CN111612212A - An online optimization model updating method for pulverized coal fineness of coal mill - Google Patents
An online optimization model updating method for pulverized coal fineness of coal mill Download PDFInfo
- Publication number
- CN111612212A CN111612212A CN202010279286.7A CN202010279286A CN111612212A CN 111612212 A CN111612212 A CN 111612212A CN 202010279286 A CN202010279286 A CN 202010279286A CN 111612212 A CN111612212 A CN 111612212A
- Authority
- CN
- China
- Prior art keywords
- data
- model
- coal
- prediction
- coal mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005457 optimization Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims 13
- 230000000295 complement effect Effects 0.000 claims 1
- 230000002040 relaxant effect Effects 0.000 claims 1
- 238000009826 distribution Methods 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/90335—Query processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Human Resources & Organizations (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Economics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Strategic Management (AREA)
- Artificial Intelligence (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Medical Informatics (AREA)
- Operations Research (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Quality & Reliability (AREA)
- Feedback Control In General (AREA)
- Disintegrating Or Milling (AREA)
Abstract
本发明涉及一种磨煤机煤粉细度的在线优化模型更新方法。本发明方法首先采集磨煤机原有模型预测数据,并对原模型是否需要更新进行判断,再从原有模型预测数据库中选择符合模型更新条件要求的数据,结合判断数据构成模型更新样本数据,在此基础上,应用基于数据的缄默算法建立磨煤机运行优化新模型,以实现模型更新。该方法通过数据选择保证了模型的预测精度和泛化能力,具有较高的可信度和可行性。The invention relates to an on-line optimization model updating method for the fineness of pulverized coal of a coal mill. The method of the invention first collects the prediction data of the original model of the coal mill, and judges whether the original model needs to be updated, and then selects the data that meets the requirements of the model update condition from the original model prediction database, and combines the judgment data to form the model update sample data, On this basis, a data-based silent algorithm is used to establish a new model of coal mill operation optimization to achieve model update. The method ensures the prediction accuracy and generalization ability of the model through data selection, and has high reliability and feasibility.
Description
技术领域technical field
本发明属于信息控制技术领域,涉及到机器学习自适应技术,特别是涉及一种磨煤机煤粉细度的在线优化模型更新方法。The invention belongs to the technical field of information control, relates to machine learning self-adaptive technology, and in particular relates to an online optimization model updating method of pulverized coal fineness of a coal mill.
背景技术Background technique
磨煤机运行优化是控制锅炉燃烧和电耗的重要技术手段,其目标是在一定生产条件和目标下,通过调整各磨煤机的运行参数而获得所需的理想细度的煤粉,使锅炉燃烧和磨煤机电耗处于良好的状态,使生产效益最大化。给煤量、煤质参数及给风情况等运行参数的不同对煤粉细度的分布有直接的影响,不同的参数组合会直接导致不同的煤粉细度分布的情况,尤其是在运行参数有扰动的情况下,煤粉细度分布更不稳定。对于一定的生产条件和产品需求,针对磨煤机所需的理想的运行状态,存在一种最优的各运行参数配置方案,能够使相应燃烧状态的特征指标最优化,但是,煤粉细度分布与各磨煤机运行参数间有着非常复杂的耦合关系,要找到最优的各燃烧器的运行参数的配置并不容易。The optimization of coal mill operation is an important technical means to control the combustion and power consumption of boilers. Boiler combustion and coal mill power consumption are in good condition to maximize production benefits. Different operating parameters such as coal supply, coal quality parameters and air supply conditions have a direct impact on the distribution of pulverized coal fineness. In the case of disturbance, the fineness distribution of pulverized coal is more unstable. For certain production conditions and product requirements, for the ideal operating state required by the coal mill, there is an optimal configuration scheme for each operating parameter, which can optimize the characteristic indicators of the corresponding combustion state. However, the fineness of pulverized coal There is a very complex coupling relationship between the distribution and the operating parameters of each coal mill, and it is not easy to find the optimal configuration of the operating parameters of each burner.
通过数据挖掘,在大量不同的生产运行参数组合中,应用机器学习的方法,挖掘出各磨煤机的运行参数与煤粉细度分布间的关系模型,再结合优化算法对进行磨煤机运行优化是非常有潜力的方法。Through data mining, in a large number of different production and operation parameter combinations, the machine learning method is applied to excavate the relationship model between the operating parameters of each coal mill and the fineness distribution of pulverized coal, and then combined with the optimization algorithm to run the coal mill. Optimization is a very promising approach.
由于磨煤机设备的运行特性随着时间的增长或检修的原因会有所改变,即煤粉细度分布与各磨煤机运行参数间的关系具有时变性,如何保证模型能够快速、高效的更新以适应新的情况成为了这种方法的关键问题。该问题与建模方法、样本数据选取及更新策略等都有很大关系。Since the operating characteristics of coal mill equipment will change with time or due to maintenance, that is, the relationship between the distribution of coal fineness and the operating parameters of each coal mill is time-varying, how to ensure that the model can be quickly and efficiently Updating to accommodate new situations becomes the key issue with this approach. This problem has a lot to do with modeling methods, sample data selection and update strategies.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对磨煤机运行优化中的瓶颈问题,提出一种兼顾历史数据与新的变化情况的模型更新方法,可以有效地使模型跟随煤粉细度分布与各磨煤机运行参数间关系的变化而更新。The purpose of the present invention is to propose a model updating method that takes into account historical data and new changes in view of the bottleneck problem in the operation optimization of coal mills, which can effectively make the model follow the distribution of coal fineness and the operating parameters of each coal mill. updated as the relationship changes.
本发明方法的步骤包括:The steps of the method of the present invention include:
步骤(1)建立原有模型的预测数据库。采集磨煤机生产过程中各运行参数及对应的煤粉细度测量数据和原有模型的预测数据,建立原有模型的预测数据库;具体的各运行参数包括:煤质的工业分析数据、给煤量,磨煤机进风量和进风温度,磨煤机电流,分离器转速。磨煤机运行参数可通过磨煤机生产过程中的数据监测控制系统获取,或直接通过仪器设备采集样本测量获得。对应的煤粉细度可通过采集样本分析测量获得,该技术为行业标准技术。对应的煤粉细度原模型预测数据,由磨煤机运行参数作为输入向量,通过原磨煤机煤粉细度预测模型预测获得。将以上数据存入原有模型的预测预测数据库中,以备模型更新之用。Step (1) Establish the prediction database of the original model. Collect various operating parameters and corresponding pulverized coal fineness measurement data and prediction data of the original model during the production process of the coal mill, and establish the prediction database of the original model; the specific operating parameters include: industrial analysis data of coal quality, Coal volume, coal mill inlet air volume and inlet air temperature, coal mill current, separator speed. The operating parameters of the coal mill can be obtained through the data monitoring and control system in the production process of the coal mill, or directly through the measurement of samples collected by instruments and equipment. The corresponding fineness of pulverized coal can be obtained by collecting samples for analysis and measurement, which is an industry standard technology. The corresponding prediction data of the pulverized coal fineness of the original model is obtained through the prediction of the original pulverized coal fineness prediction model by using the operating parameters of the pulverizer as the input vector. Store the above data in the prediction database of the original model for model update.
步骤(2)判断原模型需要更新的设定。设定模型的预测允许误差限θ,可根据具体的设备和工艺运行情况进行设定,一般建议取3%;设定模型连续预测误差超过允许误差的次数m,可根据煤粉细度数据采集难度和周期设定,一般建议为3;当模型预测误差超过允许误差限θ连续m次时,判定为该模型需要更新,并将m次的数据录入原有模型的预测数据库。Step (2) Determine the settings of the original model that need to be updated. Set the model's prediction allowable error limit θ, which can be set according to the specific equipment and process operation conditions, generally recommended to take 3%; set the number of times m that the continuous prediction error of the model exceeds the allowable error, which can be collected according to the coal fineness data The difficulty and period setting are generally recommended to be 3; when the model prediction error exceeds the allowable error limit θ for m consecutive times, it is determined that the model needs to be updated, and the data of m times is entered into the prediction database of the original model.
步骤(3)数据选择。当模型需要更新时,选择原有模型预测数据库中符合以下条件的数据作为模型更新数据:1,磨煤机操作参数向量与步骤(2)中的m个磨煤机操作参数向量间的欧式距离分别大于设定值L,L可根据数据库中数据情况和运行工况分布情况设定,一般建议为2;2,数据采集时间距离步骤(2)中的m组数据中的最早时间点不超过T时间,T可根据数据库中数据采集时间情况和数量分布情况设定,一般建议为半年以内。根据以上条件选择不少于30组数据,若符合以上条件的数据不足30组,则可适当放宽条件2的时间限制,或采集新数据以补足符合条件的30组数据。以上30组数据再加上步骤(2)中的m个数据构成模型更新数据。Step (3) Data selection. When the model needs to be updated, select the data in the original model prediction database that meets the following conditions as the model update data: 1. The Euclidean distance between the coal mill operating parameter vector and the m coal mill operating parameter vectors in step (2). They are greater than the set value L respectively. L can be set according to the data in the database and the distribution of operating conditions. Generally, it is recommended to be 2; T time, T can be set according to the data collection time and quantity distribution in the database, and it is generally recommended to be within half a year. According to the above conditions, no less than 30 sets of data are selected. If there are less than 30 sets of data that meet the above conditions, the time limit of condition 2 can be appropriately relaxed, or new data can be collected to supplement the 30 sets of data that meet the conditions. The above 30 sets of data plus the m data in step (2) constitute model update data.
步骤(4)更新模型。以步骤(3)中选取的数据作为样本,采用基于数据的建模算法进行建模,例如,支持向量机算法,神经网络算法等,用于建模的样本的输入参数及输出参数表示为其中xi表示第i组作为输入数据的磨煤机运行参数,包括:煤质的工业分析数据、给煤量,磨煤机进风量和进风温度,磨煤机电流量,分离器转速。yi表示第i组作为输出参数的磨煤机煤粉细度,N为样本数量,在训练样本数据基础上,建立新的磨煤机运行参数与对应煤粉细度间的模型。Step (4) Update the model. Taking the data selected in step (3) as a sample, a data-based modeling algorithm is used for modeling, for example, a support vector machine algorithm, a neural network algorithm, etc., the input parameters and output parameters of the samples used for modeling are expressed as: Where x i represents the coal mill operating parameters of the i group as input data, including: industrial analysis data of coal quality, coal feed, coal mill inlet air volume and inlet air temperature, coal mill electromechanical flow, and separator speed. y i represents the pulverized coal fineness of the pulverizer in the i-th group as the output parameter, and N is the number of samples. Based on the training sample data, a new model between the operating parameters of the pulverizer and the corresponding pulverized coal fineness is established.
在有建模数据样本情况下,用数据建模方法建立基于数据的预测模型为成熟且流行的方式,在此不在赘述,所建模型预测误差应控制在2%以内。实现磨煤机煤粉细度的在线优化模型更新的更新。In the case of modeling data samples, it is a mature and popular way to use data modeling method to establish a data-based prediction model, which will not be repeated here, and the prediction error of the established model should be controlled within 2%. Realize the update of the online optimization model update of the pulverized coal fineness of the coal mill.
本发明提出的模型更新方法充分利用了已有的历史数据,大大减少了模型更新的工作量,提高了模型更新的效率,满足了磨煤机运行优化的实际要求,保证了磨煤机运行优化的实时性和准确性。The model updating method proposed by the invention makes full use of the existing historical data, greatly reduces the workload of model updating, improves the efficiency of model updating, satisfies the actual requirements of the operation optimization of the coal mill, and ensures the operation optimization of the coal mill. real-time and accurate.
具体实施方式Detailed ways
一种磨煤机煤粉细度的在线优化模型更新方法,具体步骤是:An online optimization model updating method for pulverized coal fineness of a coal mill, the specific steps are:
(1)建立原有模型的预测数据库。采集磨煤机生产过程中各运行参数及对应的煤粉细度测量数据和原有模型的预测数据,建立原有模型的预测数据库;具体的各运行参数包括:煤质的工业分析数据、给煤量,磨煤机进风量和进风温度,磨煤机电流,分离器转速。磨煤机运行参数可通过磨煤机生产过程中的数据监测控制系统获取,或直接通过仪器设备采集样本测量获得。对应的煤粉细度可通过采集样本分析测量获得,该技术为行业标准技术。对应的煤粉细度原模型预测数据,由磨煤机运行参数作为输入向量,通过原磨煤机煤粉细度预测模型预测获得。将以上数据存入原有模型的预测预测数据库中,以备模型更新之用。(1) Establish the prediction database of the original model. Collect various operating parameters in the production process of the coal mill, the corresponding coal fineness measurement data and the prediction data of the original model, and establish the prediction database of the original model; the specific operating parameters include: industrial analysis data of coal quality, Coal volume, coal mill inlet air volume and inlet air temperature, coal mill current, separator speed. The operating parameters of the coal mill can be obtained through the data monitoring and control system in the production process of the coal mill, or directly through the measurement of samples collected by instruments and equipment. The corresponding fineness of pulverized coal can be obtained by collecting samples for analysis and measurement, which is an industry standard technology. The corresponding prediction data of the pulverized coal fineness of the original model is obtained through the prediction of the original pulverized coal fineness prediction model by using the operating parameters of the pulverizer as the input vector. Store the above data in the prediction database of the original model for model update.
(2)判断原模型需要更新的设定。设定模型的预测允许误差限θ,可根据具体的设备和工艺运行情况进行设定,一般建议取3%;设定模型连续预测误差超过允许误差的次数m,可根据煤粉细度数据采集难度和周期设定,一般建议为3;当模型预测误差超过允许误差限θ连续m次时,判定为该模型需要更新,并将m次的数据录入原有模型的预测数据库。(2) Determine the settings that the original model needs to be updated. Set the model's prediction allowable error limit θ, which can be set according to the specific equipment and process operation conditions, and is generally recommended to be 3%; set the number of times m that the model's continuous prediction error exceeds the allowable error, which can be collected according to the coal fineness data. The difficulty and cycle setting are generally recommended to be 3; when the model prediction error exceeds the allowable error limit θ for m consecutive times, it is determined that the model needs to be updated, and the m times of data are entered into the prediction database of the original model.
(3)数据选择。当模型需要更新时,选择原有模型预测数据库中符合以下条件的数据作为模型更新数据:1,磨煤机操作参数向量与步骤(2)中的m个磨煤机操作参数向量间的欧式距离分别大于设定值L,L可根据数据库中数据情况和运行工况分布情况设定,一般建议为2;2,数据采集时间距离步骤(2)中的m组数据中的最早时间点不超过T时间,T可根据数据库中数据采集时间情况和数量分布情况设定,一般建议为半年以内。根据以上条件选择不少于30组数据,若符合以上条件的数据不足30组,则可适当放宽条件2的时间限制,或采集新数据以补足符合条件的30组数据。以上30组数据再加上步骤(2)中的m个数据构成模型更新数据。(3) Data selection. When the model needs to be updated, select the data in the original model prediction database that meets the following conditions as the model update data: 1. The Euclidean distance between the coal mill operating parameter vector and the m coal mill operating parameter vectors in step (2). are greater than the set value L, L can be set according to the data in the database and the distribution of operating conditions, and is generally recommended to be 2; 2, the data collection time is no more than the earliest time point in the m groups of data in step (2). T time, T can be set according to the data collection time and quantity distribution in the database, and it is generally recommended to be within half a year. Select no less than 30 sets of data according to the above conditions. If there are less than 30 sets of data that meet the above conditions, the time limit of Condition 2 can be appropriately relaxed, or new data can be collected to supplement the 30 sets of data that meet the conditions. The above 30 sets of data plus the m data in step (2) constitute model update data.
(4)更新模型。以步骤(3)中选取的数据作为样本,采用基于数据的建模算法进行建模,例如,支持向量机算法,神经网络算法等,用于建模的样本的输入参数及输出参数表示为其中xi表示第i组作为输入数据的磨煤机运行参数,包括:煤质的工业分析数据、给煤量,磨煤机进风量和进风温度,磨煤机电流量,分离器转速。yi表示第i组作为输出参数的磨煤机煤粉细度,N为样本数量,在训练样本数据基础上,建立新的磨煤机运行参数与对应煤粉细度间的模型。(4) Update the model. Taking the data selected in step (3) as a sample, a data-based modeling algorithm is used for modeling, for example, a support vector machine algorithm, a neural network algorithm, etc., the input parameters and output parameters of the samples used for modeling are expressed as: Where x i represents the coal mill operating parameters of the i group as input data, including: industrial analysis data of coal quality, coal feed, coal mill inlet air volume and inlet air temperature, coal mill electromechanical flow, and separator speed. y i represents the pulverized coal fineness of the pulverizer in the i-th group as the output parameter, and N is the number of samples. Based on the training sample data, a new model between the operating parameters of the pulverizer and the corresponding pulverized coal fineness is established.
在有建模数据样本情况下,用数据建模方法建立基于数据的预测模型为成熟且流行的方式,在此不在赘述,所建模型预测误差应控制在2%以内。实现磨煤机煤粉细度的在线优化模型更新的更新。In the case of modeling data samples, it is a mature and popular way to use data modeling method to establish a data-based prediction model, which will not be repeated here, and the prediction error of the established model should be controlled within 2%. Realize the update of the online optimization model update of the pulverized coal fineness of the coal mill.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010279286.7A CN111612212A (en) | 2020-04-10 | 2020-04-10 | An online optimization model updating method for pulverized coal fineness of coal mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010279286.7A CN111612212A (en) | 2020-04-10 | 2020-04-10 | An online optimization model updating method for pulverized coal fineness of coal mill |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111612212A true CN111612212A (en) | 2020-09-01 |
Family
ID=72201425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010279286.7A Pending CN111612212A (en) | 2020-04-10 | 2020-04-10 | An online optimization model updating method for pulverized coal fineness of coal mill |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111612212A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113743672A (en) * | 2021-09-09 | 2021-12-03 | 西安热工研究院有限公司 | Coal mill economic coal powder fineness on-line analysis and operation optimization guidance method |
JP7142752B1 (en) | 2021-07-08 | 2022-09-27 | 住友化学株式会社 | Powder production method, information processing method, program, information processing device, model generation method, data structure, trained model, and powder |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101038277A (en) * | 2007-04-19 | 2007-09-19 | 东北大学 | Soft measurement method for coal power fineness in powdering producer |
CN102252342A (en) * | 2011-05-05 | 2011-11-23 | 衢州远景资源再生科技有限公司 | Model updating method for online combustion optimization of porous medium combustor |
CN103400015A (en) * | 2013-08-15 | 2013-11-20 | 华北电力大学 | Composition modeling method for combustion system based on numerical simulation and test operation data |
CN103728879A (en) * | 2014-01-20 | 2014-04-16 | 华北电力大学 | Power station boiler emission soft measuring method based on least squares support vector machine and on-line updating |
CN104634706A (en) * | 2015-01-23 | 2015-05-20 | 国家电网公司 | Neural network-based soft measurement method for pulverized coal fineness |
CN106594794A (en) * | 2016-12-22 | 2017-04-26 | 杭州电子科技大学 | Hybrid and intelligent updating method for boiler efficiency combustion optimization model |
CN109101683A (en) * | 2018-06-29 | 2018-12-28 | 杭州电子科技大学 | Coal-fired sub-prime utilizes the model update method with cleaning pretreatment system pyrolysis kettle |
CN110794782A (en) * | 2019-11-08 | 2020-02-14 | 中国矿业大学 | Batch industrial process online quality prediction method based on JY-MKPLS |
-
2020
- 2020-04-10 CN CN202010279286.7A patent/CN111612212A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101038277A (en) * | 2007-04-19 | 2007-09-19 | 东北大学 | Soft measurement method for coal power fineness in powdering producer |
CN102252342A (en) * | 2011-05-05 | 2011-11-23 | 衢州远景资源再生科技有限公司 | Model updating method for online combustion optimization of porous medium combustor |
CN103400015A (en) * | 2013-08-15 | 2013-11-20 | 华北电力大学 | Composition modeling method for combustion system based on numerical simulation and test operation data |
CN103728879A (en) * | 2014-01-20 | 2014-04-16 | 华北电力大学 | Power station boiler emission soft measuring method based on least squares support vector machine and on-line updating |
CN104634706A (en) * | 2015-01-23 | 2015-05-20 | 国家电网公司 | Neural network-based soft measurement method for pulverized coal fineness |
CN106594794A (en) * | 2016-12-22 | 2017-04-26 | 杭州电子科技大学 | Hybrid and intelligent updating method for boiler efficiency combustion optimization model |
CN109101683A (en) * | 2018-06-29 | 2018-12-28 | 杭州电子科技大学 | Coal-fired sub-prime utilizes the model update method with cleaning pretreatment system pyrolysis kettle |
CN110794782A (en) * | 2019-11-08 | 2020-02-14 | 中国矿业大学 | Batch industrial process online quality prediction method based on JY-MKPLS |
Non-Patent Citations (3)
Title |
---|
张伟;熊伟丽;徐保国;: "基于实时学习的高斯过程回归多模型融合建模", no. 04 * |
杨耀权;张新胜;: "LSSVM动态软测量模型在磨煤机一次风量预测方面的应用", no. 03 * |
王高升;刘振娟;李宏光;: "加热炉缓变故障的预测监控方法", no. 09 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7142752B1 (en) | 2021-07-08 | 2022-09-27 | 住友化学株式会社 | Powder production method, information processing method, program, information processing device, model generation method, data structure, trained model, and powder |
JP2023009983A (en) * | 2021-07-08 | 2023-01-20 | 住友化学株式会社 | Powder production method, information processing method, program, information processing device, model generation method, data structure, trained model, and powder |
CN113743672A (en) * | 2021-09-09 | 2021-12-03 | 西安热工研究院有限公司 | Coal mill economic coal powder fineness on-line analysis and operation optimization guidance method |
CN113743672B (en) * | 2021-09-09 | 2024-04-05 | 西安热工研究院有限公司 | Online analysis and operation optimization guiding method for economic coal fines fineness of coal mill |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107042234B (en) | Intelligent technique production method based on the acquisition of bar whole process big data | |
CN106094744B (en) | Based on the determination method of thermoelectricity factory owner's operating parameter desired value of association rule mining | |
CN109647899B (en) | A method for predicting power consumption of multi-specification rolling stock in the process of hot strip finishing rolling | |
Li et al. | Dynamic time features expanding and extracting method for prediction model of sintering process quality index | |
CN104651559B (en) | Blast furnace liquid iron quality online forecasting system and method based on multivariable online sequential extreme learning machine | |
CN112418538A (en) | Continuous casting billet inclusion prediction method based on random forest classification | |
CN109541168B (en) | Coal powder economic fineness on-line monitoring and adjusting method | |
CN109886471A (en) | Fired power generating unit load distribution method based on neural network and intelligent optimization algorithm | |
CN105177199B (en) | Blast furnace gas generation amount soft measurement method | |
CN103942422B (en) | Granular-computation-based long-term prediction method for converter gas holder positions in metallurgy industry | |
CN111752147B (en) | A multi-condition process monitoring method with continuous learning ability to improve PCA | |
CN104751374A (en) | Method for predicting wireless communication fault of metering automation system | |
CN102184287B (en) | Modelling method for combustion optimization of waste plastics oil refining | |
CN111612212A (en) | An online optimization model updating method for pulverized coal fineness of coal mill | |
CN110097929A (en) | A kind of blast furnace molten iron silicon content on-line prediction method | |
CN102222128A (en) | Method for combustion optimization of waste plastics oil refining | |
CN111612210A (en) | An online optimization method for pulverized coal fineness in a coal mill | |
CN116127345B (en) | Converter steelmaking process model design method based on deep clustering generative adversarial network | |
CN116822380A (en) | A collaborative optimization method based on digital twins for exhaust gas recovery and utilization in the copper smelting process | |
CN109934421A (en) | A method for predicting and compensating blast furnace molten iron silicon content for fluctuating furnace conditions | |
CN111617876A (en) | A method for optimizing the online comprehensive operation of coal pulverizers | |
CN105808945A (en) | Mixed intelligent boiler combustion efficiency optimization method | |
CN111814861B (en) | Online cooling control method based on double self-learning models | |
CN115102164A (en) | Method, system, equipment and storage medium for multi-unit collaborative optimization of load distribution | |
CN111520740B (en) | Method for coordinately optimizing operation of multiple porous medium combustors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200901 |