5所示,角度定位机构5为电动推杆,电动推杆底座铰接在基板1的工作平台上,其输出端铰接在角度切换机构4的侧壁上。电动推杆作伸缩运动时,带动角度切换机构4做往复摆动运动(此角度可通过选用不同行程的电动推杆进行调节)。此实施方案所选用的电动推杆具有保持力矩,可以在任意位置停止并且保持该位置。Embodiment 4: The difference between this embodiment and
对不同类型(单晶、多晶)的太阳能电池检测时,只需控制电动推杆运动至相应位置即可。When testing solar cells of different types (single crystal, polycrystalline), it is only necessary to control the electric push rod to move to the corresponding position.
实施例5:本实施例与实施例1的区别在于,如图6所示,角度定位机构5包括蜗轮15、蜗杆16和第三驱动件17,其中蜗轮15同轴固接于角度切换机构4端部的转轴43上,蜗杆16通过轴承座42转动安装在基板1顶部,蜗轮15蜗杆16相啮合;第三驱动件17可选为电机或手动摇把,设置在蜗杆16一端,由第三驱动件17带动蜗杆16转动。蜗杆16转动时,带动蜗轮15同步转动,从而驱使角度切换机构4做往复摆动运动(此角度可通过蜗轮15的转动进行调节)。Embodiment 5: The difference between this embodiment and
对不同类型(单晶、多晶)的太阳能电池检测时,只需控制蜗轮15运动至相应位置即可。When detecting solar cells of different types (single crystal and polycrystalline), it is only necessary to control the
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。This specific embodiment is only an explanation of the application, and it does not limit the application. Those skilled in the art can make modifications to the embodiment without creative contribution as needed after reading this specification, but as long as the rights of the application are All claims are protected by patent law.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626758.1A CN111624159B (en) | 2020-07-02 | 2020-07-02 | Ellipsometry measurement device and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626758.1A CN111624159B (en) | 2020-07-02 | 2020-07-02 | Ellipsometry measurement device and measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111624159A true CN111624159A (en) | 2020-09-04 |
CN111624159B CN111624159B (en) | 2025-01-28 |
Family
ID=72260346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010626758.1A Active CN111624159B (en) | 2020-07-02 | 2020-07-02 | Ellipsometry measurement device and measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111624159B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345471A (en) * | 2020-11-10 | 2021-02-09 | 深圳拓匠印前科技有限公司 | Hand-held intelligent color measuring instrument |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992012404A1 (en) * | 1991-01-11 | 1992-07-23 | Rudolph Research Corporation | Simultaneous multiple angle/multiple wavelength ellipsometer and method |
CN101231239A (en) * | 2007-01-24 | 2008-07-30 | 中国科学院力学研究所 | A system and method for measuring spectral ellipsometry with variable incident angles |
CN101846616A (en) * | 2010-03-30 | 2010-09-29 | 北京量拓科技有限公司 | Device and method for automatically detecting incident angle in elliptical polarization measuring system |
JP2013002900A (en) * | 2011-06-15 | 2013-01-07 | Mitsubishi Electric Corp | Ellipsometer device and measuring method for anti-reflection film formed on mono-crystalline silicon |
CN103575213A (en) * | 2012-08-09 | 2014-02-12 | 中国科学院微电子研究所 | Optical measuring device |
JP2014215059A (en) * | 2013-04-23 | 2014-11-17 | 株式会社ニコン | Evaluation device, evaluation method, and semiconductor device |
CN107795903A (en) * | 2017-11-13 | 2018-03-13 | 前海玖星光能低碳科技(深圳)有限公司 | A kind of convection type active cool type LED lamp |
CN109580551A (en) * | 2018-11-30 | 2019-04-05 | 武汉颐光科技有限公司 | A kind of Fourier transform infrared Muller matrix ellipsometer and its measurement method |
CN209264549U (en) * | 2018-12-10 | 2019-08-16 | 深圳市特瑞锶自动化设备有限公司 | A kind of semiconductor test apparatus |
CN212275564U (en) * | 2020-07-02 | 2021-01-01 | 北京量拓科技有限公司 | Elliptical polarization measuring device |
-
2020
- 2020-07-02 CN CN202010626758.1A patent/CN111624159B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992012404A1 (en) * | 1991-01-11 | 1992-07-23 | Rudolph Research Corporation | Simultaneous multiple angle/multiple wavelength ellipsometer and method |
CN101231239A (en) * | 2007-01-24 | 2008-07-30 | 中国科学院力学研究所 | A system and method for measuring spectral ellipsometry with variable incident angles |
CN101846616A (en) * | 2010-03-30 | 2010-09-29 | 北京量拓科技有限公司 | Device and method for automatically detecting incident angle in elliptical polarization measuring system |
JP2013002900A (en) * | 2011-06-15 | 2013-01-07 | Mitsubishi Electric Corp | Ellipsometer device and measuring method for anti-reflection film formed on mono-crystalline silicon |
CN103575213A (en) * | 2012-08-09 | 2014-02-12 | 中国科学院微电子研究所 | Optical measuring device |
JP2014215059A (en) * | 2013-04-23 | 2014-11-17 | 株式会社ニコン | Evaluation device, evaluation method, and semiconductor device |
CN107795903A (en) * | 2017-11-13 | 2018-03-13 | 前海玖星光能低碳科技(深圳)有限公司 | A kind of convection type active cool type LED lamp |
CN109580551A (en) * | 2018-11-30 | 2019-04-05 | 武汉颐光科技有限公司 | A kind of Fourier transform infrared Muller matrix ellipsometer and its measurement method |
CN209264549U (en) * | 2018-12-10 | 2019-08-16 | 深圳市特瑞锶自动化设备有限公司 | A kind of semiconductor test apparatus |
CN212275564U (en) * | 2020-07-02 | 2021-01-01 | 北京量拓科技有限公司 | Elliptical polarization measuring device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345471A (en) * | 2020-11-10 | 2021-02-09 | 深圳拓匠印前科技有限公司 | Hand-held intelligent color measuring instrument |
Also Published As
Publication number | Publication date |
---|---|
CN111624159B (en) | 2025-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101532822A (en) | Disk-like accessory size quality automatic detecting machine | |
CN111624159A (en) | Elliptical polarization measuring device and measuring method | |
CN212275564U (en) | Elliptical polarization measuring device | |
CN212205984U (en) | Intelligent positioning device convenient for detecting thickness of measured workpiece | |
CN201251429Y (en) | Plate type part size and quality automatic detector | |
CN211012878U (en) | A linear guide rail parallelism detection system | |
CN220356348U (en) | Motor shaft surface roundness measuring device | |
CN216593261U (en) | Device for detecting surface roughness of metal base band for superconduction on line | |
CN221686521U (en) | 180-Degree rotating mechanism | |
CN111122711B (en) | A sample stage for ultrasonic scanning microscope | |
CN2752744Y (en) | Plane optical waveguide loss measuring instrumnet | |
CN219420916U (en) | Light detection equipment | |
CN221973711U (en) | A nondestructive testing device for wind turbine blades | |
CN218973693U (en) | Toughened glass surface stress appearance | |
CN115682969A (en) | Full-diameter measuring device for curved shaft | |
CN220367274U (en) | Pipeline nondestructive testing machine | |
CN212514246U (en) | A Synchronously Adjusted Ellipsometry Spectrometer | |
CN216692841U (en) | Mobile industrial scanning camera device | |
CN216846642U (en) | Multifunctional sample table for deep stress and texture of neutron detection engineering component | |
CN216525442U (en) | In-situ spectrum testing machine for flexible material in module integration stretching process | |
CN215413557U (en) | Gear keyway angle detection device for gear production and processing | |
CN219152595U (en) | Rectangular mount pad of sucking disc | |
CN222461524U (en) | Adjustment mechanism of chip testing machine | |
CN217878303U (en) | Detection device for hydraulic rod machining | |
CN1123767C (en) | Combined measuring equipment and method for bearing assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |