CN111623345A - Multi-front-arch temperature-regulating biomass gasification hot blast stove - Google Patents

Multi-front-arch temperature-regulating biomass gasification hot blast stove Download PDF

Info

Publication number
CN111623345A
CN111623345A CN202010500580.6A CN202010500580A CN111623345A CN 111623345 A CN111623345 A CN 111623345A CN 202010500580 A CN202010500580 A CN 202010500580A CN 111623345 A CN111623345 A CN 111623345A
Authority
CN
China
Prior art keywords
arch
area
gas combustion
combustion area
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010500580.6A
Other languages
Chinese (zh)
Other versions
CN111623345B (en
Inventor
单亚顺
胡焕智
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Anruike Energy Technology Development Co ltd
Original Assignee
Jilin Anruike Energy Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Anruike Energy Technology Development Co ltd filed Critical Jilin Anruike Energy Technology Development Co ltd
Priority to CN202010500580.6A priority Critical patent/CN111623345B/en
Publication of CN111623345A publication Critical patent/CN111623345A/en
Application granted granted Critical
Publication of CN111623345B publication Critical patent/CN111623345B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • F23B90/04Combustion methods not related to a particular type of apparatus including secondary combustion
    • F23B90/06Combustion methods not related to a particular type of apparatus including secondary combustion the primary combustion being a gasification or pyrolysis in a reductive atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/02Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • F23G5/004Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates with endless travelling grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H11/00Travelling-grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H11/00Travelling-grates
    • F23H11/18Details
    • F23H11/22Moving fuel along grate; Cleaning of grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/005Regulating air supply or draught using electrical or electromechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

The invention discloses a multi-front-arch thermoregulation biomass gasification hot blast stove, which is internally provided with a pyrolysis gasification zone, a solid combustion zone, a first gas combustion zone and a second gas combustion zone, wherein biomass fuel is cracked in the pyrolysis gasification zone to separate volatile matters, the rest solid fuel enters the solid combustion zone for combustion, part of the volatile matters enter the first gas combustion zone for combustion through vent holes on the front arch, so as to heat the front arch and provide heat energy for the cracking of the biomass fuel, the other part of volatile matter directly bypasses the rear side of the front arch and enters a second gas combustion area, simultaneously, the residual volatile components in the combustion of the first gas combustion area also enter the second gas combustion area, so that the volatile components are combusted in the second gas combustion area, and high-temperature flue gas generated by the solid combustion area, the first gas combustion area and the second gas combustion area enters the smoke exhaust chamber and is output through the flue gas outlet. The invention can adjust the temperature of the pyrolysis gasification area according to different biomass fuels, and ensure the full separation of the volatile components of the fuels.

Description

Multi-front-arch temperature-regulating biomass gasification hot blast stove
Technical Field
The invention relates to the technical field of hot blast stoves, in particular to a multi-front-arch temperature-regulating biomass gasification hot blast stove.
Background
The chain-grate type energy-saving hot-blast stove is a novel high-efficiency and energy-saving hot-blast stove, and the principle is that coal is fed into a hearth through a grate, a fan supplies air, the coal is in contact with coal on a chain to be fully combusted and generate high-temperature flue gas, high-temperature flame enters a secondary combustion chamber and a cyclone burnout chamber to be combusted again, and the chain-grate type energy-saving hot-blast stove has the advantages of stable heat supply, high automation degree, high efficiency, environmental protection, safety and reliability.
The fuel that current chain bar formula energy-conserving hot-blast furnace used is mostly the coal, someone proposes and can replace into living beings briquetting fuel with the coal, however, living beings briquetting fuel falls on the chain through stokehold feed bin, the chain brings briquetting fuel into furnace, because living beings briquetting fuel's volatile reaches 60% ~ 70%, living beings briquetting fuel just gets into after the furnace and just burns soon, easy coking during the burning, and stokehold feed bin smokes easily, gate and front wall burn out very easily, and there is the hidden danger of gate backfire ignition feed bin to exist.
In order to solve the problems, the chinese utility model patent CN210463572U provides a semi-gasification combustion biomass hot blast stove, which is composed of a horizontal traveling grate, a front arch and a rear arch respectively to form a pyrolysis gasification zone and a solid combustion zone, and utilizes the high volatile component property of biomass fuels such as straws, and the volatile component of the fuel is analyzed in the pyrolysis gasification zone and is combusted in the first gas combustion zone, and the residual fixed carbon is completely combusted in the solid combustion zone to form the semi-gasification combustion of the biomass fuel.
However, the temperatures required for the volatilization analysis of different biofuels are different, and the semi-gasification combustion biomass hot blast stove cannot adjust the temperature of the pyrolysis gasification zone and cannot ensure that the volatile components of the biomass fuels are fully separated out.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a multi-front-arch temperature-regulating biomass gasification hot blast stove, which is used for regulating the temperature of a pyrolysis gasification zone according to different biomass fuels and ensuring that the volatile components of the biomass fuels are fully separated out.
The invention provides a multi-front-arch temperature-regulating biomass gasification hot blast stove, which comprises a stove body; a furnace front bin is arranged outside the front side of the furnace body, a slag outlet is arranged at the bottom of the rear side of the furnace body, a horizontal chain grate extending from the furnace front bin to the slag outlet is arranged at the lower part of the furnace body, and the horizontal chain grate penetrates through a fuel inlet arranged on the front furnace wall of the furnace body; the upper furnace wall of the furnace body comprises a front upper arch and a rear upper arch which are connected in a front-rear mode, and the front upper arch is lower than the rear upper arch; a front arch is arranged between the front upper arch and the horizontal chain grate, the front arch is connected to the front furnace wall of the furnace body, a cracking gasification area is formed between the front arch and the horizontal chain grate, a first gas combustion area is formed between the front arch and the front upper arch, a plurality of vent holes for communicating the cracking gasification area and the first gas combustion area are formed in the front arch, and a secondary air inlet for ventilating the first gas combustion area is formed in the front furnace wall of the furnace body; a rear arch is arranged between the rear upper arch and the horizontal chain grate, a solid combustion area is formed between the rear arch and the horizontal chain grate, a plurality of primary air chambers used for ventilating the solid combustion area are arranged in the horizontal chain grate, a smoke exhaust chamber is formed between the rear arch and the rear upper arch, and a smoke outlet communicated with the smoke exhaust chamber is arranged at the rear part of the furnace body; and a second gas combustion area is formed between the front arch and the rear arch, the front part of the second gas combustion area is communicated with the first gas combustion area, the lower part of the second gas combustion area is communicated with the solid combustion area, the upper part of the second gas combustion area is communicated with the smoke exhaust chamber, and a tertiary air inlet used for ventilating the second gas combustion area is arranged on the front furnace wall of the furnace body.
Further, a temperature probe for detecting the temperature of the front arch is arranged in the front arch.
Further, the tertiary air inlet faces towards the rear lower part, and the spraying wind speed from the tertiary air inlet is adjustable.
Furthermore, a plurality of ignition wind chambers used for ventilating the pyrolysis gasification area are arranged in the horizontal traveling grate, when biomass fuel is ignited, the ignition wind chambers ventilate the pyrolysis gasification area, so that the biomass fuel is combusted in the pyrolysis gasification area to heat the front arch, and after the front arch is heated to a set temperature, the ignition wind chambers stop supplying air to the pyrolysis gasification area.
Further, the distance between the rear arch and the horizontal traveling grate is larger than the distance between the front arch and the horizontal traveling grate.
Furthermore, a choke portion protruding upwards is arranged at the front end of the rear arch.
Furthermore, the middle part of the rear upper arch is connected with a downward extending vertical arch, and the vertical arch divides the smoke exhaust chamber into a smoke inlet chamber and a settling chamber, the lower parts of which are communicated.
Furthermore, a smoke recirculation inlet for introducing circulating smoke into the smoke inlet chamber is formed in the furnace wall of the furnace body.
Furthermore, the rear arch is provided with an ash falling port communicated with the settling chamber and the slag outlet, and during ash removal, the ash falling port is opened, so that the ash in the settling chamber is discharged into the slag outlet through the ash falling port.
The invention has the beneficial effects that: the biomass briquette fuel falls on the horizontal chain grate through a stokehole bin, the horizontal chain grate carries the fuel into a hearth, when the fuel passes through the pyrolysis gasification zone without ventilation, the fuel is cracked under the condition of high temperature and oxygen deficiency to separate out volatile components, the fuel after the volatile components are separated out is continuously conveyed to a solid combustion zone through the horizontal chain grate to be combusted and finally discharged from a slag outlet, meanwhile, one part of the volatile components separated out in the pyrolysis gasification zone enter a first gas combustion zone through a vent hole on a front arch, a secondary air inlet introduces air into the first gas combustion zone to ensure that the volatile components are combusted in the first gas combustion zone to heat the front arch, one part of the volatile components separated out in the pyrolysis gasification zone directly bypasses the rear side of the front arch to enter a second gas combustion zone, and simultaneously the residual volatile components combusted in the first gas combustion zone also enter the second gas combustion zone, air is introduced into the second gas combustion area through the tertiary air direction, so that volatile matters are combusted in the second gas combustion area, and high-temperature flue gas generated by the solid combustion area, the first gas combustion area and the second gas combustion area enters the smoke exhaust chamber and is output through the flue gas outlet.
The hot blast stove mainly heats the front arch through the volatile matter of the first gas combustion area, the biomass briquette fuel of the pyrolysis gasification area is mainly heated through the heat radiation of the front arch, therefore, the air quantity of the secondary air inlet is adjusted, the combustion firepower of the first gas combustion area can be controlled, the temperature of the front arch is adjusted, the accurate control of the temperature is realized, the temperature of the pyrolysis gasification area can be adjusted according to different biomass fuels, the sufficient separation of the volatile matter of the biomass fuels is ensured, the complete separation and independent air distribution combustion of the volatile matter and fixed carbon of the fuels are realized, the fuel layer temperature is reduced simultaneously, the problem of biomass combustion coking is solved, the area heat load of a grate is reduced, the service life of the grate is prolonged, the temperature of the front arch is controllable, and the fuel backfire ignition bin can be prevented.
Drawings
In order to more clearly illustrate the detailed description of the invention or the technical solutions in the prior art, the drawings that are needed in the detailed description of the invention or the prior art will be briefly described below. Throughout the drawings, like elements or portions are generally identified by like reference numerals. In the drawings, elements or portions are not necessarily drawn to scale.
FIG. 1 is a schematic perspective view of a multiple front arch attemperation biomass gasification hot blast stove provided by an embodiment of the invention;
fig. 2 is a longitudinal sectional view of a multi-front-arch tempering biomass gasification hot blast stove provided by the embodiment of the invention.
In the drawings: 10-a furnace body; 11-a slag outlet; 12-a fuel inlet; 13-front upper arch; 14-rear upper arch; 15-front arch; 151-vent holes; 152-temperature probe; 16-a first gas combustion zone; 17-a pyrolysis gasification zone; 18-secondary air inlet; 19-rear arch; 191-a flow-impeding portion; 192-ash drop port; 110-a solids combustion zone; 111-a smoke exhaust chamber; 1111-smoke inlet chamber; 1112-a settling chamber; 112-flue gas outlet; 113-a second gas combustion zone; 114-tertiary air inlet; 115-vertical arch; 116-flue gas recirculation inlet; 20-a stokehole bunker; 30-a horizontal traveling grate; 31-a primary air chamber; 32-pilot air chamber.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The following examples are only for illustrating the technical solutions of the present invention more clearly, and therefore are only examples, and the protection scope of the present invention is not limited thereby.
It is to be noted that, unless otherwise specified, technical or scientific terms used herein shall have the ordinary meaning as understood by those skilled in the art to which the invention pertains.
As shown in fig. 1-2, the embodiment of the present invention provides a multiple front arch temperature-regulating biomass gasification hot blast stove, which includes a stove body 10, a front bin 20 is provided outside the front side of the stove body 10, a slag outlet 11 is provided at the bottom of the rear side of the stove body 10, a horizontal chain grate 30 extending from the front bin 20 to the slag outlet 11 is provided at the lower part of the stove body 10, and the horizontal chain grate 30 passes through a fuel inlet 12 opened on the front wall of the stove body 10.
The upper furnace wall of the furnace body 10 comprises a front upper arch 13 and a rear upper arch 14 which are connected in a front-rear manner, and the front upper arch 13 is lower than the rear upper arch.
A front arch 15 is arranged between the front upper arch 13 and the horizontal traveling grate 30, the front arch 15 is connected to the front wall of the furnace body 10, a cracking gasification area 17 is formed between the front arch 15 and the horizontal traveling grate, a first gas combustion area 16 is formed between the front arch 15 and the front upper arch 13, a plurality of vent holes 151 communicating the cracking gasification area 17 with the first gas combustion area 16 are formed in the front arch 15, and a secondary air inlet 18 for ventilating the first gas combustion area 16 is formed in the front wall of the furnace body 10.
A rear arch 19 is arranged between the rear upper arch 14 and the horizontal traveling grate 30, a solid combustion area 110 is formed between the rear arch 19 and the horizontal traveling grate 30, a plurality of primary air chambers 31 for ventilating the solid combustion area 110 are arranged in the horizontal traveling grate 30, a smoke exhaust chamber 111 is formed between the rear arch 19 and the rear upper arch 14, and a smoke outlet 112 communicated with the smoke exhaust chamber 111 is arranged at the rear part of the furnace body 10.
A second gas combustion area 113 is formed between the front arch 15 and the rear arch 19, the front part of the second gas combustion area 113 is communicated with the first gas combustion area 16, the lower part of the second gas combustion area 113 is communicated with the solid combustion area 110, the upper part of the second gas combustion area 113 is communicated with the smoke exhaust chamber 111, and a tertiary air inlet 114 for ventilating the second gas combustion area 113 is arranged on the front furnace wall of the furnace body 10.
The working principle of the multi-front-arch temperature-regulating biomass gasification hot blast stove is shown in fig. 2 (hollow arrows in fig. 2 indicate the flowing indication of volatile components, solid arrows indicate the flowing indication of high-temperature flue gas), biomass briquette fuel falls on the horizontal chain grate 30 through the stokehold bin 20, the horizontal chain grate 30 brings the fuel into a hearth, as the pyrolysis gasification zone 17 is not ventilated, when the fuel passes through the pyrolysis gasification zone 17, under the condition of high temperature and oxygen deficiency, the volatile components are cracked and separated out, the fuel after the volatile components are separated out is continuously conveyed to the solid combustion zone 110 through the horizontal chain grate 30 to be combusted, and finally is discharged from the slag outlet 11, meanwhile, part of the volatile components separated out in the pyrolysis gasification zone 17 enter the first gas combustion zone 16 through the vent holes 151 on the front arch 15, the secondary air inlet 18 introduces air into the first gas combustion zone 16, so that the volatile components are combusted in the first gas combustion zone 16, further, the front arch 15 is heated, a part of volatile components separated out in the cracking gasification zone 17 directly bypass the rear side of the front arch 15 and enter the second gas combustion zone 113, meanwhile, the residual volatile components generated by the combustion in the first gas combustion zone 16 also enter the second gas combustion zone 113, tertiary air introduces air into the second gas combustion zone 113, so that the volatile components are combusted in the second gas combustion zone 113, and high-temperature flue gas generated by the solid combustion zone 110, the first gas combustion zone 16 and the second gas combustion zone 113 enters the smoke exhaust chamber 111 and is output through the flue gas outlet 112.
The hot blast stove mainly heats the front arch 15 through the volatile matter of the first gas combustion area 16, the biomass briquette fuel of the pyrolysis gasification area 17 is mainly heated through the heat radiation of the front arch 15, therefore, the combustion firepower of the first gas combustion area 16 can be controlled by adjusting the air quantity of the secondary air inlet 18, thereby adjusting the temperature of the front arch 15 and realizing the accurate control of the temperature, thus the temperature of the pyrolysis gasification area 17 can be adjusted according to different biomass fuels, the volatile matter of the biomass fuel is ensured to be fully separated out, the complete separation and independent air distribution combustion of the volatile matter and fixed carbon of the fuel is realized, meanwhile, the temperature of a fuel layer is reduced, the problem of biomass combustion coking is solved, the area heat load of a fire grate is reduced, the service life of the fire grate is prolonged, the temperature of the front arch 15 is controllable, and the reverse combustion of the fuel can be prevented from igniting the storage bin.
In the present embodiment, the temperature probe 152 for detecting the temperature of the front arch 15 is provided in the front arch 15, and the temperature of the front arch 15 is detected by the temperature probe 152, so that it is possible to provide an accurate reference for controlling the combustion power in the first gas combustion zone 16.
The tertiary air inlet 114 faces to the rear lower part, and the spraying speed of the tertiary air from the tertiary air inlet 114 is adjustable. Generally, the temperature regulation requirement of the front arch 15 can be met by regulating the air volume of the secondary air inlet 18, when the air volume of the secondary air inlet 18 cannot meet the temperature regulation requirement of the front arch 15, the temperature of the front arch 15 can be controlled by regulating the air speed sprayed from the tertiary air inlet 114 to supplement the temperature regulation of the front arch 15, if the temperature of the front arch 15 is too low, the spraying air speed of the tertiary air inlet 114 is increased, the introduced air presses the flame in the second gas combustion area 113 to increase the heating of the front arch 15 by the combustion of the second gas combustion area 113, and if the temperature of the front arch 15 is too high, the spraying air speed of the tertiary air inlet 114 is decreased to move the flame in the second gas combustion area 113 upwards, so that the heating of the front arch 15 by the combustion of the second gas combustion area 113 is reduced.
A plurality of ignition air chambers 32 used for ventilating the pyrolysis gasification area 17 are arranged in the horizontal traveling grate 30, when biomass fuel is ignited, the ignition air chambers 32 ventilate the pyrolysis gasification area 17, so that the biomass fuel is combusted in the pyrolysis gasification area 17 to heat the front arch 15, after the front arch 15 is heated to a set temperature, the ignition air chambers 32 stop supplying air to the pyrolysis gasification area 17, the pyrolysis gasification area 17 is flamed out, and in turn, the biomass fuel is heated and pyrolyzed through the heat radiation of the front arch 15.
In the embodiment, the distance between the rear arch 19 and the horizontal traveling grate 30 is greater than the distance between the front arch 15 and the horizontal traveling grate 30, that is, the height of the pyrolysis gasification zone 17 is low, so that the fuel in the pyrolysis gasification zone 17 can be effectively prevented from being ignited, and the height of the solid combustion zone 110 is high, so that the fuel in the solid combustion zone 110 can be fully combusted.
In this embodiment, the front end of the rear arch 19 is provided with a flow blocking portion 191 protruding upward, and the flow blocking portion 191 functions to block the gas from flowing directly backward, so that the gas flows upward first and then flows backward, thereby increasing the retention time of the gas in the second gas combustion zone 113 and enabling the gas to be combusted more sufficiently.
In this embodiment, a vertical arch 115 extending downwards is connected to the middle of the rear upper arch 14, the vertical arch 115 divides the smoke exhaust chamber 111 into a smoke inlet chamber 1111 and a settling chamber 1112 which are communicated with each other at the lower part, and smoke generated by combustion enters the settling chamber 1112 through the lower part of the vertical arch 115, which is beneficial to settling of soot in the smoke. In order to clean the ash settled in the settling chamber 1112, the rear arch 19 is provided with an ash falling port 192 for communicating the settling chamber 1112 with the slag outlet 11, and during ash cleaning, the ash falling port 192 is opened, so that the ash in the settling chamber 1112 is discharged into the slag outlet 11 through the ash falling port 192.
Furthermore, a flue gas recirculation inlet 116 for introducing circulating flue gas into the flue gas inlet chamber 1111 is arranged on the furnace wall of the furnace body 10, the circulating flue gas after being heated and utilized has residual heat and has certain oxygen content, the circulating flue gas is introduced into the flue gas inlet chamber 1111 and is mixed with the flue gas generated by the combustion of the hot blast stove, the residual combustible gas in the flue gas generated by the combustion of the hot blast stove is fully combusted in the flue gas inlet chamber 1111, and the mixed flue gas is continuously heated, so that the residual heat utilization of the circulating flue gas can be realized, the residual combustible gas can be fully combusted, and the heat energy utilization rate is improved.
Finally, it should be noted that: the above embodiments are only used to illustrate the technical solution of the present invention, and not to limit the same; while the invention has been described in detail and with reference to the foregoing embodiments, it will be understood by those skilled in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some or all of the technical features may be equivalently replaced; such modifications and substitutions do not depart from the spirit and scope of the present invention, and they should be construed as being included in the following claims and description.

Claims (9)

1. The utility model provides a many front arches biomass gasification hot-blast furnace that adjusts temperature which characterized in that:
comprises a furnace body;
a furnace front bin is arranged outside the front side of the furnace body, a slag outlet is arranged at the bottom of the rear side of the furnace body, a horizontal chain grate extending from the furnace front bin to the slag outlet is arranged at the lower part of the furnace body, and the horizontal chain grate penetrates through a fuel inlet arranged on the front furnace wall of the furnace body;
the upper furnace wall of the furnace body comprises a front upper arch and a rear upper arch which are connected in a front-rear mode, and the front upper arch is lower than the rear upper arch;
a front arch is arranged between the front upper arch and the horizontal chain grate, the front arch is connected to the front furnace wall of the furnace body, a cracking gasification area is formed between the front arch and the horizontal chain grate, a first gas combustion area is formed between the front arch and the front upper arch, a plurality of vent holes for communicating the cracking gasification area and the first gas combustion area are formed in the front arch, and a secondary air inlet for ventilating the first gas combustion area is formed in the front furnace wall of the furnace body;
a rear arch is arranged between the rear upper arch and the horizontal chain grate, a solid combustion area is formed between the rear arch and the horizontal chain grate, a plurality of primary air chambers used for ventilating the solid combustion area are arranged in the horizontal chain grate, a smoke exhaust chamber is formed between the rear arch and the rear upper arch, and a smoke outlet communicated with the smoke exhaust chamber is arranged at the rear part of the furnace body;
and a second gas combustion area is formed between the front arch and the rear arch, the front part of the second gas combustion area is communicated with the first gas combustion area, the lower part of the second gas combustion area is communicated with the solid combustion area, the upper part of the second gas combustion area is communicated with the smoke exhaust chamber, and a tertiary air inlet used for ventilating the second gas combustion area is arranged on the front furnace wall of the furnace body.
2. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: and a temperature probe for detecting the temperature of the front arch is arranged in the front arch.
3. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: the tertiary air inlet faces to the rear lower part, and the spraying speed from the tertiary air inlet is adjustable.
4. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: and a plurality of ignition air chambers used for ventilating the pyrolysis gasification area are arranged in the horizontal chain grate, when biomass fuel is ignited, the ignition air chambers ventilate the pyrolysis gasification area, so that the biomass fuel is combusted in the pyrolysis gasification area to heat the front arch, and after the front arch is heated to a set temperature, the ignition air chambers stop supplying air to the pyrolysis gasification area.
5. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: the distance between the rear arch and the horizontal traveling grate is larger than the distance between the front arch and the horizontal traveling grate.
6. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: the front end of the rear arch is provided with a choke part which protrudes upwards.
7. The multi-front-arch tempering biomass gasification hot blast stove of claim 1, characterized in that: the middle part of the rear upper arch is connected with a downward extending vertical arch, and the vertical arch divides the smoke exhaust chamber into a smoke inlet chamber and a settling chamber, the lower parts of which are communicated.
8. The multi-front-arch tempering biomass gasification hot blast stove of claim 7, characterized in that: and a flue gas recirculation inlet for introducing circulating flue gas into the flue gas inlet chamber is formed in the furnace wall of the furnace body.
9. The multi-front-arch tempering biomass gasification hot blast stove of claim 7, characterized in that: and an ash falling port communicated with the settling chamber and the slag outlet is arranged on the rear arch, and during ash removal, the ash falling port is opened, so that the ash in the settling chamber is discharged into the slag outlet through the ash falling port.
CN202010500580.6A 2020-06-04 2020-06-04 Multi-front-arch temperature-regulating biomass gasification hot blast stove Active CN111623345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010500580.6A CN111623345B (en) 2020-06-04 2020-06-04 Multi-front-arch temperature-regulating biomass gasification hot blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010500580.6A CN111623345B (en) 2020-06-04 2020-06-04 Multi-front-arch temperature-regulating biomass gasification hot blast stove

Publications (2)

Publication Number Publication Date
CN111623345A true CN111623345A (en) 2020-09-04
CN111623345B CN111623345B (en) 2022-07-08

Family

ID=72269136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010500580.6A Active CN111623345B (en) 2020-06-04 2020-06-04 Multi-front-arch temperature-regulating biomass gasification hot blast stove

Country Status (1)

Country Link
CN (1) CN111623345B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774607A (en) * 2022-04-24 2022-07-22 北京首钢建设集团有限公司 Hot blast stove bottom structure and welding method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672899A (en) * 1984-09-17 1987-06-16 Ernst Kainer Preburning plant for burning solid fuel materials having a high ash contents
CN1763426A (en) * 2005-09-30 2006-04-26 王树洲 Double swirl-flow combustion apparatus for industrial boiler and kiln
CN101324337A (en) * 2008-07-25 2008-12-17 华章电气(桐乡)有限公司 Method for burning sludge of chain furnace
CN201662042U (en) * 2010-03-25 2010-12-01 北京盛昌绿能科技有限公司 Environment-friendly boiler adopting biomass gasified combustion
CN101963345A (en) * 2010-09-30 2011-02-02 浙江圣普新能源科技有限公司 Chain mobile grate boiler for combustible biomass formed fuel
CN205261578U (en) * 2015-12-29 2016-05-25 重庆科技学院 Mechanical stoker formula rubbish list stove gasification incineration system
US20170198910A1 (en) * 2016-01-07 2017-07-13 Ashutosh Garg Damper system for heater stack
CN106989510A (en) * 2017-03-23 2017-07-28 吉林市安瑞克能源科技开发有限公司 A kind of biomass fuel boiler
CN206890524U (en) * 2017-05-17 2018-01-16 河北约翰节能设备科技有限公司 A kind of harmless processing unit of high temperature garbage gasification
CN109323246A (en) * 2018-10-16 2019-02-12 朱益民 A kind of gasification combustion method that accurately can be adjusted and control and equipment
CN110440265A (en) * 2019-08-26 2019-11-12 同济大学 A kind of trash burning furnace having hot-fluid tissue

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672899A (en) * 1984-09-17 1987-06-16 Ernst Kainer Preburning plant for burning solid fuel materials having a high ash contents
CN1763426A (en) * 2005-09-30 2006-04-26 王树洲 Double swirl-flow combustion apparatus for industrial boiler and kiln
CN101324337A (en) * 2008-07-25 2008-12-17 华章电气(桐乡)有限公司 Method for burning sludge of chain furnace
CN201662042U (en) * 2010-03-25 2010-12-01 北京盛昌绿能科技有限公司 Environment-friendly boiler adopting biomass gasified combustion
CN101963345A (en) * 2010-09-30 2011-02-02 浙江圣普新能源科技有限公司 Chain mobile grate boiler for combustible biomass formed fuel
CN205261578U (en) * 2015-12-29 2016-05-25 重庆科技学院 Mechanical stoker formula rubbish list stove gasification incineration system
US20170198910A1 (en) * 2016-01-07 2017-07-13 Ashutosh Garg Damper system for heater stack
CN106989510A (en) * 2017-03-23 2017-07-28 吉林市安瑞克能源科技开发有限公司 A kind of biomass fuel boiler
CN206890524U (en) * 2017-05-17 2018-01-16 河北约翰节能设备科技有限公司 A kind of harmless processing unit of high temperature garbage gasification
CN109323246A (en) * 2018-10-16 2019-02-12 朱益民 A kind of gasification combustion method that accurately can be adjusted and control and equipment
CN110440265A (en) * 2019-08-26 2019-11-12 同济大学 A kind of trash burning furnace having hot-fluid tissue

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈美华等: "生物质成型燃料工业锅炉的设计及测试结果", 《煤气与热力》 *
马括等: "生物质颗粒燃料层燃燃烧的FLIC数值模拟与分析", 《可再生能源》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774607A (en) * 2022-04-24 2022-07-22 北京首钢建设集团有限公司 Hot blast stove bottom structure and welding method thereof
CN114774607B (en) * 2022-04-24 2023-09-15 北京首钢建设集团有限公司 Furnace bottom structure of hot blast furnace and welding method thereof

Also Published As

Publication number Publication date
CN111623345B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
CN106594713A (en) Anti-slagging biomass cascade conversion combustion device
CN101881433A (en) Steam boiler capable of burning biomass
CN111623345B (en) Multi-front-arch temperature-regulating biomass gasification hot blast stove
CN206958896U (en) A kind of decoupling combustion device
CN210197696U (en) Split hot-blast stove
CN101782229B (en) Gasification furnace with cone-shaped grates
CN212298956U (en) Circulating fluidized bed boiler using semi coke or natural gas as fuel
CN202253765U (en) Efficient clean-type coal circulatory combustion direct gasification oven
CN109340760A (en) A kind of mobile grate gasification burning integrated furnace
CN201513880U (en) Integral gasifying combination burning boiler
CN201652332U (en) Gasification furnace with conical fire grate
CN212057387U (en) Low-nitrogen combustor and low-nitrogen combustion furnace
CN212481303U (en) Household garbage pyrolysis gasification layered chain grate furnace
CN211794281U (en) Double-furnace double-combustion tobacco curing equipment
CN105112076B (en) System and method for gas direct heating
CN204084433U (en) Two drum longitudinal chain grate boiler
CN210891768U (en) Atmospheric hot water stove with staged combustion
CN109210528B (en) Decoupling combustion device and combustion method
CN109539315B (en) Biomass particle/molded coal air preheating environment-friendly stove with S-shaped flue gas flow
CN106123010A (en) A kind of combustion method of biomass fuel
CN113308258A (en) Biomass baking pyrolysis system
CN207162607U (en) A kind of positive burning cooking and heating furnace of smokeless combustion
CN216019068U (en) A special heating device of clean type charcoal for tobacco flue-curing
CN2372565Y (en) Internal combustion life refuse incinerator
CN221005512U (en) Organic heat carrier furnace for burning biomass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant