CN111620547B - Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof - Google Patents

Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof Download PDF

Info

Publication number
CN111620547B
CN111620547B CN202010576970.1A CN202010576970A CN111620547B CN 111620547 B CN111620547 B CN 111620547B CN 202010576970 A CN202010576970 A CN 202010576970A CN 111620547 B CN111620547 B CN 111620547B
Authority
CN
China
Prior art keywords
granules
raw material
alkali
glass
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010576970.1A
Other languages
Chinese (zh)
Other versions
CN111620547A (en
Inventor
马立云
柯震坤
曹欣
单传丽
倪嘉
仲召进
王萍萍
高强
王巍巍
赵凤阳
韩娜
杨勇
崔介东
石丽芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Glass New Materials Research Institute Group Co Ltd
Original Assignee
China Building Materials Glass New Materials Research Institute Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Glass New Materials Research Institute Group Co Ltd filed Critical China Building Materials Glass New Materials Research Institute Group Co Ltd
Priority to CN202010576970.1A priority Critical patent/CN111620547B/en
Publication of CN111620547A publication Critical patent/CN111620547A/en
Application granted granted Critical
Publication of CN111620547B publication Critical patent/CN111620547B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

The invention discloses an alkali-free boroaluminosilicate glass raw material granulation body and a preparation method thereof, which are characterized in that: (1) the weight percentages are as follows: 50-65% SiO 2 、10‑20% Al 2 O 3 、3‑10% CaCO 3 、1‑6% MgO、1‑12% B 2 O 3 、6‑13% SrCO 3 And 0-0.2% SnO + SnO 2 +CeO 2、 1-10% of silica sol binder, mixing the raw materials, fully and uniformly mixing, feeding into an extrusion molding machine, controlling the pressure of the extrusion molding machine at 30-150MPa, and extruding to form spherical or flaky granules with the diameter of 0.5-3 mm; (2) calcining the formed granules at the temperature of 750-920 ℃ for 1-1.5h to obtain the alkali-free boroaluminosilicate glass raw material granules. The invention has the advantages that: the prepared granules have high mechanical strength and small particle size, and the minimum particle size can reach 0.5 mm; the neutral silica sol binder is used, and has no corrosion effect on mixing equipment and extrusion forming equipment; the glass prepared by the granulating body has excellent clarifying effect, and the thermodynamic property, the mechanical property and the optical property of the glass are improved in different ranges.

Description

Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof
Technical Field
The invention belongs to the technical field of glass production, and relates to an alkali-free boroaluminosilicate glass raw material granulation body and a preparation method thereof.
Background
The TFT liquid crystal display mode has a pixel response speed 600 times faster than that of the old LCD screen. The advanced silicon electrode is added to greatly increase the pixel response speed of the liquid crystal screen and reduce the delay phenomenon of the picture. Meanwhile, higher technical requirements are put on the glass substrate. At present, mainstream substrate glass products in the market belong to alkali-free boron aluminum silicate glass systems.
The alkali-free boroaluminosilicate glass can generate a large amount of gas in a melting stage, and because the glass does not contain alkali metal and the content of aluminum in raw materials exceeds 12%, the alkali-free boroaluminosilicate glass has the process characteristics that the melting temperature is high, the viscosity is high, the clarification is very difficult, and the existence of bubbles influences the optical uniformity, the transmittance, the mechanical strength and other properties of the glass, and belongs to serious defects for plate glass. Therefore, the glass production process needs to add proper clarifying agents to eliminate bubbles in the glass production process.
At present, alkali-free boroaluminosilicate glass clarifying agents on the market are mainly tin oxide, stannous oxide, sulfide, halide and the like, but the addition amount of the tin oxide, the stannous oxide, the sulfide, the halide and the like is large, the clarifying efficiency is not high, and the good clarifying effect cannot be achieved. And the sulfide and the halide can cause certain harm to human bodies and environment.
It is known in the market that a disc type granulator and the like are used for granulating raw materials by adding water into the raw materials, but the produced granules have the defects of high humidity, weak compressive strength and the like due to overlarge water content, and the problems of poor composition uniformity, raw material waste and the like of glass generated by the granulation processes for solving the problem that glass raw material powder scatters are solved, and the problems that the granules are suitable for transportation and the clarification effect of sintered and formed glass is improved are not solved.
Chinese patent publication No. CN103547541A describes that in alkali-free glass, a boron source and an alkaline earth metal source react to form a hydrate, thereby obtaining a granulated body having excellent strength; that is, in the granulation process, boron oxide or boric acid is used as at least a part of the boron source, and an alkaline earth metal carbonate is used as at least a part of the alkaline earth metal source.
Chinese patent publication No. CN105555727A describes that in alkali-free and boron-free glass, CaO.2Al is essentially contained in the glass raw material 2 O 3 Namely, a composition of at least one of calcium oxide and calcium hydroxide and alumina in CaO 2Al 2 O 3 The water is added to the granules to form a gel-like hydrate, and the gel-like hydrate acts as a binder for the granules.
The binder described in the above patents has an acidic or alkaline corrosive effect on the granulation equipment, reducing the service life of the granulation equipment, and the binder described in the above patents contains a large amount of water so that the binding effect is limited, and the strength of the granules is insufficient, so that the production efficiency of the granules is low and the breakage rate during transportation is high; further, the above patent does not describe that the high-temperature calcination process is performed using the prepared granules, and further, the granules capable of producing glass products having excellent refining effects are obtained.
Disclosure of Invention
The invention aims to solve the problems that the strength of a granulating body produced by the prior art is not enough and equipment is corroded in the preparation process, and provides an alkali-free boroaluminosilicate glass raw material granulating body and a preparation method thereof.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
an alkali-free boroaluminosilicate glass raw material granulation body is characterized by being prepared from the following raw materials in percentage by weight: 50-65% SiO 2 、10-20% Al 2 O 3 、3-10% CaCO 3 、1-6% MgO、1-12% B 2 O 3 、6-13% SrCO 3 And 0-0.2% SnO + SnO 2 +CeO 2、 1-10% of silica sol binder.
Further, the alkali-free boroaluminosilicate glass raw material granules are characterized by being prepared from the following raw materials in percentage by weight: 52-60% SiO 2 、12-18% Al 2 O 3 、3-9% CaCO 3 、1-5% MgO、2-10% B 2 O 3 、6-12% SrCO 3 And 0.05-0.2% SnO + SnO 2 +CeO 2、 5-8% of silica sol binder.
Further, the alkali-free boroaluminosilicate glass raw material granules are characterized by being prepared from the following raw materials in percentage by weight: 53-59% SiO 2 、13-17% Al 2 O 3 、5-9% CaCO 3 、2-5% MgO、5-10% B 2 O 3 、8-12% SrCO 3 And 0.05-0.2% SnO + SnO 2 +CeO 2、 6-8% of silica sol binder.
Further, the particle diameter D50 of the glass raw material is 10 to 75 μm.
Further, the particle diameter D50 of the glass raw material is 25 to 55 μm.
A preparation method of alkali-free boroaluminosilicate glass raw material granules is characterized by comprising the following steps:
(1) mixing the raw materials according to the weight percentage, fully and uniformly mixing the raw materials, then sending the mixture into an extrusion molding machine, controlling the pressure of the extrusion molding machine to be 30-150MPa, and extruding the mixture to form spherical or flaky granules with the diameter of 0.5-3 mm;
(2) calcining the formed granules at the temperature of 750-920 ℃ for 1-1.5h to obtain the alkali-free boroaluminosilicate glass raw material granules.
A method for preparing glass by using alkali-free boroaluminosilicate glass raw material granules is characterized by comprising the following steps: placing the alkali-free boroaluminosilicate glass raw material granules in a high-temperature furnace body, heating to 1600-1650 ℃ for melting, preserving the heat of the molten material at 1650 ℃ for 3h for fully melting and clarifying, finally annealing in an annealing furnace at 600 ℃, and cooling for molding.
The glass raw material and the silica sol binder are fully and uniformly mixed to prepare the granules, so that the uniformity of the glass raw material is improved, the thermodynamic property, the mechanical property and the optical property of a glass product are further improved, the granules are calcined at high temperature, carbonate in the granules is decomposed into oxides, and gases such as carbon dioxide, water vapor and the like in the raw material are released, so that the release amount of the carbon dioxide in the subsequent working section (high-temperature melting process) of the glass raw material granules is greatly reduced, and the clarification effect of the glass product is remarkably improved.
The invention has the advantages that:
1. the alkali-free boroaluminosilicate glass raw material granules prepared by the method have high mechanical strength, and the problem of loosening and damage of the granules in the transportation process is effectively avoided; the prepared granules have small grain diameter which can reach 0.5mm at the minimum, and the uniformity of the molten glass body can be further improved.
2. The neutral silica sol binder is used, so that the material mixing equipment and the extrusion forming equipment are not corroded, the service life of the equipment is prevented from being shortened, and the production efficiency of the granules is high; the obtained granules are extruded and formed, and high-temperature calcination treatment is also needed, and silicon-oxygen bonds are formed by dehydration among hydroxyl groups of the silica sol-silica nanometer granules at high temperature, so that the nanometer granules, the granules and an adhered object are sintered into a whole, and the mechanical strength of the granules is further improved; in the high-temperature calcination process, carbonate in the granules can be decomposed into oxides to release gases such as carbon dioxide and water vapor in the raw materials, so that the carbon dioxide release amount of the glass raw material granules in the subsequent working section (high-temperature melting process) is greatly reduced, and the clarification effect of glass products is remarkably improved.
3. The alkali boroaluminosilicate glass raw material granulation body is used for preparing glass, the clarification effect is excellent, and the uniformity of the glass prepared by melting is improved, so that the thermodynamic property, the mechanical property and the optical property of the glass are improved in different ranges.
Drawings
FIG. 1 is a diagram of the molten state of a sample of example 1 clarified at 1600 ℃ for 3 h;
FIG. 2 is a graph of the melt state of a sample of example 2 clarified at 1600 ℃ for 3 h;
FIG. 3 is a graph of the melt state of a sample of example 3 clarified at 1600 ℃ for 3 h;
FIG. 4 is a graph of the melt state of a sample of example 4 clarified at 1600 ℃ for 3 h;
FIG. 5 is a graph of the melt state of a sample of example 5 clarified at 1600 ℃ for 3 h;
FIG. 6 is a graph of the melting state of the sample of example 6 at 1600 ℃ for 3h of clarification.
FIG. 7 is a drawing of a granulated body having a particle diameter of 0.5 mm.
Detailed Description
Example 1
A preparation method of alkali-free boroaluminosilicate glass comprises the following specific implementation steps:
(1) mixing the raw materials with the D50 value of 50 mu m according to the raw material proportion in the following table 1, fully and uniformly mixing, then sending into an extrusion molding machine, controlling the pressure of the extrusion molding machine at 120MPa, and extruding to form spherical granules with the diameter of 0.5 mm;
(2) calcining the formed granules at the temperature of 750-920 ℃ for 1-1.5h to obtain alkali-free boroaluminosilicate glass raw material granules;
(3) placing the alkali-free boroaluminosilicate glass raw material granules in a high-temperature furnace body, heating to 1600-1650 ℃ for melting, preserving the heat of the molten material at 1650 ℃ for 3h for fully melting and clarifying, finally annealing in an annealing furnace at 600 ℃, and cooling for molding.
The glass melting process was recorded graphically and completely during batch melting using a high temperature melt vision system from czech GLASS SERVICE.
TABLE 1 weight percent ratio of each raw material in examples 1-7
Figure DEST_PATH_IMAGE001
From example 1 and example 2, it can be seen that: the adding amount of the silica sol as a binder plays a key role in the production efficiency of the extruded and formed granules and the compressive strength of the granules, when the adding amount of the silica sol is 6wt.%, the production efficiency reaches 87%, and the compressive strength of the granules reaches 45MPa, so that the prepared granules cannot be damaged due to insufficient strength in the transportation process.
As can be seen from FIG. 1, comparative example 2, example 3 and example 4, a fining agent (SnO) 2 ) And after the calcination process, the clarification effect of the glass sample is very good; the glass fining effect of example 3, with no fining agent added, is still significantly better than that of example 4, with only fining agent added and no calcination process.
Comparing example 2, example 5 and example 6, it can be seen that the change of the calcination time and the calcination temperature also has a great influence on the fining effect of the glass sample, and the fining effect of example 2 is significantly better than that of example 5 and example 6.
The change in the refining effect of the alkali-free borosilicate glass by the pretreatment process proposed by the invention is evident by comparing example 2 with example 7, the number of blisters in the glass of example 2 being significantly less than the number of blisters in the glass of example 7.
By comparing example 4 with example 7, it can be seen that the single granulation also has a great effect of improving the fining performance of the glass.
By comparing the examples, we can conclude that the production efficiency of the granules is the highest when the addition amount of the silica sol is 6wt.%, and the compressive strength of the granules is also greatly improved after high-temperature calcination; adding a clarifying agent SnO 2 The high-temperature calcination temperature is 890 ℃ and the high-temperature calcination time is 1h, which have a decisive influence on the clarification effect of the molten and formed glass.
The above embodiments are only for illustrating the technical idea and features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the content of the present invention and implement the present invention, and not to limit the protection scope of the present invention by this means. All equivalent changes or modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.

Claims (4)

1. A preparation method of alkali-free boroaluminosilicate glass raw material granules is characterized by comprising the following steps:
(1) weighing the following raw materials in percentage by weight: 50-65% SiO 2 、10-20% Al 2 O 3 、3-10% CaCO 3 、1-6% MgO、1-12% B 2 O 3 、6-13% SrCO 3 And 0-0.2% SnO + SnO 2 +CeO 2、 1-10% of neutral silica sol binder, wherein the particle size D50 of the glass raw material is 10-75 μm; mixing the raw materials, feeding into an extrusion molding machine after fully and uniformly mixing, controlling the pressure of the extrusion molding machine at 30-150MPa, and extruding to form spherical or flaky granules with the diameter of 0.5-3 mm;
(2) calcining the formed granules at the temperature of 750-920 ℃ for 1-1.5h to obtain alkali-free boroaluminosilicate glass raw material granules;
(3) placing the alkali-free boroaluminosilicate glass raw material granules in a high-temperature furnace body, heating to 1600-1650 ℃ for melting, preserving the heat of the molten material at 1650 ℃ for 3h for fully melting and clarifying, finally annealing in an annealing furnace at 600 ℃, and cooling for molding.
2. The method of claim 1, wherein the method comprises: the material is prepared from the following raw materials in percentage by weight: 52-60% SiO 2 、12-18% Al 2 O 3 、3-9% CaCO 3 、1-5% MgO、2-10% B 2 O 3 、6-12% SrCO 3 And 0.05-0.2% SnO + SnO 2 +CeO 2、 5-8% of neutral silica sol binder.
3. The method of claim 1, wherein the method comprises: the material is prepared from the following raw materials in percentage by weight: 53-59% SiO 2 、13-17% Al 2 O 3 、5-9% CaCO 3 、2-5% MgO、5-10% B 2 O 3 、8-12% SrCO 3 And 0.05-0.2% SnO + SnO 2 +CeO 2、 6-8% of neutral silica sol binder.
4. The method for producing alkali-free boroaluminosilicate glass raw material granules according to claim 1, 2 or 3, wherein: the particle size D50 of the glass raw material is 25-55 μm.
CN202010576970.1A 2020-06-23 2020-06-23 Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof Active CN111620547B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010576970.1A CN111620547B (en) 2020-06-23 2020-06-23 Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010576970.1A CN111620547B (en) 2020-06-23 2020-06-23 Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111620547A CN111620547A (en) 2020-09-04
CN111620547B true CN111620547B (en) 2022-08-12

Family

ID=72269540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010576970.1A Active CN111620547B (en) 2020-06-23 2020-06-23 Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111620547B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831014A (en) * 2021-10-29 2021-12-24 中建材蚌埠玻璃工业设计研究院有限公司 Borosilicate glass and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034985C1 (en) * 2000-07-19 2001-09-06 Schott Glas Production of an alkali-free aluminosilicate glass used as a substrate glass for displays comprises adding tin oxide as refining agent to the starting materials, melting the glass and hot molding the glass
JP4977965B2 (en) * 2005-05-02 2012-07-18 旭硝子株式会社 Alkali-free glass and method for producing the same
CN102584008B (en) * 2011-12-20 2014-10-22 东旭集团有限公司 Formula for light environment-friendly alkali-free boron-alumina silicate glass used in liquid crystal display (LCD)
CN108793728A (en) * 2018-09-05 2018-11-13 中建材蚌埠玻璃工业设计研究院有限公司 High-aluminum alkali-free borosilicate glass fining agent and defecation method
CN110183103B (en) * 2019-05-06 2023-05-02 中建材玻璃新材料研究院集团有限公司 Clarifying agent for alkali-free boroaluminosilicate glass and use method thereof
CN110818256B (en) * 2019-12-31 2021-05-04 中建材蚌埠玻璃工业设计研究院有限公司 Alkali-free high-alumina borosilicate glass and preparation method thereof

Also Published As

Publication number Publication date
CN111620547A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
US8272235B2 (en) Method for producing alkali-free glass
CN1319882C (en) Method of producing glass using degassed glass material
CN101269909B (en) Float glass
CN103396007B (en) A kind of white light led fluorescent glass sheet and preparation method thereof
CN110204195B (en) Ultrathin glass and preparation method thereof
TWI417265B (en) Photovoltaic low iron flat glass batches containing alkali-free alumino-borosilicate display glass cullet
KR20200123158A (en) Glass composition, glass with low inclusion content, manufacturing method thereof, and application thereof
CN100340522C (en) New type bone china, and producing method
WO2008042124A9 (en) Method of manufacturing glass and compositions thereof
CN111620547B (en) Alkali-free boroaluminosilicate glass raw material granules and preparation method thereof
CN111747654A (en) High-modulus glass fiber composition, and glass fiber and composite material thereof
EP4276080A1 (en) Glass fiber with low thermal expansion coefficient
CN1433985A (en) Nucleated glass composite material and process for preparing same
CN110183103B (en) Clarifying agent for alkali-free boroaluminosilicate glass and use method thereof
CN103011585A (en) Environment-friendly liquid crystal base plate glass and preparation method thereof
JP2016074598A (en) Manufacturing method of silicate glass
JP2014240332A (en) Production method of glass substrate
WO2020077925A1 (en) Protective glass plate with impact-resistance stress characteristics
JP2013107801A (en) Method for producing glass substrate
CN111807700A (en) Glass composition for white spirit bottles
CN113354288A (en) Microcrystalline glass plate and preparation method thereof
CN1840495A (en) Single-slice fireproof glass
CN101544466B (en) Crystal liquid substrate glass material and preparation method thereof
KR101748499B1 (en) Batch Composition for Preparing Long Glass Fiber
CN102442777A (en) Lead-free glass for energy-saving lamp

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 233010 Tushan Road 1047, Yuhui District, Bengbu City, Anhui Province

Applicant after: China Building Materials Glass New Materials Research Institute Group Co.,Ltd.

Address before: 233010 Tushan Road 1047, Yuhui District, Bengbu City, Anhui Province

Applicant before: CHINA BUILDING MATERIALS BENGBU GLASS INDUSTRY DESIGN & RESEARCH INSTITUTE Co.,Ltd.

GR01 Patent grant
GR01 Patent grant