CN111612715A - 图像修复方法、装置和电子设备 - Google Patents

图像修复方法、装置和电子设备 Download PDF

Info

Publication number
CN111612715A
CN111612715A CN202010428881.2A CN202010428881A CN111612715A CN 111612715 A CN111612715 A CN 111612715A CN 202010428881 A CN202010428881 A CN 202010428881A CN 111612715 A CN111612715 A CN 111612715A
Authority
CN
China
Prior art keywords
image
repaired
noise
predicted
inpainting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010428881.2A
Other languages
English (en)
Other versions
CN111612715B (zh
Inventor
周恺卉
王长虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing ByteDance Network Technology Co Ltd
Original Assignee
Beijing ByteDance Network Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing ByteDance Network Technology Co Ltd filed Critical Beijing ByteDance Network Technology Co Ltd
Priority to CN202010428881.2A priority Critical patent/CN111612715B/zh
Publication of CN111612715A publication Critical patent/CN111612715A/zh
Application granted granted Critical
Publication of CN111612715B publication Critical patent/CN111612715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Processing (AREA)

Abstract

本公开实施例公开了一种图像修复方法、装置、电子设备和计算机可读存储介质。其中该图像修复方法包括:获取待修复图像;生成待修复图像中的噪声区域的修复图像;将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。上述方法通过生成噪声区域的修复图像,解决了现有技术中图像修复颜色不精细的技术问题。

Description

图像修复方法、装置和电子设备
技术领域
本公开涉及文本生成领域,尤其涉及一种图像修复方法、装置、电子设备及计算机可读存储介质。
背景技术
文字作为人类发明的抽象的交流符号,具有丰富的表达性,并在自然场景中作为信息表达大量出现。由于文字含有丰富的语义信息,识别自然场景中的文字成为大量视觉方面应用的基础,如目标定位、人机交互、图像搜索、机器导航和工业自动化等等。因此,自然场景下对文字的识别和理解是近年的研究与应用的热点之一。
现有技术中存在需要去除图像中的噪声的需求,如有些图像上有一些字幕,后续需要使用无字幕的图像时,需要将字幕从图像上去除掉并将字幕部分补充成图像的颜色。现有技术中的去除图像中的文字的方法,一般是先使用阈值法提取图像中的文字,之后用图像减法减去文字部分的颜色得到去除文字之后的图像;或者是先用阈值法图区图像中的文字,之后使用OPENCV中inpaint()函数对图像修复。但是上述文字去除的方法得到去除结果都不够精细,去除掉为之后原先文字区域的颜色不自然。
发明内容
提供该发明内容部分以便以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。该发明内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。
为了解决现有技术中图像修复不够精细的技术问题,本公开实施例提出如下技术方案。
第一方面,本公开实施例提供一种图像修复方法,包括:
获取待修复图像;
生成待修复图像中的噪声区域的修复图像;
将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
第二方面,本公开实施例提供一种图像修复方法装置,包括:
待修复图像获取模块,用于获取待修复图像;
噪声区域恢复模块,用于生成待修复图像中的噪声区域的修复图像;
修复模块,用于将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。第三方面,本公开实施例提供一种电子设备,包括:至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有能被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行前述第一方面中的任一所述的方法。
第四方面,本公开实施例提供一种非暂态计算机可读存储介质,其特征在于,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行前述第一方面中的任一所述的方法。
本公开实施例公开了一种图像修复方法、装置、电子设备和计算机可读存储介质。其中该图像修复方法包括:获取待修复图像;生成待修复图像中的噪声区域的修复图像噪声区域的修复图像;将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。上述方法通过生成噪声区域的修复图像,解决了现有技术中图像修复颜色不精细的技术问题。
上述说明仅是本公开技术方案的概述,为了能更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为让本公开的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。
图1为本公开实施例提供的图像修复方法的流程示意图;
图2为本公开实施例提供的图像修复方法中图像修复模型的训练方法流程示意图;
图3为本公开实施例提供的图像修复方法中图像修复模型的训练方法的步骤S101的一个具体实施方式意图;
图4为本公开实施例提供的图像修复方法中图像修复模型的训练方法的步骤S204的一个具体实施方式意图;
图5为本公开实施例提供的图像修复模型的结构示意图;
图6为本公开实施例提供的图像修复装置的实施例的结构示意图;
图7为根据本公开实施例提供的电子设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
图1为本公开实施例提供的图像修复方法实施例的流程图,本实施例提供的该图像修复方法可以由一图像修复方法装置来执行,该图像修复方法装置可以实现为软件,或者实现为软件和硬件的组合,该图像修复方法装置可以集成设置在图像修复方法系统中的某设备中,比如图像修复方法服务器或者图像修复方法终端设备中。如图1所示,该方法包括如下步骤:
步骤S101,获取待修复图像;
其中,所述待修复图像为包括噪声的图像。示例性的,所述待修复图像为包括文字的图像,文字即为噪声,需要将文字从待修复图像中去除。
步骤S102,生成待修复图像中的噪声区域的修复图像;
在该步骤中,生成与噪声区域对应的正确的图像,即在噪声区域的范围内生成其正确的像素值,这样图像的修复被限定在噪声的区域范围内,可以比较准确的生成修复后的图像。
可选的,所述步骤S102包括:
根据所述待修复图像生成噪声区域的轮廓;
根据所述待修复图像生成中间图像,其中所述中间图像中噪声区域的位置所对应的图像为所述正确的图像;
根据所述噪声区域的轮廓以及中间图像生成所述噪声区域的修复图像。
在上述步骤中,识别出噪声区域的轮廓,并生成待修复图像的中间图像,其中所述中间图像中只有噪声区域的轮廓内对应的区域的图像是正确的,其他位置的图像正确与否对本公开的方案没有影响。中间图像中包括了噪声区域的正确图像,而噪声区域的轮廓限定了噪声区域的位置,因此通过所述噪声区域的轮廓以及中间图像的叠加可以生成所述噪声区域的修复图像。
可选的,所述步骤S102包括:将所述待修复图像输入图像修复模型得到所述噪声区域的修复图像。
其中所述修复模型包括编码层、第一解码层和第二解码层,其中:
所述将所述待修复图像输入所述编码层得到所述待修复图像的特征图;
其中,所述根据所述待修复图像生成噪声区域的轮廓,包括:
将所述待修复图像的特征图输入所述第一解码层得到所述噪声区域的轮廓;
所述根据所述待修复图像生成中间图像,包括:
将所述待修复图像的特征图输入所述第二解码层得到所述中间图像。
在生成所述噪声区域的轮廓和所述中间图像之后,将所述噪声区域的轮廓覆盖到所述中间图上,得到所述噪声区域的修复图像。
步骤S103,将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
示例性的,所述噪声区域的修复图像中噪声区域之外的位置对应为黑色的像素,这样将所述噪声区域的修复图像贴合到所述待修复图像上时,使用噪声轮廓内的颜色覆盖所述待修复图像对应位置的颜色,而其他位置的颜色不变,得到修复后的图像。
可选的,如图2所示,上述步骤S102中所使用的图像修复模型通过以下步骤训练得到:
步骤S201,获取训练数据集合,其中所述训练数据集合中的每一个数据是由原始图像、在原始图像中添加了噪声的第一图像以及由所述噪声生成的第二图像所组成的三元数据;
可选的,在本公开实施例中,所述第一图像和第二图像的像素点与所述原始图像的像素点对应,即所述第一图像和第二图像与所述原始图像的分辨率相同,像素点可以一一对应上。且所述第二图像中只包含所述原始图像中所包含的噪声,如文字,不包含其他的图像。示例性的,所述第二图像为背景为黑色、噪声为白色的二值化图像。所述第一图像为包括了噪声的原始图像,如在原始图像的基础上加上字幕所得到的图像。所述训练数据集中包括多个三元数据,每个三元数据中都包括上述三个图像:原始图像、第一图像以及第二图像。
如图3所示,可选的,所述步骤S201包括:
步骤S301,获取原始图像;
步骤S302,在原始图像上随机生成噪声得到第一图像;
步骤S303,根据所述噪声生成仅包含所述噪声的第二图像。
可以理解的,所述原始图像为没有添加所需要添加的噪声的图像,如没有添加字幕的原始图像,示例性的,在步骤S302中,在所述原始图像上随机添加字幕得到第一图像,所述随机添加字幕包括在所述原始图像的任意位置加上随机的文字,文字的大小、字体、颜色、特效(如边框、阴影等)均为随机的,由此得到第一图像。同时可以得到一张二值的噪声蒙版(mask)图像,当所述噪声为文字时,所述噪声蒙版图像即为文字蒙版图像,其背景为黑色,文字部分为白色。
步骤S202,根据所述原始图像以及所述第二图像生成噪声区域的修复图像;
在本公开实施例中,所述噪声区域的修复图像为原始图像中被所述噪声所覆盖的图像区域,该区域在第一图像中对应需要被修复的区域。
在该步骤中,可以将所述第二图像处理成背景为白色、噪声为黑色的图像,白色的RGB值为(255,255,255)、黑色的RGB值为(0,0,0);这样,将所述原始图像和所述第二图像做像素点的像素值的对应相加,第二图像中噪声部分的RGB值由于是(0,0,0),原始图像中对应像素的像素值加上噪声之后RGB值保持不变,而非噪声部分,加上白色的(255,255,255)之后值被设置成255,均为白色,则可以得到背景为白色,噪声部分是原始图像的RGB值的噪声区域的修复图像。为了后续处理方便,可以进一步将所述噪声区域的修复图像的背景处理成黑色。
可以理解的,还可以通过其他方式得到所述噪声区域的修复图像,如在所述第二图像中进行边缘检测,得到噪声的边缘位置,之后将所述边缘位置对应到原始图像中,将原始图像中边缘位置以外的区域的RGB值设置为黑色,边缘位置以内的RGB值保持不变,由此也可以得到所述噪声区域的修复图像。在该训练过程中,所述噪声区域的修复图像作为训练数据使用。
步骤S203,初始化图像修复模型的参数;
示例性的,在本公开实施例中,所述图像修复模型包括编码层、第一解码层和第二解码层,所述编码层包括多个卷积层,所述第一解码层包括多个反卷积层,所述第二解码层包括多个反卷积层,所述第一解码层和第二解码层的反卷积层的参数不同。每一层包括多个参数,如卷积层和反卷积层的卷积核、偏置项等等。所述的初始化可以是初始化成预设值或者是随机值,在此不再赘述。
步骤S204,将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像;
在该步骤中,所述第一图像被输入图像修复模型中,所述图像修复模型输出一个二维图像,所述二维图像为原始图像中噪声所在区域的图像。
如图4所示,可选的,所述步骤S204包括:
步骤S401,将所述第一图像输入所述图像修复模型的编码层得到预定尺度大小的第一特征图像;
步骤S402,将所述第一特征图像输入所述图像修复模型的第一解码层得到与所述第一图像大小相同的预测的第二图像;
步骤S403,将所述第一特征图像输入所述图像修复模型的第二解码层得到与所述第一图像大小相同的预测的中间图像;
步骤S404,根据所述预测第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像。
在步骤S401中,通过将第一图像经过图像修复模型的编码层得到一个较第一图像尺寸小的第一特征图;示例性的,如图5所示,所述编码层501包括多个卷积层,所述多个卷积层对所述第一图像进行下采样得到所述第一特征图,所述预设的尺度大小可以通过设计所述多个卷积层的层数以及每个卷积层的卷积核的大小来设置。
在步骤S402中,将所述第一特征图经过图像修复模型的第一解码层,得到预测的第二图像;示例性的,如图5所示,所述第一解码层502包括多个反卷积层,所述多个反卷积层对所述第一特征图进行上采样以将所述第一特征图还原成与所述原始图像大小相同的预测的第二图像,所述第二图像中噪声部分的像素点的颜色为白色,非噪声部分的像素点的颜色为黑色。在所述图像修复模型还未训练好之前,所述预测的第二图像中的噪声部分可能不准确。
在步骤S403中,将所述第一特征图经过图像修复模型的第二解码层,得到预测的中间图像;示例性的,如图5所示,所述第二解码层503包括多个反卷积层,所述多个反卷积层对所述第一特征图进行上采样以将所述第一特征图还原成与所述原始图像大小相同的预测的中间图像,其中该预测的中间图像只要求噪声部分的图像的颜色准确,其他部分不要求与原始图像相同,由此可以使得训练过程所针对的像素点减少,提高训练的效率。在所述图像修复模型还未训练好之前,所述预测的中间图像中的噪声部分的颜色可能不准确。
在步骤S404中,根据所述预测的第二图像和预测的中间图像,从所述预测的中间图像中抠出预测的噪声区域的修复图像。
可选的,上述步骤S404进一步包括:将所述的预测的第二图像和所述预测的中间图像进行对应像素值相乘计算得到预测的噪声区域的修复图像。在该实施例中,所述预测的第二图像中噪声部分为白色,非噪声部分为黑色,所述白色和黑色用归一化之后的数值表示,即黑色用0表示,白色用1表示,这样将所述预测的第二图像和所述预测的中间图像进行对应像素值相乘,如果预测的第二图像中的像素为黑色,则得到的预测的噪声区域的修复图像也为黑色,如果预测的第二图像中的像素为白色,则得到的预测的噪声区域的修复图像为所述预测的中间图像中的颜色,由此可以通过上述乘法计算从所述预测的中间图像中抠出所述预测的噪声区域的修复图像。
步骤S205,根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差;
上述步骤204中得到的预测的噪声区域的修复图像的像素点的颜色值即为所述图像修复模型在训练阶段的预测值,在得到该预测值之后,跟对应的标注值计算误差以确定所述图像修复模型的参数是否合适。
可选的,所述步骤S205包括:
计算所述噪声区域的修复图像的像素点与所述预测的噪声区域的修复图像的对应像素点的像素值的误差。
示例性的,在本公开中可以将所述像素值做归一化处理,将步骤S102中得到的所述噪声区域的修复图像的像素点的像素值作为标注值。可选的,用以下公式计算所述误差:
Figure BDA0002499759740000101
其中Lpred表示所述误差,其中N为训练集合中的第一图像的个数,或者每个训练批次所使用的第一图像的个数;xi表示第i个第一图像输入所述图像修复模型得到的预测的噪声区域的修复图像中的像素点的预测值,
Figure BDA0002499759740000102
为与所述xi对应的噪声区域的修复图像中的像素点的像素值;可以理解的xi
Figure BDA0002499759740000103
可以是一个矩阵,表示预测的噪声区域的修复图像和噪声区域的修复图像中的每个像素点的像素值,由此可以直接通过矩阵的计算,计算出一个误差,之后计算出N个误差的平均误差值作为所述误差。
步骤S206,基于所述误差更新所述图像修复模型的参数;
在该在步骤中,可以基于所述误差通过反向传播更新所述图像修复模型的参数。示例性的,所述图像修复模型可以看作一个以参数为变量的函数f(θ),其中θ表示所述图像修复模型的参数集合,则根据梯度下降法:
Figure BDA0002499759740000104
来更新参数,其中
Figure BDA0002499759740000105
为学习率,决定收敛的速度。
步骤S207,使用更新后的参数迭代上述参数更新的过程直至达到收敛条件;
步骤S208,将达到收敛条件时所得到的参数作为训练好的图像修复模型的参数。
在上述步骤S207中,基于更新后的所述图像修复模型的参数继续迭代执行步骤S204-步骤S206直至达到收敛条件,其中所述收敛条件可以为迭代次数超过预设次数值或者所述误差小于预设误差值。可以理解的,可以预设需要迭代的次数,如100次,则当所述参数更新100次时停止上述迭代过程,在步骤S107中将迭代100次之后得到的参数作为训练好的图像修复模型的参数;或者可以预设误差值,如0.001,则当上述公式(2)的值小于或等于0.001时,停止参数的更新,并将最后得到的参数作为训练好的图像修复模型的参数。由此,所述图像修复模型训练结束,得到训练好的图像修复模型。
可以理解的,在训练过程结束之后,还可以使用另外一个数据集合对该图像修复模型训练进行验证或测试,以防止所述图像修复模型过拟合,在此不再赘述。
进一步的,如图5所示,为了实现端到端的图像修复,所述图像修复模型中还可以包括图像合成层504,该图像合成层将所述预测的噪声区域的修复图像贴合到所述第一图像上以替换所述第一图像中的噪声部分来得到修复后的图像,所述修复后的图像与所述原始图像相同。
本公开实施例所公开的图像修复模型的一个典型的应用为图像中的文字去除,目前很多图像中带有字幕,影响图像后续的使用,使用本公开的训练方法所训练的模型可以将所述图像中的字幕去除掉并且字幕部分恢复成其原来应有的颜色。
本公开实施例公开了一种图像修复方法,该图像修复方法包括:获取待修复图像;生成待修复图像中的噪声区域的修复图像;将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。上述方法通过生成噪声区域的修复图像,解决了现有技术中图像修复颜色不精细的技术问题。
在上文中,虽然按照上述的顺序描述了上述方法实施例中的各个步骤,本领域技术人员应清楚,本公开实施例中的步骤并不必然按照上述顺序执行,其也可以倒序、并行、交叉等其他顺序执行,而且,在上述步骤的基础上,本领域技术人员也可以再加入其他步骤,这些明显变型或等同替换的方式也应包含在本公开的保护范围之内,在此不再赘述。
图6为本公开实施例提供的图像修复装置实施例的结构示意图,如图6所示,该装置600包括:待修复图像获取模块601、噪声区域恢复模块602和修复模块603。其中,
待修复图像获取模块601,用于获取待修复图像;
噪声区域恢复模块602,用于生成待修复图像中的噪声区域的修复图像;
修复模块603,用于将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
进一步的,所述噪声区域恢复模块602,还用于:
根据所述待修复图像生成噪声区域的轮廓;
根据所述待修复图像生成中间图像,其中所述中间图像中噪声区域的位置所对应的图像为正确的图像;
根据所述噪声区域的轮廓以及中间图像生成所述噪声区域的修复图像。
进一步的,所述噪声区域恢复模块602,还用于:将所述待修复图像输入图像修复模型得到所述噪声区域的修复图像,其中所述修复模型包括编码层、第一解码层和第二解码层,其中:所述将所述待修复图像输入所述编码层得到所述待修复图像的特征图;其中,所述根据所述待修复图像生成噪声区域的轮廓,包括:将所述待修复图像的特征图输入所述第一解码层得到所述噪声区域的轮廓;所述根据所述待修复图像生成中间图像,包括:将所述待修复图像的特征图输入所述第二解码层得到所述中间图像。
进一步的,所述图像修复模型通过以下训练步骤得到:图像修复方法获取训练数据集合,其中所述训练数据集合中的训练数据是由原始图像、在原始图像中添加了噪声的第一图像以及由所述噪声生成的第二图像所组成的三元数据;
根据所述原始图像以及所述第二图像生成噪声区域的修复图像;
初始化图像修复模型的参数;
将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像;
根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差;
基于所述误差更新所述图像修复模型的参数;
使用更新后的参数迭代上述参数更新的过程直至达到收敛条件;
将达到收敛条件时所得到的参数作为训练好的图像修复模型的参数。
进一步的,所述获取训练数据集合,包括:
获取原始图像;
在原始图像上随机生成噪声得到第一图像;
根据所述噪声生成仅包含所述噪声的第二图像。
进一步的,所述第一图像中的噪声的像素点与所述噪声图像中的噪声像素点一一对应。
进一步的,所述第二图像为背景为黑色、噪声为白色的二值化图像。
进一步的,所述将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像,包括:
将所述第一图像输入所述图像修复模型的编码层得到预定尺度大小的第一特征图像;
将所述第一特征图像输入所述图像修复模型的第一解码层得到与所述第一图像大小相同的预测的第二图像;
将所述第一特征图像输入所述图像修复模型的第二解码层得到与所述第一图像大小相同的预测的中间图像;
根据所述预测第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像。
进一步的,所述解码层包括多个卷积层,所述多个卷积层对所述第一图像进行下采样得到所述第一特征图像。
进一步的,所述第一解码层和所述第二解码层分别包括多个反卷积层,所述第一解码层的多个反卷积层对所述第一特征图进行上采样得到预测的第二图像;所述第二解码层的多个反卷积层对所述第一特征图进行上采样得到预测的中间图像。
进一步的,所述根据所述预测的第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像,包括:
将所述的预测的第二图像和所述预测的中间图像进行对应像素值相乘计算得到预测的噪声区域的修复图像。
进一步的,所述根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差,包括:
计算所述噪声区域的修复图像的像素点与所述预测的噪声区域的修复图像的对应像素点的像素值的误差。
进一步的,所述收敛条件包括:
迭代次数超过预设次数值或者所述误差小于预设误差值。
图6所示装置可以执行图1-图5所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图5所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图5所示实施例中的描述,在此不再赘述。
下面参考图7,其示出了适于用来实现本公开实施例的电子设备700的结构示意图。本公开实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图7示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图7所示,电子设备700可以包括处理装置(例如中央处理器、图形处理器等)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储装置708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM 703中,还存储有电子设备700操作所需的各种程序和数据。处理装置701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
通常,以下装置可以连接至I/O接口705:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置706;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置707;包括例如磁带、硬盘等的存储装置708;以及通信装置709。通信装置709可以允许电子设备700与其他设备进行无线或有线通信以交换数据。虽然图7示出了具有各种装置的电子设备700,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置709从网络上被下载和安装,或者从存储装置708被安装,或者从ROM 702被安装。在该计算机程序被处理装置701执行时,执行本公开实施例的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取待修复图像;生成待修复图像中的噪声区域的修复图像;将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,提供了一种图像修复方法,包括:
获取待修复图像;
生成待修复图像中的噪声区域的修复图像;
将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
进一步的,所述生成待修复图像中的噪声区域的修复图像,包括:
根据所述待修复图像生成噪声区域的轮廓;
根据所述待修复图像生成中间图像;
根据所述噪声区域的轮廓以及中间图像生成所述噪声区域的修复图像。
进一步的,所述生成待修复图像中的噪声区域的修复图像,包括:将所述待修复图像输入图像修复模型得到所述噪声区域的修复图像,其中所述修复模型包括编码层、第一解码层和第二解码层,其中:
所述将所述待修复图像输入所述编码层得到所述待修复图像的特征图;
其中,所述根据所述待修复图像生成噪声区域的轮廓,包括:
将所述待修复图像的特征图输入所述第一解码层得到所述噪声区域的轮廓;
所述根据所述待修复图像生成中间图像,包括:
将所述待修复图像的特征图输入所述第二解码层得到所述中间图像。
进一步的,所述图像修复模型通过以下训练步骤得到:
获取训练数据集合,其中所述训练数据集合中的训练数据是由原始图像、在原始图像中添加了噪声的第一图像以及由所述噪声生成的第二图像所组成的三元数据;
根据所述原始图像以及所述第二图像生成噪声区域的修复图像;
初始化图像修复模型的参数;
将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像;
根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差;
基于所述误差更新所述图像修复模型的参数;
使用更新后的参数迭代上述参数更新的过程直至达到收敛条件;
将达到收敛条件时所得到的参数作为训练好的图像修复模型的参数。
进一步的,所述获取训练数据集合,包括:
获取原始图像;
在原始图像上随机生成噪声得到第一图像;
根据所述噪声生成仅包含所述噪声的第二图像。
进一步的,所述第一图像中的噪声的像素点与所述噪声图像中的噪声像素点一一对应。
进一步的,所述第二图像为背景为黑色、噪声为白色的二值化图像。
进一步的,所述将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像,包括:
将所述第一图像输入所述图像修复模型的编码层得到预定尺度大小的第一特征图像;
将所述第一特征图像输入所述图像修复模型的第一解码层得到与所述第一图像大小相同的预测的第二图像;
将所述第一特征图像输入所述图像修复模型的第二解码层得到与所述第一图像大小相同的预测的中间图像;
根据所述预测第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像。
进一步的,所述解码层包括多个卷积层,所述多个卷积层对所述第一图像进行下采样得到所述第一特征图像。
进一步的,所述第一解码层和所述第二解码层分别包括多个反卷积层,所述第一解码层的多个反卷积层对所述第一特征图进行上采样得到预测的第二图像;所述第二解码层的多个反卷积层对所述第一特征图进行上采样得到预测的中间图像。
进一步的,所述根据所述预测的第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像,包括:
将所述的预测的第二图像和所述预测的中间图像进行对应像素值相乘计算得到预测的噪声区域的修复图像。
进一步的,所述根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差,包括:
计算所述噪声区域的修复图像的像素点与所述预测的噪声区域的修复图像的对应像素点的像素值的误差。
进一步的,所述收敛条件包括:
迭代次数超过预设次数值或者所述误差小于预设误差值。
根据本公开的一个或多个实施例,提供了一种图像修复装置,包括:
待修复图像获取模块,用于获取待修复图像;
噪声区域恢复模块,用于生成待修复图像中的噪声区域的修复图像;
修复模块,用于将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
进一步的,所述噪声区域恢复模块,还用于:
根据所述待修复图像生成噪声区域的轮廓;
根据所述待修复图像生成中间图像,其中所述中间图像中噪声区域的位置所对应的图像为正确的图像;
根据所述噪声区域的轮廓以及中间图像生成所述噪声区域的修复图像。
进一步的,所述噪声区域恢复模块,还用于:将所述待修复图像输入图像修复模型得到所述噪声区域的修复图像,其中所述修复模型包括编码层、第一解码层和第二解码层,其中:所述将所述待修复图像输入所述编码层得到所述待修复图像的特征图;其中,所述根据所述待修复图像生成噪声区域的轮廓,包括:将所述待修复图像的特征图输入所述第一解码层得到所述噪声区域的轮廓;所述根据所述待修复图像生成中间图像,包括:将所述待修复图像的特征图输入所述第二解码层得到所述中间图像。
进一步的,所述图像修复模型通过以下训练步骤得到:图像修复方法获取训练数据集合,其中所述训练数据集合中的训练数据是由原始图像、在原始图像中添加了噪声的第一图像以及由所述噪声生成的第二图像所组成的三元数据;
根据所述原始图像以及所述第二图像生成噪声区域的修复图像;
初始化图像修复模型的参数;
将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像;
根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差;
基于所述误差更新所述图像修复模型的参数;
使用更新后的参数迭代上述参数更新的过程直至达到收敛条件;
将达到收敛条件时所得到的参数作为训练好的图像修复模型的参数。
进一步的,所述获取训练数据集合,包括:
获取原始图像;
在原始图像上随机生成噪声得到第一图像;
根据所述噪声生成仅包含所述噪声的第二图像。
进一步的,所述第一图像中的噪声的像素点与所述噪声图像中的噪声像素点一一对应。
进一步的,所述第二图像为背景为黑色、噪声为白色的二值化图像。
进一步的,所述将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像,包括:
将所述第一图像输入所述图像修复模型的编码层得到预定尺度大小的第一特征图像;
将所述第一特征图像输入所述图像修复模型的第一解码层得到与所述第一图像大小相同的预测的第二图像;
将所述第一特征图像输入所述图像修复模型的第二解码层得到与所述第一图像大小相同的预测的中间图像;
根据所述预测第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像。
进一步的,所述解码层包括多个卷积层,所述多个卷积层对所述第一图像进行下采样得到所述第一特征图像。
进一步的,所述第一解码层和所述第二解码层分别包括多个反卷积层,所述第一解码层的多个反卷积层对所述第一特征图进行上采样得到预测的第二图像;所述第二解码层的多个反卷积层对所述第一特征图进行上采样得到预测的中间图像。
进一步的,所述根据所述预测的第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像,包括:
将所述的预测的第二图像和所述预测的中间图像进行对应像素值相乘计算得到预测的噪声区域的修复图像。
进一步的,所述根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差,包括:
计算所述噪声区域的修复图像的像素点与所述预测的噪声区域的修复图像的对应像素点的像素值的误差。
进一步的,所述收敛条件包括:
迭代次数超过预设次数值或者所述误差小于预设误差值。
根据本公开的一个或多个实施例,提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有能被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行前述第一方面中的任一所述图像修复方法。
根据本公开的一个或多个实施例,提供了一种非暂态计算机可读存储介质,其特征在于,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行前述第一方面中的任一所述图像修复方法。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

1.一种图像修复方法,其特征在于,包括:
获取待修复图像;
生成待修复图像中的噪声区域的修复图像;
将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
2.如权利要求1所述的图像修复方法,其中所述生成待修复图像中的噪声区域的修复图像,包括:
根据所述待修复图像生成噪声区域的轮廓;
根据所述待修复图像生成中间图像;
根据所述噪声区域的轮廓以及中间图像生成所述噪声区域的修复图像。
3.如权利要求2所述的图像修复方法,其中所述生成待修复图像中的噪声区域的修复图像,包括:将所述待修复图像输入图像修复模型得到所述噪声区域的修复图像,其中所述修复模型包括编码层、第一解码层和第二解码层,其中:
所述将所述待修复图像输入所述编码层得到所述待修复图像的特征图;
其中,所述根据所述待修复图像生成噪声区域的轮廓,包括:
将所述待修复图像的特征图输入所述第一解码层得到所述噪声区域的轮廓;
所述根据所述待修复图像生成中间图像,包括:
将所述待修复图像的特征图输入所述第二解码层得到所述中间图像。
4.如权利要求3所述的图像修复方法,其中所述图像修复模型通过以下训练步骤得到:
获取训练数据集合,其中所述训练数据集合中的训练数据是由原始图像、在原始图像中添加了噪声的第一图像以及由所述噪声生成的第二图像所组成的三元数据;
根据所述原始图像以及所述第二图像生成噪声区域的修复图像;
初始化图像修复模型的参数;
将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像;
根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差;
基于所述误差更新所述图像修复模型的参数;
使用更新后的参数迭代上述参数更新的过程直至达到收敛条件;
将达到收敛条件时所得到的参数作为训练好的图像修复模型的参数。
5.如权利要求4所述的图像修复方法,其中所述获取训练数据集合,包括:
获取原始图像;
在原始图像上随机生成噪声得到第一图像;
根据所述噪声生成仅包含所述噪声的第二图像。
6.如权利要求5所述的图像修复方法,其中所述第一图像中的噪声的像素点与所述噪声图像中的噪声像素点一一对应。
7.如权利要求1-6任一项所述的图像修复方法,其中所述第二图像为背景为黑色、噪声为白色的二值化图像。
8.如权利要求4所述的图像修复方法,其中所述将所述第一图像输入所述图像修复模型得到预测的噪声区域的修复图像,包括:
将所述第一图像输入所述图像修复模型的编码层得到预定尺度大小的第一特征图像;
将所述第一特征图像输入所述图像修复模型的第一解码层得到与所述第一图像大小相同的预测的第二图像;
将所述第一特征图像输入所述图像修复模型的第二解码层得到与所述第一图像大小相同的预测的中间图像;
根据所述预测第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像。
9.如权利要求8所述的图像修复方法,其中所述解码层包括多个卷积层,所述多个卷积层对所述第一图像进行下采样得到所述第一特征图像。
10.如权利求8所述的图像修复方法,其中所述第一解码层和所述第二解码层分别包括多个反卷积层,所述第一解码层的多个反卷积层对所述第一特征图进行上采样得到预测的第二图像;所述第二解码层的多个反卷积层对所述第一特征图进行上采样得到预测的中间图像。
11.如权利要求8所述的图像修复方法,其中所述根据所述预测的第二图像和所述预测的中间图像计算得到预测的噪声区域的修复图像,包括:
将所述的预测的第二图像和所述预测的中间图像进行对应像素值相乘计算得到预测的噪声区域的修复图像。
12.如权利要求4所述的图像修复方法,其特征在于,所述根据所述噪声区域的修复图像以及所述预测的噪声区域的修复图像计算误差,包括:
计算所述噪声区域的修复图像的像素点与所述预测的噪声区域的修复图像的对应像素点的像素值的误差。
13.如权利要求4所述的图像修复方法,其中所述收敛条件包括:
迭代次数超过预设次数值或者所述误差小于预设误差值。
14.一种图像修复装置,其特征在于,包括:
待修复图像获取模块,用于获取待修复图像;
噪声区域恢复模块,用于生成待修复图像中的噪声区域的修复图像;
修复模块,用于将所述噪声区域的修复图像贴合到所述待修复图像上得到修复后的图像。
15.一种电子设备,包括:
存储器,用于存储计算机可读指令;以及
处理器,用于运行所述计算机可读指令,使得所述处理器运行时实现根据权利要求1-13中任意一项所述的方法。
16.一种非暂态计算机可读存储介质,用于存储计算机可读指令,当所述计算机可读指令由计算机执行时,使得所述计算机执行权利要求1-13中任意一项所述的方法。
CN202010428881.2A 2020-05-20 2020-05-20 图像修复方法、装置和电子设备 Active CN111612715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010428881.2A CN111612715B (zh) 2020-05-20 2020-05-20 图像修复方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010428881.2A CN111612715B (zh) 2020-05-20 2020-05-20 图像修复方法、装置和电子设备

Publications (2)

Publication Number Publication Date
CN111612715A true CN111612715A (zh) 2020-09-01
CN111612715B CN111612715B (zh) 2022-09-23

Family

ID=72201601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010428881.2A Active CN111612715B (zh) 2020-05-20 2020-05-20 图像修复方法、装置和电子设备

Country Status (1)

Country Link
CN (1) CN111612715B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112488942A (zh) * 2020-12-02 2021-03-12 北京字跳网络技术有限公司 修复图像的方法、装置、设备和计算机可读介质
CN112669204A (zh) * 2021-01-04 2021-04-16 北京金山云网络技术有限公司 图像处理方法、图像处理模型的训练方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142333A1 (ja) * 2008-05-22 2009-11-26 国立大学法人東京大学 画像処理方法、画像処理装置及び画像処理プログラム並びに記憶媒体
CN107993210A (zh) * 2017-11-30 2018-05-04 北京小米移动软件有限公司 图像修复方法、装置及计算机可读存储介质
CN109472260A (zh) * 2018-10-31 2019-03-15 成都索贝数码科技股份有限公司 一种基于深度神经网络的移除图像内台标和字幕的方法
CN110288549A (zh) * 2019-06-28 2019-09-27 北京字节跳动网络技术有限公司 视频修复方法、装置及电子设备
CN110288036A (zh) * 2019-06-28 2019-09-27 北京字节跳动网络技术有限公司 图像修复方法、装置及电子设备
CN110660033A (zh) * 2019-09-25 2020-01-07 北京奇艺世纪科技有限公司 一种字幕的去除方法、装置及电子设备
US10540757B1 (en) * 2018-03-12 2020-01-21 Amazon Technologies, Inc. Method and system for generating combined images utilizing image processing of multiple images
CN110728639A (zh) * 2019-09-29 2020-01-24 三星电子(中国)研发中心 图片修复方法及系统
CN111080540A (zh) * 2019-12-05 2020-04-28 深圳大学 一种图像修复模型的训练方法和计算机设备
CN111127346A (zh) * 2019-12-08 2020-05-08 复旦大学 基于部分到整体注意力机制的多层次图像修复方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142333A1 (ja) * 2008-05-22 2009-11-26 国立大学法人東京大学 画像処理方法、画像処理装置及び画像処理プログラム並びに記憶媒体
CN107993210A (zh) * 2017-11-30 2018-05-04 北京小米移动软件有限公司 图像修复方法、装置及计算机可读存储介质
US10540757B1 (en) * 2018-03-12 2020-01-21 Amazon Technologies, Inc. Method and system for generating combined images utilizing image processing of multiple images
CN109472260A (zh) * 2018-10-31 2019-03-15 成都索贝数码科技股份有限公司 一种基于深度神经网络的移除图像内台标和字幕的方法
CN110288549A (zh) * 2019-06-28 2019-09-27 北京字节跳动网络技术有限公司 视频修复方法、装置及电子设备
CN110288036A (zh) * 2019-06-28 2019-09-27 北京字节跳动网络技术有限公司 图像修复方法、装置及电子设备
CN110660033A (zh) * 2019-09-25 2020-01-07 北京奇艺世纪科技有限公司 一种字幕的去除方法、装置及电子设备
CN110728639A (zh) * 2019-09-29 2020-01-24 三星电子(中国)研发中心 图片修复方法及系统
CN111080540A (zh) * 2019-12-05 2020-04-28 深圳大学 一种图像修复模型的训练方法和计算机设备
CN111127346A (zh) * 2019-12-08 2020-05-08 复旦大学 基于部分到整体注意力机制的多层次图像修复方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI XIONG等: "Foreground-aware Image Inpainting", 《ARXIV》 *
YUHANG SONG: "SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting", 《ARXIV》 *
于冰等: "基于时空生成对抗网络的视频修复", 《计算机辅助设计与图形学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112488942A (zh) * 2020-12-02 2021-03-12 北京字跳网络技术有限公司 修复图像的方法、装置、设备和计算机可读介质
CN112669204A (zh) * 2021-01-04 2021-04-16 北京金山云网络技术有限公司 图像处理方法、图像处理模型的训练方法和装置
CN112669204B (zh) * 2021-01-04 2024-05-03 北京金山云网络技术有限公司 图像处理方法、图像处理模型的训练方法和装置

Also Published As

Publication number Publication date
CN111612715B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN110084172B (zh) 文字识别方法、装置和电子设备
CN111325704B (zh) 图像修复方法、装置、电子设备及计算机可读存储介质
CN110298851B (zh) 人体分割神经网络的训练方法及设备
CN112883968B (zh) 图像字符识别方法、装置、介质及电子设备
CN111612715B (zh) 图像修复方法、装置和电子设备
CN112381717A (zh) 图像处理方法、模型训练方法、装置、介质及设备
EP4432215A1 (en) Image processing method and device
CN114004905B (zh) 人物风格形象图的生成方法、装置、设备及存储介质
CN112967196A (zh) 图像修复方法及装置、电子设备和介质
CN112330788A (zh) 图像处理方法、装置、可读介质及电子设备
CN114399814B (zh) 一种基于深度学习的遮挡物移除和三维重建方法
CN111209856B (zh) 发票信息的识别方法、装置、电子设备及存储介质
CN115100659B (zh) 文本识别方法、装置、电子设备和存储介质
CN112712036A (zh) 交通标志识别方法、装置、电子设备及计算机存储介质
CN111783777A (zh) 图像处理方法、装置、电子设备和计算机可读介质
CN110070042A (zh) 文字识别方法、装置和电子设备
CN117671254A (zh) 一种图像分割方法及装置
CN112714263A (zh) 视频生成方法、装置、设备及存储介质
CN111612714B (zh) 图像修复方法、装置和电子设备
CN113033552A (zh) 文本识别方法、装置和电子设备
CN114723640B (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
CN115760607A (zh) 图像修复方法、装置、可读介质以及电子设备
CN111626283B (zh) 文字提取方法、装置和电子设备
CN110209851B (zh) 模型训练方法、装置、电子设备及存储介质
CN110222746A (zh) 训练分类器的方法、装置、电子设备和计算机可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant