CN111614089B - 一种基于模型预测控制的电氢耦合系统功率调控方法 - Google Patents

一种基于模型预测控制的电氢耦合系统功率调控方法 Download PDF

Info

Publication number
CN111614089B
CN111614089B CN202010546323.6A CN202010546323A CN111614089B CN 111614089 B CN111614089 B CN 111614089B CN 202010546323 A CN202010546323 A CN 202010546323A CN 111614089 B CN111614089 B CN 111614089B
Authority
CN
China
Prior art keywords
power
hydrogen
coupling system
battery
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010546323.6A
Other languages
English (en)
Other versions
CN111614089A (zh
Inventor
孔令国
于家敏
蔡国伟
王士博
边育栋
刘闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202010546323.6A priority Critical patent/CN111614089B/zh
Publication of CN111614089A publication Critical patent/CN111614089A/zh
Application granted granted Critical
Publication of CN111614089B publication Critical patent/CN111614089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明的一种基于模型预测控制的电氢耦合系统功率调控方法,其特点是,包括构建电氢耦合系统状态空间模型和对基于模型预测控制的电氢耦合系统功率调控求解,具有较强的鲁棒性、稳定性和适应性,能够通过对电氢耦合系统功率调控使电氢耦合系统功率在线实时滚动优化,提高电氢耦合系统的稳定性和利用率;且能够对可再生氢耦合多能系统的优化运行深入研究与商业化应用具有一定的指导意义。

Description

一种基于模型预测控制的电氢耦合系统功率调控方法
技术领域
本发明涉及综合能源利用技术领域,是一种基于模型预测控制的电氢耦合系统功率调控方法。
背景技术
现有技术对电氢耦合系统的功率调控通常采用状态控制方法,为了尽可能多的利用新能源以及满足负荷用电需求,确保各储能装置安全运行,根据不同工况下的运行模式及系统功率平衡,提出相应的功率调控策略。现有的状态控制方法未对系统功率平衡进行优化处理。
发明内容
本发明的构思基础是,模型预测控制是处理约束系统控制问题的最有效方法之一,具有较好在线优化动态控制性能,能够预测未来一段时间内的系统动态,从而进行相应的调整与控制,具有较强的鲁棒性。
本发明的目的是,克服现有技术的不足,提供一种稳定性好,适应性强,具有较高的实际应用价值,能够提高系统鲁棒性和氢系统利用率的基于模型预测控制的电氢耦合系统功率调控方法。此方法适用于风光氢综合能源离/并网运行、能量管理分析、系统功率调度和运行分配的研究。
本发明的目的是由以下技术方案来实现的:一种基于模型预测控制的电氢耦合系统功率调控方法,其特征是,它包括以下内容:
1)构建电氢耦合系统状态空间模型
①电氢耦合系统功率平衡方程为:
Pwind+Ppv-Pfc+Pbat=Pel+Pload (1)
其中:Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
②电氢耦合系统净功率和可控能源产生的功率方程为:
Figure GDA0003106807310000011
其中:Pnet为净功率,Pgen为可控能源产生的功率,Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
③氢压力变化率方程为:
Figure GDA0003106807310000021
其中:psto为储氢罐压力,t为时间,
Figure GDA0003106807310000022
为氢压力对时间t的导数,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,Pfc为燃料电池功率,ηF为法拉第效率,Pel为电解槽功率,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,uel为电解槽电压,ufc为燃料电池电压;
④蓄电池荷电状态变化率方程为:
Figure GDA0003106807310000023
其中:SOC为蓄电池的荷电状态,Pbat为蓄电池功率,Qn为蓄电池额定容量,ubat为蓄电池电压,t为时间,
Figure GDA0003106807310000024
为荷电状态对时间t的导数;
⑤电氢耦合系统的状态空间离散方程为:
Figure GDA0003106807310000025
其中:psto为储氢罐压力,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,ηF为法拉第效率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,SOC为蓄电池的荷电状态,Qn为蓄电池额定容量,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,Ts为仿真采样时间,uel为电解槽电压,ufc为燃料电池电压,ubat为蓄电池电压,k为当前时刻,k+1为下一时刻,x为状态变量,yb为约束输出变量,yc为被控输出变量,Cb为约束输出矩阵,Cc为被控输出矩阵;
⑥电氢耦合系统的状态变量、控制变量、输出变量为:
Figure GDA0003106807310000031
其中:x为状态变量,u为控制变量,yb为约束输出变量,yc为被控输出变量,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,psto为储氢罐压力,T为矩阵转置标志,SOC为蓄电池的荷电状态;
⑦电氢耦合系统中系统矩阵、控制矩阵和输出矩阵为:
Figure GDA0003106807310000032
其中:A为系统矩阵,B为控制矩阵,Cb为约束输出矩阵,Cc为被控输出矩阵,ξ1,ξ2,ξ3为常数;
2)对基于模型预测控制的电氢耦合系统功率调控求解
①电氢耦合系统功率调控函数为:
Figure GDA0003106807310000033
其中:Pgen为可控能源产生的功率,Pnet为净功率,Np为预测时域,Nc为控制时域,Q,R为权重矩阵,j为1,2,3…Np的常数,J为目标函数,x为状态变量,k为当前时刻,△u为控制增量;
②当净功率为正时,系统运行边界约束为:
Figure GDA0003106807310000041
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmax为约束输出变量功率上限,x为状态变量,ξ1,ξ3为常数;
③当净功率为负时,系统运行边界约束为:
Figure GDA0003106807310000042
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmin为约束输出变量功率下限,x为状态变量,ξ2,ξ3为常数;
④电氢耦合系统功率调控函数的向量形式为:
Figure GDA0003106807310000043
其中:Pgen为可控能源产生的功率,Pnet为净功率,Q,R为权重矩阵,J为目标函数,k为当前时刻,△U为控制增量序列;
⑤电氢耦合系统功率调控函数转化为二次规划形式为:
Figure GDA0003106807310000044
其中:△U为控制增量序列,J为目标函数,k为当前时刻,T为矩阵转置标志,H为Hessian矩阵,f为梯度向量。
本发明的一种基于模型预测控制的电氢耦合系统功率调控方法是基于风光发电不稳定及供能系统低碳化需求问题而提出来的,氢作为能源低碳化变革中重要能源载体,为风电光伏供能系统提供主要的中间稳定环节,构建典型电氢耦合能源供给系统架构,其中氢储能系统包括碱性电解槽-储氢罐-质子交换膜燃料电池,建立电氢耦合系统线性离散状态空间模型,基于具有较好在线优化动态控制性能的模型预测控制方法,对系统进行功率平衡优化调控。研究电氢耦合系统功率调控策略,对可再生氢耦合多能系统的优化运行深入研究与商业化应用具有一定的指导意义。本发明的方法具有较强的鲁棒性,能够对电氢耦合系统功率平衡进行在线实时的滚动优化,提高氢系统的利用率。其稳定性好,适应性强,实际应用价值高。
附图说明
图1是光伏功率设定值示意图;
图2是风机功率设定值示意图;
图3是负荷功率设定值示意图;
图4是氢系统功率及压力变化曲线示意图;
图5是蓄电池功率和荷电状态变化曲线示意图;
图6是电氢耦合系统功率变化曲线示意图。
具体实施方式
下面利用附图和具体实施例对本发明作出进一步说明。
本发明的一种基于模型预测控制的电氢耦合系统功率调控方法,包括以下内容:
1)构建电氢耦合系统状态空间模型
①电氢耦合系统功率平衡方程为:
Pwind+Ppv-Pfc+Pbat=Pel+Pload (1)
其中:Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
②电氢耦合系统净功率和可控能源产生的功率方程为:
Figure GDA0003106807310000051
其中:Pnet为净功率,Pgen为可控能源产生的功率,Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
③氢压力变化率方程为:
Figure GDA0003106807310000052
其中:psto为储氢罐压力,t为时间,
Figure GDA0003106807310000061
为氢压力对时间t的导数,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,Pfc为燃料电池功率,ηF为法拉第效率,Pel为电解槽功率,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,uel为电解槽电压,ufc为燃料电池电压;
④蓄电池荷电状态变化率方程为:
Figure GDA0003106807310000062
其中:SOC为蓄电池的荷电状态,Pbat为蓄电池功率,Qn为蓄电池额定容量,ubat为蓄电池电压,t为时间,
Figure GDA0003106807310000063
为荷电状态对时间t的导数;
⑤电氢耦合系统的状态空间离散方程为:
Figure GDA0003106807310000064
其中:psto为储氢罐压力,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,ηF为法拉第效率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,SOC为蓄电池的荷电状态,Qn为蓄电池额定容量,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,Ts为仿真采样时间,uel为电解槽电压,ufc为燃料电池电压,ubat为蓄电池电压,k为当前时刻,k+1为下一时刻,x为状态变量,yb为约束输出变量,yc为被控输出变量,Cb为约束输出矩阵,Cc为被控输出矩阵;
⑥电氢耦合系统的状态变量、控制变量、输出变量为:
Figure GDA0003106807310000065
其中:x为状态变量,u为控制变量,yb为约束输出变量,yc为被控输出变量,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,psto为储氢罐压力,T为矩阵转置标志,SOC为蓄电池的荷电状态;
⑦电氢耦合系统中系统矩阵、控制矩阵和输出矩阵为:
Figure GDA0003106807310000071
其中:A为系统矩阵,B为控制矩阵,Cb为约束输出矩阵,Cc为被控输出矩阵,ξ1,ξ2,ξ3为常数;
2)对基于模型预测控制的电氢耦合系统功率调控求解
①电氢耦合系统功率调控函数为:
Figure GDA0003106807310000072
其中:Pgen为可控能源产生的功率,Pnet为净功率,Np为预测时域,Nc为控制时域,Q,R为权重矩阵,j为1,2,3…Np的常数,J为目标函数,x为状态变量,k为当前时刻,△u为控制增量;
②当净功率为正时,系统运行边界约束为:
Figure GDA0003106807310000073
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmax为约束输出变量功率上限,x为状态变量,ξ1,ξ3为常数;
③当净功率为负时,系统运行边界约束为:
Figure GDA0003106807310000081
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmin为约束输出变量功率下限,x为状态变量,ξ2,ξ3为常数;
④电氢耦合系统功率调控函数的向量形式为:
Figure GDA0003106807310000082
其中:Pgen为可控能源产生的功率,Pnet为净功率,Q,R为权重矩阵,J为目标函数,k为当前时刻,△U为控制增量序列;
⑤电氢耦合系统功率调控函数转化为二次规划形式为:
Figure GDA0003106807310000083
其中:△U为控制增量序列,J为目标函数,k为当前时刻,T为矩阵转置标志,H为Hessian矩阵,f为梯度向量。
具体实例:
以仿真参数为基础,对本发明的一种基于模型预测控制的电氢耦合系统功率调控方法进行分析。电解槽设置:功率下限为0kW,功率上限为50kW。燃料电池设置:功率下限为0kW,功率上限为90kW。蓄电池设置:功率下限为-20kW,功率上限为20kW。储氢罐设置:罐体容积为7m3,初始压力为0.4Mpa,压力上限为1.5Mpa,压力下限为0.4Mpa。时域设置:预测时域为10,控制时域为8。电氢耦合系统采样时间设置为1分钟,光伏、风机和负荷功率设置分别如图1、图2和图3所示。图4为氢系统功率及压力变化曲线,由图可知,电解槽和燃料电池不同时工作,电解槽吸纳剩余功率,氢气压力增大,燃料电池补足缺额功率,氢气压力减小。图5为蓄电池功率和荷电状态变化曲线,由图可知,蓄电池释放电能,荷电状态减小,蓄电池吸收电能,荷电状态增大。图6为电氢耦合系统功率变化曲线,由图6可知,本发明的一种基于模型预测控制的电氢耦合系统功率调控方法可控能源功率跟踪参考值净功率效果良好,当风光发电功率高于负荷功率,净功率为正,燃料电池停机,电氢耦合系统的剩余功率主要由电解槽吸纳制取氢气,当新能源发电的间歇性不满足负荷功率需求,新能源发电功率低于负荷功率,净功率为负,电解槽停机,燃料电池和蓄电池释放电能补足电氢耦合系统缺额功率,电氢耦合系统缺额功率主要由燃料电池提供。
本发明的具体实施方式并非穷举,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (1)

1.一种基于模型预测控制的电氢耦合系统功率调控方法,其特征是,它包括以下内容:
1)构建电氢耦合系统状态空间模型
①电氢耦合系统功率平衡方程为:
Pwind+Ppv-Pfc+Pbat=Pel+Pload (1)
其中:Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
②电氢耦合系统净功率和可控能源产生的功率方程为:
Figure FDA0003106807300000011
其中:Pnet为净功率,Pgen为可控能源产生的功率,Pwind为风机功率,Ppv为光伏功率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pload为负荷功率;
③氢压力变化率方程为:
Figure FDA0003106807300000012
其中:psto为储氢罐压力,t为时间,
Figure FDA0003106807300000013
为氢压力对时间t的导数,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,Pfc为燃料电池功率,ηF为法拉第效率,Pel为电解槽功率,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,uel为电解槽电压,ufc为燃料电池电压;
④蓄电池荷电状态变化率方程为:
Figure FDA0003106807300000014
其中:SOC为蓄电池的荷电状态,Pbat为蓄电池功率,Qn为蓄电池额定容量,ubat为蓄电池电压,t为时间,
Figure FDA0003106807300000015
为荷电状态对时间t的导数;
⑤电氢耦合系统的状态空间离散方程为:
Figure FDA0003106807300000016
其中:psto为储氢罐压力,R为气体常数,Tsto为储氢罐温度,Vsto为储氢罐体积,ηF为法拉第效率,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,SOC为蓄电池的荷电状态,Qn为蓄电池额定容量,Nel为电解槽串联模块个数,z为每次反应电子转移数,F为法拉第常数,Nfc为燃料电池模块个数,Ts为仿真采样时间,uel为电解槽电压,ufc为燃料电池电压,ubat为蓄电池电压,k为当前时刻,k+1为下一时刻,x为状态变量,yb为约束输出变量,yc为被控输出变量,Cb为约束输出矩阵,Cc为被控输出矩阵;
⑥电氢耦合系统的状态变量、控制变量、输出变量为:
Figure FDA0003106807300000021
其中:x为状态变量,u为控制变量,yb为约束输出变量,yc为被控输出变量,Pfc为燃料电池功率,Pbat为蓄电池功率,Pel为电解槽功率,Pgen为可控能源产生的功率,psto为储氢罐压力,T为矩阵转置标志,SOC为蓄电池的荷电状态;
⑦电氢耦合系统中系统矩阵、控制矩阵和输出矩阵为:
Figure FDA0003106807300000022
其中:A为系统矩阵,B为控制矩阵,Cb为约束输出矩阵,Cc为被控输出矩阵,ξ1,ξ2,ξ3为常数;
2)对基于模型预测控制的电氢耦合系统功率调控求解
①电氢耦合系统功率调控函数为:
Figure FDA0003106807300000023
其中:Pgen为可控能源产生的功率,Pnet为净功率,Np为预测时域,Nc为控制时域,Q,R为权重矩阵,j为1,2,3…Np的常数,J为目标函数,x为状态变量,k为当前时刻,△u为控制增量;
②当净功率为正时,系统运行边界约束为:
Figure FDA0003106807300000031
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmax为约束输出变量功率上限,x为状态变量,ξ1,ξ3为常数;
③当净功率为负时,系统运行边界约束为:
Figure FDA0003106807300000032
其中:Pelmin为电解槽功率下限,Pelmax为电解槽功率上限,Pfcmin为燃料电池功率下限,Pfcmax为燃料电池功率上限,Pbatmin为蓄电池功率下限,Pbatmax为蓄电池功率上限,ybmin为约束输出变量功率下限,x为状态变量,ξ2,ξ3为常数;
④电氢耦合系统功率调控函数的向量形式为:
Figure FDA0003106807300000033
其中:Pgen为可控能源产生的功率,Pnet为净功率,Q,R为权重矩阵,J为目标函数,k为当前时刻,△U为控制增量序列;
⑤电氢耦合系统功率调控函数转化为二次规划形式为:
Figure FDA0003106807300000041
其中:△U为控制增量序列,J为目标函数,k为当前时刻,T为矩阵转置标志,H为Hessian矩阵,f为梯度向量。
CN202010546323.6A 2020-06-15 2020-06-15 一种基于模型预测控制的电氢耦合系统功率调控方法 Active CN111614089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010546323.6A CN111614089B (zh) 2020-06-15 2020-06-15 一种基于模型预测控制的电氢耦合系统功率调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010546323.6A CN111614089B (zh) 2020-06-15 2020-06-15 一种基于模型预测控制的电氢耦合系统功率调控方法

Publications (2)

Publication Number Publication Date
CN111614089A CN111614089A (zh) 2020-09-01
CN111614089B true CN111614089B (zh) 2021-10-01

Family

ID=72205473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010546323.6A Active CN111614089B (zh) 2020-06-15 2020-06-15 一种基于模型预测控制的电氢耦合系统功率调控方法

Country Status (1)

Country Link
CN (1) CN111614089B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086960B (zh) * 2020-09-03 2021-10-01 东北电力大学 基于模型预测控制的电氢耦合系统灵活裕度计算方法
CN113762634B (zh) * 2021-09-13 2023-11-07 东北电力大学 一种零能耗建筑系统电-氢-热双层能量优化调控方法
CN116413509B (zh) * 2023-06-05 2023-08-29 江苏扬子鑫福造船有限公司 一种大容量冷箱系统功率监测调节方法
CN118554530A (zh) * 2024-07-30 2024-08-27 中国电建集团华东勘测设计研究院有限公司 风光储一体化基地的送电曲线自适应优化方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165698A (zh) * 2019-04-01 2019-08-23 广西电网有限责任公司 一种实现前瞻性误差资产转换的风电场平滑并网方法
US20190382808A1 (en) * 2008-11-06 2019-12-19 Kiverdi, Inc. Biological and Chemical Process Utilizing Chemoautotrophic Microorganisms for the Chemosynthetic Fixation of Carbon Dioxide and/or Other Inorganic Carbon Sources into Organic Compounds and the Generation of Additional Useful Products
CN110782186A (zh) * 2019-11-12 2020-02-11 东南大学 一种基于博弈论的多能源互联系统日内经济调度方法
CN111144620A (zh) * 2019-12-06 2020-05-12 东南大学 一种考虑季节储氢的电氢综合能源系统及其鲁棒规划方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009708A (ko) * 2018-07-20 2020-01-30 한국건설기술연구원 비전극 방식의 현장 페레이트 발생장치를 이용한 수중의 이취미물질 및 황화수소 제거 시스템 및 그 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190382808A1 (en) * 2008-11-06 2019-12-19 Kiverdi, Inc. Biological and Chemical Process Utilizing Chemoautotrophic Microorganisms for the Chemosynthetic Fixation of Carbon Dioxide and/or Other Inorganic Carbon Sources into Organic Compounds and the Generation of Additional Useful Products
CN110165698A (zh) * 2019-04-01 2019-08-23 广西电网有限责任公司 一种实现前瞻性误差资产转换的风电场平滑并网方法
CN110782186A (zh) * 2019-11-12 2020-02-11 东南大学 一种基于博弈论的多能源互联系统日内经济调度方法
CN111144620A (zh) * 2019-12-06 2020-05-12 东南大学 一种考虑季节储氢的电氢综合能源系统及其鲁棒规划方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage;Milana Trifkovic, Mehdi Sheikhzadeh;《IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY》;20140131;全文 *
Modeling of a Hydrogen Storage Wind Plant for Model Predictive Control Management Strategies;Muhammad Faisal Shehzad, Muhammad Bakr Abdelghany;《2019 18th European Control Conference (ECC)》;20190815;全文 *
Optimal Economical Schedule of Hydrogen-Based Microgrids With Hybrid Storage Using Model Predictive Control;Felix Garcia-Torres and Carlos Bordons;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20150831;全文 *
Techno-economic Analysis of Wind Curtailment/Hydrogen Production/Fuel Cell Vehicle System with High Wind Penetration in China;Guowei Cai;《CSEE JOURNAL OF POWER AND ENERGY SYSTEMS》;20170331;全文 *
电-氢多能互补型微电网优化配置与运行控制;于瑾;《中国优秀硕士学位论文全文数据库》;20200315;全文 *
风氢耦合并网系统控制策略;蔡国伟;《太阳能学报》;20181031;全文 *
风电/制氢/燃料电池/超级电容器混合系统控制策略;蔡国伟;《电工技术学报》;20170930;全文 *

Also Published As

Publication number Publication date
CN111614089A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN111614089B (zh) 一种基于模型预测控制的电氢耦合系统功率调控方法
CN112086960B (zh) 基于模型预测控制的电氢耦合系统灵活裕度计算方法
CN109301861B (zh) 一种光伏与光热系统协调发电的黑启动系统及其恢复方法
CN114024327A (zh) 一种基于可再生能源发电多能互补的控制系统及方法
CN112541609A (zh) 风光热和水蓄能联合可再生能源发电系统容量优化模型
CN102983604A (zh) 光伏和燃料电池联合发电系统
CN115882515A (zh) 协同多类型电解制氢与储能电池的微电网系统及运行方法
Huangfu et al. An optimal energy management strategy with subsection bi-objective optimization dynamic programming for photovoltaic/battery/hydrogen hybrid energy system
CN116805803A (zh) 基于自适应mpc的风光储离网制氢系统能量调度方法
Wang et al. Energy management strategy for microgrid including hybrid energy storage
Trifkovic et al. Hierarchical control of a renewable hybrid energy system
Yuan et al. Modeling and control strategy of wind-solar hydrogen storage coupled power generation system
Cano et al. Sizing and energy management of a stand-alone PV/hydrogen/battery-based hybrid system
Peng et al. Research of Multi-objective optimal dispatching for microgrid based on improved Genetic Algorithm
Kumar et al. Designing a hydrogen generation system through PEM water electrolysis with the capability to adjust fast fluctuations in photovoltaic power
CN114336703B (zh) 一种大规模风光储电站自动协同控制方法
Bendib et al. Wind-solar power system associated with flywheel and pumped-hydro energy storage
Haodong et al. Capacity configuration of solar-based battery-hydrogen hybrid energy storage for microgrids
Qi et al. Integrated control of energy management for stand-alone PV system
CN115117398B (zh) 一种基于pemec-pemfc闭式运行的冷热电氢联供系统
Zhao et al. Optimal Allocation and Operation of Combined Heat and Power Microgrid Including Phase Change Heat Storage
CN115833078B (zh) 一种基于sofc的直流微型电网的能源优化方法
Shi Research on optimal configuration of off-grid PH coupling system based on MPC
Qian et al. Research on multi-time scale optimization of integrated energy system based on multiple energy storage
Loong et al. Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant