CN111610229B - Gas-liquid two-phase flow monitoring device, system and method - Google Patents
Gas-liquid two-phase flow monitoring device, system and method Download PDFInfo
- Publication number
- CN111610229B CN111610229B CN202010451803.4A CN202010451803A CN111610229B CN 111610229 B CN111610229 B CN 111610229B CN 202010451803 A CN202010451803 A CN 202010451803A CN 111610229 B CN111610229 B CN 111610229B
- Authority
- CN
- China
- Prior art keywords
- circuit
- capacitor
- resistor
- voltage
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000005514 two-phase flow Effects 0.000 title claims abstract description 49
- 238000012806 monitoring device Methods 0.000 title claims abstract description 15
- 230000005284 excitation Effects 0.000 claims abstract description 65
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 239000003990 capacitor Substances 0.000 claims description 85
- 238000003384 imaging method Methods 0.000 claims description 42
- 238000004891 communication Methods 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 19
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000012544 monitoring process Methods 0.000 claims description 16
- 238000004422 calculation algorithm Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 8
- 238000013500 data storage Methods 0.000 claims description 7
- 238000007405 data analysis Methods 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 80
- 230000006870 function Effects 0.000 description 36
- 239000012071 phase Substances 0.000 description 32
- 238000010586 diagram Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000010291 electrical method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000000917 particle-image velocimetry Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008399 tap water Chemical group 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
- G01N27/08—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域Technical Field
本发明属于气液两相流监测技术领域,具体涉及一种气液两相流监测装置、系统及方法。The present invention belongs to the technical field of gas-liquid two-phase flow monitoring, and in particular relates to a gas-liquid two-phase flow monitoring device, system and method.
背景技术Background Art
对气液两相流流速、流量、流型、压力以及相含率等参数的测量,一般可以总结以下三大类:The measurement of gas-liquid two-phase flow velocity, flow rate, flow pattern, pressure, and phase holdup parameters can generally be summarized into the following three categories:
①直接测量技术① Direct measurement technology
直接测量技术主要用于测量特定的两相流参数,包括流型、流速、含气率等。其中,在含气率的测量上,传统的方法是使用快关阀法,快关阀法会严重干扰流场,对阈门的控制要求较高。随着科技进步的不断发展,越来越多的新测量方法应用于气液两相流的流动参数测量,如电学法、射线法、光学法等。Direct measurement technology is mainly used to measure specific two-phase flow parameters, including flow pattern, flow velocity, gas content, etc. Among them, in the measurement of gas content, the traditional method is to use the fast closing valve method, which will seriously interfere with the flow field and has high requirements for the control of the threshold. With the continuous development of scientific and technological progress, more and more new measurement methods are applied to the flow parameter measurement of gas-liquid two-phase flow, such as electrical method, ray method, optical method, etc.
光学法主要利用光线穿过两相流体时的散射、衰减等原理进行测量。利用光传感器获取光线的变化情况,根据传感器的输出信号对气液两相流相关参数进行测量。该方法可测量气液两相流中气泡尺寸和速度等参数。光学法是典型的非接触式测量,但存在数据获取系统成本高和测量环境要求较高的问题,目前光学法很难在工业上应用推广。The optical method mainly uses the principles of scattering and attenuation of light when it passes through two-phase fluids for measurement. The light changes are obtained by using optical sensors, and the relevant parameters of the gas-liquid two-phase flow are measured based on the output signal of the sensor. This method can measure parameters such as bubble size and velocity in gas-liquid two-phase flow. The optical method is a typical non-contact measurement, but there are problems such as high cost of the data acquisition system and high requirements for the measurement environment. At present, the optical method is difficult to apply and promote in industry.
射线法主要利用射线在穿过介质后发生衰减或康普顿散射的原理进行测量。由于不同介质对射线衰减或散射情况不同,通过检测穿过被测介质后射线辐射强度变化,即可获得被测介质的分布信息,进而确定流型。射线法是非接触式测量,但使用时防护成本高。The ray method mainly uses the principle of attenuation or Compton scattering of rays after passing through the medium for measurement. Since different media have different attenuation or scattering conditions for rays, by detecting the change in the radiation intensity of the rays after passing through the measured medium, the distribution information of the measured medium can be obtained, and then the flow type can be determined. The ray method is a non-contact measurement, but the protection cost is high when using it.
电学法是一种应用广、技术成熟的方法。根据气液两相流电导率或者介电常数的明显差异的原理,采用传感器将非电学被测信息变化转换为电信号变化,通过采集电信号获得被测信息的一种方法。根据原理不同可分为电导测量法和电容测量法两种。例如,基于电容式的空泡仪,可测量气泡速度,主要用于微小通道的测量,基于电导法的探针,可测量局部含气率、气泡尺寸、界面浓度以及气泡表观速度等相关参数。由于结构简单、成本低廉和良好的响应特性,电学法在两相流探测领域扮演着重要角色。The electrical method is a widely used and mature method. Based on the principle of obvious difference in conductivity or dielectric constant of gas-liquid two-phase flow, a sensor is used to convert non-electrical measured information changes into electrical signal changes, and the measured information is obtained by collecting electrical signals. According to different principles, it can be divided into conductivity measurement method and capacitance measurement method. For example, the capacitance-based cavitation meter can measure bubble velocity, which is mainly used for the measurement of tiny channels. The conductivity-based probe can measure local gas content, bubble size, interface concentration, bubble apparent velocity and other related parameters. Due to its simple structure, low cost and good response characteristics, the electrical method plays an important role in the field of two-phase flow detection.
②间接测量技术(软测量)②Indirect measurement technology (soft measurement)
间接测量技术是通过将各种现代信息处理技术应用于气液两相流领域中,建立易测过程变量与待测过程变量之间的关系,通过各种理论计算和估计的方法间接实现待测过程变量的测量。该方法是基于简单的测量参数实现难测测量的估计,可以用来解决非线性复杂的两相流系统参数测量问题。在多相流测量领域,常用的处理方法主要包括神经网络、模式识别、频谱分析、小波分析、频谱分析、模糊控制的软测量等方法。该类方法经常以交叉和融合的方式使用,主要用于参数测量和两相流机理研究。Indirect measurement technology is to apply various modern information processing technologies to the field of gas-liquid two-phase flow, establish the relationship between easy-to-measure process variables and process variables to be measured, and indirectly realize the measurement of process variables to be measured through various theoretical calculations and estimation methods. This method is based on simple measurement parameters to estimate difficult measurements, and can be used to solve the problem of parameter measurement of nonlinear and complex two-phase flow systems. In the field of multiphase flow measurement, commonly used processing methods mainly include neural networks, pattern recognition, spectrum analysis, wavelet analysis, spectrum analysis, fuzzy control soft measurement and other methods. This type of method is often used in a cross- and fusion manner, and is mainly used for parameter measurement and two-phase flow mechanism research.
③可视化测量技术③Visual measurement technology
可视化测量技术是对气液两相流二维或者三维的成像测量,可从测量结果提取出特征参数。主要包括有粒子图像测速法、高速摄像法、过程层析成像方法(ProcessTomography,PT)等。Visual measurement technology is a two-dimensional or three-dimensional imaging measurement of gas-liquid two-phase flow, which can extract characteristic parameters from the measurement results. It mainly includes particle image velocimetry, high-speed camera method, process tomography (PT), etc.
粒子图像测速法是基于流场显示和图像分析技术的一种测量方法,主要用于流体速度场的测量。该方法由于示踪粒子分部不均匀、摄像机噪音和光学噪音等图像噪音以及气泡在流动过程中的生长、聚合、破碎等现象,使得图片清晰度低。Particle image velocimetry is a measurement method based on flow field display and image analysis technology, mainly used for measuring fluid velocity field. This method has low image clarity due to uneven distribution of tracer particles, image noise such as camera noise and optical noise, and the growth, aggregation, and breakage of bubbles during the flow process.
高速摄影法利用高速摄像机快速拍照来获取图像,并利用图像处理算法提取图像中的气液两相流信息。该方法只能用于透明管道内测量,另外高速摄像采集的图像信息量太多,图像的分析和处理较为困难。High-speed photography uses a high-speed camera to quickly take pictures to obtain images, and uses image processing algorithms to extract gas-liquid two-phase flow information in the images. This method can only be used for measurements in transparent pipes. In addition, the amount of image information collected by high-speed cameras is too much, and image analysis and processing are relatively difficult.
因此,有必要开发一种新的气液两相流监测装置、系统及方法。Therefore, it is necessary to develop a new gas-liquid two-phase flow monitoring device, system and method.
发明内容Summary of the invention
本发明的目的是提供一种气液两相流监测装置、系统及方法,能实现对气液两相流快速、准确的测量。The object of the present invention is to provide a gas-liquid two-phase flow monitoring device, system and method, which can realize rapid and accurate measurement of the gas-liquid two-phase flow.
第一方面,本发明所述的气液两相流监测装置,包括主控模块、激励模块、丝网传感器、接收模块、通信模块和电源模块;所述主控模块分别与激励模块、接收模块、通信模块和电源模块电连接;所述丝网传感器分别与激励模块和接收模块电连接;In a first aspect, the gas-liquid two-phase flow monitoring device of the present invention comprises a main control module, an excitation module, a wire mesh sensor, a receiving module, a communication module and a power module; the main control module is electrically connected to the excitation module, the receiving module, the communication module and the power module respectively; the wire mesh sensor is electrically connected to the excitation module and the receiving module respectively;
所述激励模块包括:The incentive module comprises:
用于将主控模块产生的单极性方波信号转化为双极性方波激励信号的极性转化电路,该极性转化电路与主控模块电连接;A polarity conversion circuit for converting a unipolar square wave signal generated by the main control module into a bipolar square wave excitation signal, the polarity conversion circuit being electrically connected to the main control module;
用于实现双极性方波激励信号的连续顺序的多路复用的选通电路,该选通电路分别与主控模块和极性转化电路电连接;A gating circuit for realizing continuous sequential multiplexing of bipolar square wave excitation signals, the gating circuit being electrically connected to the main control module and the polarity conversion circuit respectively;
以及用于对选通电路输出的信号进行放大处理的放大电路,该放大电路分别与选通电路和丝网传感器的激励端电连接;and an amplifier circuit for amplifying the signal output by the gating circuit, the amplifier circuit being electrically connected to the gating circuit and the excitation end of the wire mesh sensor respectively;
所述接收模块包括:The receiving module comprises:
用于将接收到的电流信号转化为电压信号的互阻放大电路,该互阻放大电路与丝网传感器的输出端电连接;A trans-resistance amplifier circuit for converting a received current signal into a voltage signal, the trans-resistance amplifier circuit being electrically connected to an output terminal of the wire mesh sensor;
用于调节互阻放大电路增益的第一数字电位器电路,该第一数字电位器电路分别与互阻放大电路和主控模块电连接;A first digital potentiometer circuit for adjusting the gain of the trans-impedance amplifier circuit, the first digital potentiometer circuit being electrically connected to the trans-impedance amplifier circuit and the main control module respectively;
用于对互阻放大电路输出的电压信号进行放大处理的电压放大电路,该电压放大电路与互阻放大电路电连接;A voltage amplifier circuit for amplifying a voltage signal output by the trans-impedance amplifier circuit, the voltage amplifier circuit being electrically connected to the trans-impedance amplifier circuit;
用于调节电压放大电路增益的第二数字电位器电路,该第二数字电位器电路分别与电压放大电路和主控模块电连接;A second digital potentiometer circuit for adjusting the gain of the voltage amplifier circuit, the second digital potentiometer circuit being electrically connected to the voltage amplifier circuit and the main control module respectively;
以及用于对经电压放大电路放大后的电压信号进行采集的信号采集电路,该信号采集电路分别与电压放大电路和主控模块电连接。And a signal acquisition circuit for acquiring the voltage signal amplified by the voltage amplifier circuit, the signal acquisition circuit is electrically connected to the voltage amplifier circuit and the main control module respectively.
进一步,所述主控模块采用STM32最小系统,所述STM32最小系统通过具有定时器功能的IO管脚与激励模块的输入端口连接,配置定时器寄存器实现方波信号输出,对激励模块进行驱动;Further, the main control module adopts the STM32 minimum system, and the STM32 minimum system is connected to the input port of the excitation module through an IO pin with a timer function, and the timer register is configured to realize the square wave signal output, so as to drive the excitation module;
所述STM32最小系统分别通过SPI接口与第一数字电位器电路和第二数字电位器电路电连接,通过对第一数字电位器电路的电阻值调节实现对互阻放大电路的增益倍数进行调控,通过对第二数字电位器电路的电阻值调节实现对电压放大电路的增益倍数进行调控;The STM32 minimum system is electrically connected to the first digital potentiometer circuit and the second digital potentiometer circuit through the SPI interface, respectively, and the gain multiple of the mutual resistance amplifier circuit is regulated by adjusting the resistance value of the first digital potentiometer circuit, and the gain multiple of the voltage amplifier circuit is regulated by adjusting the resistance value of the second digital potentiometer circuit;
所述STM32最小系统通过FSMC接口与信号采集电路电连接,实现对多通道数据的高效获取;The STM32 minimum system is electrically connected to the signal acquisition circuit through the FSMC interface to achieve efficient acquisition of multi-channel data;
所述STM32最小系统通过RMII接口与通信模块电连接,实现嵌入式端与电脑端的网络通信功能。The STM32 minimum system is electrically connected to the communication module via the RMII interface to realize the network communication function between the embedded end and the computer end.
进一步,所述极性转化电路包括电容C32、电容C35和电阻R12,所述电容C32的一端与主控模块电连接,电容C32的另一端经电阻R12后接地,电容C32与电阻R12的连接点还经电容C35接地。Furthermore, the polarity conversion circuit includes a capacitor C32, a capacitor C35 and a resistor R12, one end of the capacitor C32 is electrically connected to the main control module, the other end of the capacitor C32 is grounded after passing through the resistor R12, and the connection point between the capacitor C32 and the resistor R12 is also grounded through the capacitor C35.
进一步,所述选通电路包括模拟开关U7、电阻R4至电阻R11,电容C7、电容C9、电容C22至电容C29;Further, the gating circuit includes an analog switch U7, resistors R4 to R11, capacitors C7, C9, and C22 to C29;
所述模拟开关U7采用MAX4581CEE+芯片,模拟开关U7的7脚经电容C9后接地;模拟开关U7的16脚经电容C7后接地;模拟开关U7的13脚经电阻R4后接地,电容C22与电阻R4并联;模拟开关U7的14脚经电阻R5后接地,电容C23与电阻R5并联;模拟开关U7的15脚经电阻R6后接地,电容C24与电阻R6并联;模拟开关U7的12脚经电阻R7后接地,电容C25与电阻R7并联;模拟开关U7的1脚经电阻R8后接地,电容C26与电阻R8并联;模拟开关U7的5脚经电阻R9后接地,电容C27与电阻R9并联;模拟开关U7的2脚经电阻R10后接地,电容C28与电阻R10并联;模拟开关U7的4脚经电阻R11后接地,电容C29与电阻R11并联;The analog switch U7 adopts the MAX4581CEE+ chip, and the 7th pin of the analog switch U7 is grounded through the capacitor C9; the 16th pin of the analog switch U7 is grounded through the capacitor C7; the 13th pin of the analog switch U7 is grounded through the resistor R4, and the capacitor C22 is connected in parallel with the resistor R4; the 14th pin of the analog switch U7 is grounded through the resistor R5, and the capacitor C23 is connected in parallel with the resistor R5; the 15th pin of the analog switch U7 is grounded through the resistor R6, and the capacitor C24 is connected in parallel with the resistor R6;
所述模拟开关U7的3脚与极性转化电路电连接;
所述模拟开关U7的12脚至15脚还分别与放大电路电连接。
第二方面,本发明所述的气液两相流监测系统,包括电脑端和如本发明所述的气液两相流监测装置;In a second aspect, the gas-liquid two-phase flow monitoring system of the present invention comprises a computer terminal and the gas-liquid two-phase flow monitoring device of the present invention;
所述气液两相流监测装置的激励模块采取循环扫描的策略,每次顺序向丝网传感器激励端的一个电极丝发送双极性电压激励信号,接收端所有响应信号经电流向电压转化、电压放大和AD转化处理,即完成丝网传感器中一个电极丝的数据采集;然后再次激励、接收、处理,依次类推,直到完成丝网传感器中所有电极丝的激励,由此得到一个能反映出被测流道截面处电导率的二维分布的电压矩阵,即得到一个完整截面点的相态信息,并将相态信息通过通信模块实时发送给电脑端;The excitation module of the gas-liquid two-phase flow monitoring device adopts a cyclic scanning strategy, and sends a bipolar voltage excitation signal to an electrode wire at the excitation end of the wire mesh sensor in sequence each time. All response signals at the receiving end are converted from current to voltage, amplified by voltage, and processed by AD conversion, so that the data collection of one electrode wire in the wire mesh sensor is completed; then the excitation, reception, and processing are performed again, and so on, until the excitation of all electrode wires in the wire mesh sensor is completed, thereby obtaining a voltage matrix that can reflect the two-dimensional distribution of the conductivity at the cross section of the measured flow channel, that is, obtaining the phase state information of a complete cross-sectional point, and sending the phase state information to the computer end in real time through the communication module;
所述电脑端被配置为:对接收到的每一个完整截面点的相态信息进行数据解析、数据保存和截面数据成像处理,显示流场截面的两相分布特性,并计算和显示截面含气率。The computer terminal is configured to: perform data analysis, data storage and cross-sectional data imaging processing on the phase state information of each complete cross-sectional point received, display the two-phase distribution characteristics of the flow field cross section, and calculate and display the cross-sectional gas content.
进一步,在截面数据成像处理中,以丝网传感器交叉点为像素点,测量值为相应的像素值,采用插值算法增加图像的像素点,并采用中值滤波对图像进行滤波处理。Furthermore, in the cross-sectional data imaging process, the intersection points of the screen sensor are taken as pixel points, the measured values are taken as corresponding pixel values, an interpolation algorithm is used to increase the pixel points of the image, and a median filter is used to filter the image.
进一步,采用三次样条插值法增加图像的像素点。Furthermore, the cubic spline interpolation method is used to increase the pixel points of the image.
进一步,计算截面含气率的方法如下:Further, the method for calculating the cross-sectional air void fraction is as follows:
将电压值矩阵转化为气相含气率矩阵:Convert the voltage value matrix into a gas phase gas fraction matrix:
其中,ε(i,j,k)表示第k帧数据中坐标为(i,j)的局部含气率,ugas(i,j)表示当坐标为(i,j)的测点全部为气体流过时的标定电压值,uliquid(i,j)表示当坐标为(i,j)的测点全部为液体流过时的标定电压值,u(i,j,k)表示第k帧数据中坐标为(i,j)的测点的电压值;Wherein, ε(i,j,k) represents the local gas content at coordinate (i,j) in the k-th frame data, u gas (i,j) represents the calibration voltage value when all the measuring points at coordinate (i,j) are passed by gas, u liquid (i,j) represents the calibration voltage value when all the measuring points at coordinate (i,j) are passed by liquid, and u(i,j,k) represents the voltage value of the measuring point at coordinate (i,j) in the k-th frame data;
计算截面含气率:Calculate the cross-sectional air content:
其中,为截面含气率;ai,j表示坐标为(i,j)的测点的测量值对应的权重值;in, is the cross-sectional gas content; a i,j represents the weight value corresponding to the measured value of the measuring point with coordinates (i, j);
其中,Asensor表示圆形截面的总面积,Ai,j表示εi,j对应的有效面积。Where A sensor represents the total area of the circular cross section, and A i,j represents the effective area corresponding to ε i,j .
进一步,所述电脑端还被配置为:用于查看历史数据,包括表格显示和视图显示;其中,视图中正视图与侧视图采用数据投影方法重构出测量管道的视图信息;正视图和侧视图用于显示气泡相对于管壁的位置。Furthermore, the computer terminal is also configured to: view historical data, including table display and view display; wherein the front view and side view in the view use data projection method to reconstruct the view information of the measuring pipeline; the front view and side view are used to display the position of the bubble relative to the pipe wall.
第三方面,本发明所述的气液两相流监测方法,采用如本发明所述的气液两相流监测系统,其方法包括以下步骤:In a third aspect, the gas-liquid two-phase flow monitoring method of the present invention adopts the gas-liquid two-phase flow monitoring system of the present invention, and the method comprises the following steps:
步骤1、将丝网传感器安装到垂直于流动方向的截面上;Step 1: Install the wire mesh sensor on the section perpendicular to the flow direction;
步骤2、激励模块采取循环扫描的策略,每次顺序向丝网传感器激励端的一个电极丝发送双极性电压激励信号,接收端所有响应信号经电流向电压转化、电压放大和AD转化处理,即完成丝网传感器中一个电极丝的数据采集;然后再次激励、接收、处理,依次类推,直到完成丝网传感器中所有电极丝的激励,由此得到一个能反映出被测流道截面处电导率的二维分布的电压矩阵,即得到一个完整截面点的相态信息,并将相态信息通过通信模块实时发送给电脑端;Step 2: The excitation module adopts a cyclic scanning strategy, and sends a bipolar voltage excitation signal to an electrode wire at the excitation end of the wire mesh sensor in sequence each time. All response signals at the receiving end are converted from current to voltage, amplified, and processed by AD conversion, thus completing the data acquisition of one electrode wire in the wire mesh sensor; then excitation, receiving, and processing are performed again, and so on, until the excitation of all electrode wires in the wire mesh sensor is completed, thereby obtaining a voltage matrix that can reflect the two-dimensional distribution of the conductivity at the cross section of the measured flow channel, that is, obtaining the phase state information of a complete cross-sectional point, and sending the phase state information to the computer end in real time through the communication module;
步骤3、电脑端对接收到的每一个完整截面点的相态信息进行数据解析、数据保存和截面数据成像处理,显示流场截面的两相分布特性,并计算和显示截面含气率。Step 3: The computer performs data analysis, data storage and cross-sectional data imaging processing on the phase state information of each complete cross-sectional point received, displays the two-phase distribution characteristics of the flow field cross section, and calculates and displays the cross-sectional gas content.
本发明具有以下优点:丝网传感器成像技术具有原理简单、研发成本低、成像速度快、可测参数多和空间分辨率均匀等优点。基于丝网传感器的气液两相流监测系统,该系统能够实现对气液两相流快速、准确的测量,并具有宽动态测量范围、低成本、体积较少的特性。基于丝网传感器的气液两相流监测是属于接触式测量,因此相较于间接测量具有设备简单、成本低、抗干扰能力强的优点,但对比传统的接触式测量,这种新型测量方式因接触面小,流场受到的干扰很小,此装置适用于实验室和工业等多种场合,具有应用较广泛的优点。本发明由于自适应的实现,能够精确到电导率≤0.1μS/cm的测量。The present invention has the following advantages: the wire mesh sensor imaging technology has the advantages of simple principle, low R&D cost, fast imaging speed, multiple measurable parameters and uniform spatial resolution. The gas-liquid two-phase flow monitoring system based on the wire mesh sensor can realize fast and accurate measurement of the gas-liquid two-phase flow, and has the characteristics of wide dynamic measurement range, low cost and small volume. The gas-liquid two-phase flow monitoring based on the wire mesh sensor belongs to contact measurement, so compared with indirect measurement, it has the advantages of simple equipment, low cost and strong anti-interference ability. However, compared with the traditional contact measurement, this new measurement method has a small contact surface and the flow field is disturbed very little. This device is suitable for various occasions such as laboratories and industries, and has the advantage of wide application. Due to the realization of self-adaptation, the present invention can accurately measure the conductivity ≤0.1μS/cm.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本实施例的原理框图;FIG1 is a functional block diagram of the present embodiment;
图2是本实施例中主控模块的电路图;FIG2 is a circuit diagram of a main control module in this embodiment;
图3为本实施例中极性转化电路的电路图;FIG3 is a circuit diagram of a polarity conversion circuit in this embodiment;
图4为本实施例中选通电路的电路图;FIG4 is a circuit diagram of a gating circuit in this embodiment;
图5为本实施例中放大电路的电路图;FIG5 is a circuit diagram of an amplifier circuit in this embodiment;
图6为本实施例中互阻放大电路和第一数字电位器电路的电路图;FIG6 is a circuit diagram of a mutual resistance amplifier circuit and a first digital potentiometer circuit in this embodiment;
图7为本实施例中电压放大电路和第二数字电位器电路的电路图;FIG7 is a circuit diagram of a voltage amplifier circuit and a second digital potentiometer circuit in this embodiment;
图8为本实施例中信号采集电路的电路图;FIG8 is a circuit diagram of a signal acquisition circuit in this embodiment;
图9为本实施例中通信模块的电路图;FIG9 is a circuit diagram of a communication module in this embodiment;
图10为本实施例中设备端软件和电脑端软件的架构图;FIG10 is an architecture diagram of the device-side software and the computer-side software in this embodiment;
图11为本实施例中重构图像显示流程图;FIG11 is a flowchart of reconstructing an image display in this embodiment;
图12为本实施例中测量值的区域示意图;FIG12 is a schematic diagram of the region of the measured values in this embodiment;
图13为本实施例中截面含气率显示流程图;FIG13 is a flow chart showing the cross-sectional gas content rate in this embodiment;
图14为本实施例中一帧的数据投影示意图;FIG14 is a schematic diagram of data projection of one frame in this embodiment;
图15为本实施例中静态测量成像效果图;FIG15 is a static measurement imaging effect diagram of this embodiment;
图16为本实施例中在不同气泡尺寸下截面成像效果;FIG16 is a cross-sectional imaging effect at different bubble sizes in this embodiment;
图中:1、主控模块,2、激励模块,2a、极性转化电路,2b、选通电路,2c、放大电路,3、丝网传感器,4、接收模块,4a、互阻放大电路,4b、第一数字电位器电路,4c、电压放大电路,4d、第二数字电位器电路,4e、信号采集电路,5、电源模块,6、通信模块,7、电脑端。In the figure: 1. main control module, 2. excitation module, 2a. polarity conversion circuit, 2b. selection circuit, 2c. amplifier circuit, 3. silk screen sensor, 4. receiving module, 4a. mutual resistance amplifier circuit, 4b. first digital potentiometer circuit, 4c. voltage amplifier circuit, 4d. second digital potentiometer circuit, 4e. signal acquisition circuit, 5. power module, 6. communication module, 7. computer terminal.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,一种气液两相流监测装置,包括主控模块1、激励模块2、丝网传感器3、接收模块4、通信模块6和电源模块5;所述主控模块1分别与激励模块2、接收模块4、通信模块6和电源模块5电连接;所述丝网传感器3分别与激励模块2和接收模块4电连接。As shown in Figure 1, a gas-liquid two-phase flow monitoring device includes a
如图1所示,本实施例中,所述激励模块2主要实现多通道稳定幅值的双极性电压激励信号的顺序控制,从而完成丝网传感器3的有序激励。所述激励模块2包括极性转化电路2a、选通电路2b和放大电路2c。其中,所述极性转化电路2a由高通滤波器电路组成,用于将主控模块1产生的单极性方波信号转化为双极性方波激励信号,该极性转化电路2a与主控模块1电连接。所述选通电路2b由多路复用模拟开关组成,用于实现双极性方波激励信号的连续顺序的多路复用,该选通电路2b分别与主控模块1和极性转化电路2a电连接。所述放大电路2c主要由恒定增益的放大芯片组成,用于对选通电路2b输出的信号进行放大处理,增强激励信号的驱动能力以及减少负载的影响,该放大电路2c分别与选通电路2b和丝网传感器3的激励端电连接。As shown in FIG1 , in this embodiment, the
本实施例中,选择双极性方波电压信号来激励发射电极。常用的电压激励有直流信号、双极性正弦波信号、双极性方波信号。如果发射电极被直流电压激活,介质电极将会出现极化现象,从而在电导率测量中引入误差。另外,如果发射电极由交替的正弦波电压信号激活,则电路将需要复杂且耗时的解调过程,从而降低系统数据采集的速度。双极性方波电压信号由于其两个相邻半周期的幅值相同和极性相反,能够保护电极免于极化。在测量的半个周期内,发射电极可以看作被恒定的直流电压信号激励,接收电极不需要经过较为复杂的放大、滤波和整流等信号调理过程,因此选用双极性电压激励信号驱动激励模块。In this embodiment, a bipolar square wave voltage signal is selected to excite the transmitting electrode. Common voltage excitations include DC signals, bipolar sine wave signals, and bipolar square wave signals. If the transmitting electrode is activated by a DC voltage, polarization will occur in the dielectric electrode, thereby introducing errors in the conductivity measurement. In addition, if the transmitting electrode is activated by an alternating sinusoidal wave voltage signal, the circuit will require a complex and time-consuming demodulation process, thereby reducing the speed of system data acquisition. The bipolar square wave voltage signal can protect the electrode from polarization because its two adjacent half-cycles have the same amplitude and opposite polarity. In the half cycle of the measurement, the transmitting electrode can be regarded as being excited by a constant DC voltage signal, and the receiving electrode does not need to undergo more complex signal conditioning processes such as amplification, filtering, and rectification, so a bipolar voltage excitation signal is selected to drive the excitation module.
如图1所示,本实施例中,所述接收模块4主要用于实现多路微弱电流响应信号的量化采集;所述接收模块4包括互阻放大电路4a、第一数字电位器电路4b、电压放大电路4c、第二数字电位器电路4d和信号采集电路4e。所述互阻放大电路4a用于将接收到的电流信号转化为电压信号,该互阻放大电路4a与丝网传感器3的输出端电连接。所述第一数字电位器电路4b用于调节互阻放大电路4a的增益,该第一数字电位器电路4b分别与互阻放大电路4a和主控模块1电连接。所述电压放大电路4c用于对互阻放大电路4a输出的电压信号进行放大处理,该电压放大电路4c与互阻放大电路4a电连接。第二数字电位器电路4d用于调节电压放大电路4c的增益,该第二数字电位器电路4d分别与电压放大电路4c和主控模块1电连接。所述信号采集电路4e用于对经电压放大电路4c放大后的电压信号进行采集,该信号采集电路4e分别与电压放大电路4c和主控模块1电连接。As shown in FIG1 , in this embodiment, the receiving
本实施例中,通过采用数字电位器改变反馈电阻大小去实现放大电路的增益控制。互阻放大电路能够避免运放输入失调电压和输入偏置电流和失调电流带来的积分误差,也避免了电容漏电流带来的误差,避免纳米级电导率的测量误差,有效提升了测量精度。In this embodiment, the gain control of the amplifier circuit is realized by changing the feedback resistance by using a digital potentiometer. The mutual resistance amplifier circuit can avoid the integral error caused by the operational amplifier input offset voltage, input bias current and offset current, and also avoid the error caused by the capacitor leakage current, and avoid the measurement error of nano-scale conductivity, thereby effectively improving the measurement accuracy.
如图2所示,本实施例中,所述主控模块1采用STM32最小系统,所述STM32最小系统通过具有定时器功能的IO管脚与激励模块2的输入端口连接,配置定时器寄存器实现方波信号输出,对激励模块2进行驱动。所述STM32最小系统分别通过SPI接口与第一数字电位器电路4b和第二数字电位器电路4d电连接,通过对第一数字电位器电路4b的电阻值调节实现对互阻放大电路4a的增益倍数进行调控,通过对第二数字电位器电路4d的电阻值调节实现对电压放大电路4c的增益倍数进行调控。所述STM32最小系统通过FSMC接口与信号采集电路4e电连接,实现对多通道数据的高效获取。所述STM32最小系统通过RMII接口与通信模块6电连接,实现嵌入式端(即装置端)与电脑端的网络通信功能。As shown in Figure 2, in this embodiment, the
如图3所示,本实施例中,所述极性转化电路2a包括电容C32、电容C35和电阻R12,所述电容C32的一端与主控模块1电连接,电容C32的另一端经电阻R12后接地,电容C32与电阻R12的连接点还经电容C35接地。As shown in Figure 3, in this embodiment, the
如图4所示,本实施例中,所述选通电路2b包括模拟开关U7、电阻R4至电阻R11,电容C7、电容C9、电容C22至电容C29。所述模拟开关U7采用MAX4581CEE+芯片,模拟开关U7的7脚经电容C9后接地。模拟开关U7的16脚经电容C7后接地。模拟开关U7的13脚经电阻R4后接地,电容C22与电阻R4并联。模拟开关U7的14脚经电阻R5后接地,电容C23与电阻R5并联。模拟开关U7的15脚经电阻R6后接地,电容C24与电阻R6并联。模拟开关U7的12脚经电阻R7后接地,电容C25与电阻R7并联。模拟开关U7的1脚经电阻R8后接地,电容C26与电阻R8并联。模拟开关U7的5脚经电阻R9后接地,电容C27与电阻R9并联。模拟开关U7的2脚经电阻R10后接地,电容C28与电阻R10并联。模拟开关U7的4脚经电阻R11后接地,电容C29与电阻R11并联。所述模拟开关U7的3脚与极性转化电路2a电连接。所述模拟开关U7的12脚至15脚还分别与放大电路2c电连接。As shown in Figure 4, in this embodiment, the
如图5所示,本实施例中,放大电路2c包括放大器U2、电容C1和电容C5。所述放大器U2采用max4022eee芯片,放大器U2的4脚经电容C1后接地,放大器U2的13脚经电容C5后接地。所述放大器U2的3脚、4脚、12脚和14脚分别与选通电路2b电连接。As shown in FIG5 , in this embodiment, the
如图6所示,所述互阻放大电路4a包括运算放大器U21、电容C108、电容C120、电容C124和电容C128。所述运算放大器U21采用OPA4132UA芯片,电容C108的一端与运算放大器U21的1脚连接,电容C108的另一端与运算放大器U21的2脚连接。电容C120的一端与运算放大器U21的6脚连接,电容C120的另一端与运算放大器U21的7脚连接。电容C124的一端与运算放大器U21的9脚连接,电容C124的另一端与运算放大器U21的8脚连接。电容C128的一端与运算放大器U21的13脚连接,电容C128的另一端与运算放大器U21的14脚连接。As shown in Figure 6, the mutual
如图7所示,所述电压放大电路4c包括运算放大器U22以及外围电路,外围电路包括电容C109、电容C121、电容C125、电容C129、电阻R32、电阻R34、电阻R36、电阻R38、电阻R40、电阻R45和电阻R46等。其中,所述运算放大器U22采用OPA4820IPWT芯片,电容C109的一端与运算放大器U22的1脚连接,电容C109的另一端与运算放大器U22的2脚连接。电容C121的一端与运算放大器U22的6脚连接,电容C121的另一端与运算放大器U22的7脚连接。电容C125的一端与运算放大器U22的9脚连接,电容C125的另一端与运算放大器U22的8脚连接。电容C129的一端与运算放大器U22的13脚连接,电容C129的另一端与运算放大器U22的14脚连接。As shown in FIG7 , the
如图6所示,本实施例中,所述第一数字电位器电路4b包括数字电位器U19及外围电路,其数字电位器U19的型号为AD5263BRZ200。As shown in FIG. 6 , in this embodiment, the first
如图7所示,本实施例中,所述第二数字电位器电路4d包括数字电位器U20及外围电路,数字电位器U20的型号为AD5263BRZ200。As shown in FIG. 7 , in this embodiment, the second
如图8所示,本实施例中,所述信号采集电路4e包括模数转换器U4以及外围电路,模数转换器U4的型号为AD7606BSTZ。As shown in FIG. 8 , in this embodiment, the
如图9所示,本实施例中,所述通信模块6主要由网络通信电路组成,该通信模块6包括PHY芯片及外围电路,PHY芯片的型号为DP838481VV。As shown in FIG. 9 , in this embodiment, the
本实施例中,所述电源模块5由稳压电路组成,主要为系统内部提供不同的供电电压。In this embodiment, the
本实施例中,一种气液两相流监测系统,包括电脑端和如本实施例中所述的气液两相流监测装置。In this embodiment, a gas-liquid two-phase flow monitoring system includes a computer terminal and a gas-liquid two-phase flow monitoring device as described in this embodiment.
所述气液两相流监测装置的激励模块采取循环扫描的策略,每次顺序向丝网传感器激励端的一个电极丝发送双极性电压激励信号,接收端所有响应信号经电流向电压转化、电压放大和AD转化处理,即完成丝网传感器中一个电极丝的数据采集;然后再次激励、接收、处理,依次类推,直到完成丝网传感器中所有电极丝的激励,由此得到一个能反映出被测流道截面处电导率的二维分布的电压矩阵,即得到一个完整截面点的相态信息,并将相态信息通过通信模块实时发送给电脑端。The excitation module of the gas-liquid two-phase flow monitoring device adopts a cyclic scanning strategy, and sends a bipolar voltage excitation signal to an electrode wire at the excitation end of the wire mesh sensor in sequence each time. All response signals at the receiving end are converted from current to voltage, amplified by voltage, and processed by AD conversion, thereby completing the data acquisition of one electrode wire in the wire mesh sensor; then the excitation, reception, and processing are performed again, and so on, until the excitation of all electrode wires in the wire mesh sensor is completed, thereby obtaining a voltage matrix that can reflect the two-dimensional distribution of the conductivity at the cross section of the measured flow channel, that is, obtaining the phase state information of a complete cross-sectional point, and sending the phase state information to the computer end in real time through the communication module.
所述电脑端被配置为:对接收到的每一个完整截面点的相态信息进行数据解析、数据保存和截面数据成像处理,显示流场截面的两相分布特性,并计算和显示截面含气率。The computer terminal is configured to: perform data analysis, data storage and cross-sectional data imaging processing on the phase state information of each complete cross-sectional point received, display the two-phase distribution characteristics of the flow field cross section, and calculate and display the cross-sectional gas content.
本实施例中,为了便于用户对设备的控制以及测量数据等信息的查看,开发一款软件作为系统参数设置和成像显示,选通UDP协议实现气液两相流监测装置和电脑端的快速交互。In this embodiment, in order to facilitate the user to control the equipment and view information such as measurement data, a software is developed for system parameter setting and imaging display, and the UDP protocol is selected to achieve rapid interaction between the gas-liquid two-phase flow monitoring device and the computer.
如图10所示,装置端的软件主要完成对被测区域内各测点电压信号进行量化采集和结果数据的快速传输。为了实现以上功能,需要在嵌入式平台实现模拟开关控制、信号采集处理、数字电位器控制、参数保存和网络通信等功能。As shown in Figure 10, the software on the device side mainly completes the quantitative acquisition of voltage signals at each measuring point in the measured area and the rapid transmission of the result data. In order to achieve the above functions, it is necessary to implement analog switch control, signal acquisition and processing, digital potentiometer control, parameter storage and network communication functions on the embedded platform.
(1)模拟开关控制:采用二进制加权方式控制模拟开关的有序切换,实现激励信号的时分复用。(1) Analog switch control: A binary weighted method is used to control the orderly switching of analog switches to achieve time-division multiplexing of excitation signals.
(2)信号采集处理:采用STM32最小系统驱动采集芯片方式实现被测区域内各个测点电压信号的快速量化采集。(2) Signal acquisition and processing: The STM32 minimum system is used to drive the acquisition chip to achieve rapid quantitative acquisition of voltage signals at each measuring point in the measured area.
(3)数字电位器控制:通过SPI总线发送命令调整数字电位器(即第一数字电位器电路和第二数字电位器电路)输出电阻,实现对接收端程控放大器(即互阻放大电路和电压放大电路)的增益设置。(3) Digital potentiometer control: Sending commands via the SPI bus to adjust the output resistance of the digital potentiometer (i.e., the first digital potentiometer circuit and the second digital potentiometer circuit) to achieve gain setting of the receiving-end programmable amplifier (i.e., the mutual resistance amplifier circuit and the voltage amplifier circuit).
(4)参数保存:考虑到系统在每次启动后,需要对程控放大器进行增益设置,为了减少用户的重复设置工作,需要完成参数保存功能。系统自动保存最新的运放增益信息,系统在下一次启动时,通过读取保存的运放增益信息完成运放增益设置。(4) Parameter saving: Considering that the system needs to set the gain of the programmable amplifier after each startup, in order to reduce the user's repeated setting work, the parameter saving function needs to be completed. The system automatically saves the latest op amp gain information. When the system is started next time, it completes the op amp gain setting by reading the saved op amp gain information.
(5)网络通信:考虑到嵌入式平台存储能力有限,为了尽量减少通信对内存的占用,通过在嵌入式端移植轻量级的LWIP协议栈实现网络通信功能,使用UDP方式实现测量数据的快速上传。(5) Network communication: Considering the limited storage capacity of the embedded platform, in order to minimize the memory usage of communication, the network communication function is implemented by transplanting the lightweight LWIP protocol stack on the embedded end, and the UDP method is used to achieve fast upload of measurement data.
如图10所示,电脑端的软件设计主要完成对接收到的各个测点的电压信息进行转化、数据保存、含气率参数提取、截面图像重构等操作以及对系统参数设置和历史数据查看。为了实现该功能,需要在电脑端的软件实现系统参数设置、截面成像显示、含气率显示、历史数据显示和网络通信等功能。As shown in Figure 10, the computer software design mainly completes the conversion of the voltage information received from each measuring point, data storage, gas content parameter extraction, cross-sectional image reconstruction and other operations, as well as system parameter settings and historical data viewing. In order to achieve this function, it is necessary to implement system parameter settings, cross-sectional imaging display, gas content display, historical data display and network communication functions in the computer software.
(1)截面成像显示:为了用户更加直观地看到丝网传感器3处截面相态分布,将从每秒测量数据中抽取30帧用于成像显示。使用相应的插值算法增加图像的像素点,提高图像分辨率,使用中值滤波算法对图像进行平滑处理,从而优化图像的显示质量。(1) Cross-sectional imaging display: In order to allow users to more intuitively see the cross-sectional phase distribution of the screen sensor at 3 locations, 30 frames are extracted from the measurement data per second for imaging display. The corresponding interpolation algorithm is used to increase the number of pixels in the image and improve the image resolution. The median filter algorithm is used to smooth the image, thereby optimizing the image display quality.
(2)截面含气率显示:为使用户更加准确地掌握管道截面气液相态信息,从测量数据中提取截面含气率参数并将提取到的参数进行显示。(2) Display of cross-sectional gas content: In order to enable users to more accurately understand the gas-liquid phase information of the pipeline cross section, the cross-sectional gas content parameters are extracted from the measured data and the extracted parameters are displayed.
(3)数据保存:为了便于对测量数据的查看和二次开发,系统应具有以TXT文档形式保存测量数据的功能。(3) Data preservation: In order to facilitate the viewing and secondary development of measurement data, the system should have the function of saving measurement data in the form of TXT documents.
(4)系统参数设置:为了更好地满足监测系统对多种气液两相流的测量,系统需要具有系统参数设置功能。根据应用场景的不同,主要提供自定义参数和自适应参数两种设置模式,自定义参数设置模式主要应用于指定通路的增益调试,自适应参数设置模式主要应用于不同气液两相流测量。为了提高系统在测量不同介质时参数调整的效率,嵌入式端设计了自适应算法。(4) System parameter setting: In order to better meet the monitoring system's measurement of various gas-liquid two-phase flows, the system needs to have a system parameter setting function. According to different application scenarios, two setting modes are provided: custom parameter setting mode and adaptive parameter setting mode. The custom parameter setting mode is mainly used for gain debugging of specified channels, and the adaptive parameter setting mode is mainly used for different gas-liquid two-phase flow measurements. In order to improve the efficiency of parameter adjustment of the system when measuring different media, an adaptive algorithm is designed on the embedded end.
(5)历史数据显示:为了方便用户对历史数据的查看,系统应具以表格和图像方式显示历史数据的功能。在图像显示部分,设计了数据投影方法。(5) Historical data display: In order to facilitate users to view historical data, the system should have the function of displaying historical data in the form of tables and images. In the image display part, a data projection method is designed.
(6)网络通信功能:为了实现电脑端与装置端的数据快速交互,电脑端软件采用基于UDP协议的Socket编程实现。考虑到交互数据的规范性,还设计了通信协议。(6) Network communication function: In order to realize the rapid data exchange between the computer and the device, the computer software adopts Socket programming based on UDP protocol. Considering the standardization of the interactive data, a communication protocol is also designed.
本实施例中,以丝网传感器交叉点为像素点,测量值为相应的像素值,直接进行成像显示能够反映出被测区域的相态分布特性。但是丝网传感器的测量点总数有限,测量点与测量点又存在一定的距离,因此直接成像的分辨率不高。为了优化图像显示质量,需要使用相应的插值算法增加图像的像素点,以提高图像的分辨率。为了图像边缘平滑,采用中值滤波对图像进行滤波处理。因此,本实施例中,图像重构算法采用插值算法与中值滤波算法相结合的方法。目前,常用的插值算法包括了最近邻域法、双线性插值法、双三次插值法、三次样条插值法等。本实施例中,采用三次样条插值法增加图像的像素点。In this embodiment, the intersection of the wire mesh sensor is taken as the pixel point, and the measured value is the corresponding pixel value. Direct imaging display can reflect the phase distribution characteristics of the measured area. However, the total number of measuring points of the wire mesh sensor is limited, and there is a certain distance between the measuring points, so the resolution of direct imaging is not high. In order to optimize the image display quality, it is necessary to use a corresponding interpolation algorithm to increase the pixel points of the image to improve the resolution of the image. In order to smooth the edge of the image, the image is filtered by a median filter. Therefore, in this embodiment, the image reconstruction algorithm adopts a method combining an interpolation algorithm with a median filter algorithm. At present, commonly used interpolation algorithms include the nearest neighbor method, bilinear interpolation method, bicubic interpolation method, cubic spline interpolation method, etc. In this embodiment, the cubic spline interpolation method is used to increase the pixel points of the image.
本实施例中,以下以16x16的丝网传感器为例进行说明。三次样条插值法同样考虑待插点与周边16个相邻点的关系,在双三次插值法的基础上调整S(w),其中,S(w)为三次样条曲线,是一个分段函数。假设a=w0<w1<…<wn-1<wn=b,给定节点。若函数S(w)在定义域[a,b]上的每个小区间[wi,wi+1]上是三次多项式,且满足S(wi)=fi(备注:fi是多项式)和S(w)、S'(w)(S'(w)是S(w)的导数)、S”(w)(S”(w)是S'(w)的导数)在[a,b]上连续,则称S(w)为三次样条函数,函数表示如公式(1):In this embodiment, the following is an explanation using a 16x16 screen sensor as an example. The cubic spline interpolation method also considers the relationship between the point to be interpolated and the surrounding 16 adjacent points, and adjusts S(w) on the basis of the bicubic interpolation method, where S(w) is a cubic spline curve, which is a piecewise function. Assume a=w 0 <w 1 <…< wn-1 < wn =b, given nodes. If the function S(w) is a cubic polynomial on each small interval [ wi ,wi +1 ] on the domain [a,b], and satisfies S( wi )= fi (Note: fi is a polynomial) and S(w), S'(w) (S'(w) is the derivative of S(w)), S”(w)(S”(w) is the derivative of S'(w)) are continuous on [a,b], then S(w) is called a cubic spline function, and the function is expressed as formula (1):
Si(w)=ai(w-wi)3+bi(w-wi)2+ci(w-wi)+di S i (w)=a i (ww i ) 3 +b i (ww i ) 2 +c i (ww i )+d i
i=0,1,2……,n-1,n (1)i=0,1,2……,n-1,n (1)
其中,ai、bi、ci、di为对应区间多项式的相应系数。Among them, a i , b i , c i , and d i are the corresponding coefficients of the corresponding interval polynomial.
三次样条插值法不仅考虑插值点更大邻域内的像素点的相关性,还引入样条曲线的概念优化成像效果,像素间过渡平滑,成像质量更贴近真实情况。The cubic spline interpolation method not only considers the correlation of pixel points within a larger neighborhood of the interpolation point, but also introduces the concept of spline curves to optimize the imaging effect. The transition between pixels is smooth, and the imaging quality is closer to the actual situation.
三次样条插值法不仅考虑了周边16相邻像素点的相关性,还引入了曲线的概念优化成像效果,使得成像图片根据逼近真实图片。The cubic spline interpolation method not only considers the correlation of 16 neighboring pixels, but also introduces the concept of curve to optimize the imaging effect, so that the image is close to the real image.
为了让图像更加平滑,逼近真实图像,本实施例中,采用中值滤波算法对图片进行平滑处理。中值滤波是一种非线性平滑滤波方法,基本思想为采用一个含奇数点的滑动窗口,对该窗口中的灰度值进行排序,然后将其中值赋值给中心点。系统截面图像重构方法为首先对数据进行三次样条插值处理,然后进行中值滤波处理。In order to make the image smoother and closer to the real image, in this embodiment, the median filter algorithm is used to smooth the image. Median filtering is a nonlinear smoothing filtering method. The basic idea is to use a sliding window with an odd number of points, sort the gray values in the window, and then assign the median value to the center point. The system cross-section image reconstruction method is to first perform cubic spline interpolation on the data and then perform median filtering.
本实施例中,成像显示采用白色代表气体,蓝色代表液体的显示方案,蓝色的深浅由测量值大小决定,测量值越大,蓝色越深。显示功能主要利用cv2模块进行开发实现,cv2是opencv的C++命名空间名称,用于调用C++开发的opencv的接口。成像显示具体流程如下:先调用reshape()函数将数据转化为灰度图像,然后调用cv2模块中resize()函数完成图像缩放,再然后调cv2模块中颜色空间转换函数cvtColor()函数和通道拆分函数split()函数完成蓝色分量提取,最后利用QLabel中setPixmap()函数完成图像显示。In this embodiment, the imaging display adopts a display scheme in which white represents gas and blue represents liquid. The depth of blue is determined by the measured value. The larger the measured value, the deeper the blue. The display function is mainly developed and implemented using the cv2 module. cv2 is the C++ namespace name of opencv, which is used to call the opencv interface developed in C++. The specific process of imaging display is as follows: first call the reshape() function to convert the data into a grayscale image, then call the resize() function in the cv2 module to complete the image scaling, then call the color space conversion function cvtColor() function and the channel splitting function split() function in the cv2 module to complete the blue component extraction, and finally use the setPixmap() function in QLabel to complete the image display.
本实施例中,截面成像显示分为原始图像和重构图像两种显示。对于原始图像显示,将上述显示流程中resize()函数的interpolation参数赋值为cv2.INTERSECT_NONE。对于重构图像显示,将上述显示流程中resize()函数的interpolation参数赋值为表示三次样条插值法的cv2.INTER_CUBIC,并调动cv2模块中medianBlur()函数完成中值滤波处理,重构图像显示流程图如图11所示。成像显示之前需要对测量数据进行阈值处理,适当的阈值处理可更好地描述管道横截面中气液两相分布。下面将用一帧测量数据对阈值处理和重构图像处理过程进行说明,测量数据为利用抽水泵的圆形管道将液体从丝网中间持续流过时的测量数据,理论上成像图片中液相区域应近似圆形。In this embodiment, the cross-sectional imaging display is divided into two types of displays: original image and reconstructed image. For the original image display, the interpolation parameter of the resize() function in the above display process is assigned to cv2.INTERSECT_NONE. For the reconstructed image display, the interpolation parameter of the resize() function in the above display process is assigned to cv2.INTER_CUBIC representing the cubic spline interpolation method, and the medianBlur() function in the cv2 module is called to complete the median filtering process. The reconstructed image display flow chart is shown in Figure 11. Before imaging display, the measurement data needs to be thresholded. Appropriate thresholding can better describe the gas-liquid two-phase distribution in the cross section of the pipeline. The following will use a frame of measurement data to illustrate the thresholding and reconstructed image processing process. The measurement data is the measurement data when the liquid is continuously flowing through the middle of the screen using the circular pipe of the water pump. In theory, the liquid phase area in the imaging picture should be approximately circular.
本实施例中,为使用户更加准确地掌握管道截面气液相态信息,因此实现了截面含气率显示功能。截面含气率是指管道某一截面上气相所占面积与该截面总面积之间的比值。在实际计算过程中,为了避免丝网传感器的加工误差和边界效应的影响,往往需要对测量的电压值进行校对处理,求得局部电导率分布情况,从而得到局部含气率。In this embodiment, in order to enable users to more accurately grasp the gas-liquid phase information of the pipeline cross section, the cross-sectional gas content display function is implemented. The cross-sectional gas content refers to the ratio between the area occupied by the gas phase on a certain cross section of the pipeline and the total area of the cross section. In the actual calculation process, in order to avoid the influence of the processing error and boundary effect of the wire mesh sensor, it is often necessary to calibrate the measured voltage value to obtain the local conductivity distribution, thereby obtaining the local gas content.
最常用的校准方法是利用管道内完全充满气体和液体两种情况下测两的电压值进行校对。具体实现过程,当管道内充满液体时,电导率是最大,指定一个单位值,当管道内全部气体时,电导率是最小,可以将其赋值为零,记录两点的电压值。理论表达式如公式(2)。The most commonly used calibration method is to use the voltage values measured at two points when the pipe is completely filled with gas and liquid for calibration. In the specific implementation process, when the pipe is full of liquid, the conductivity is maximum and a unit value is assigned. When the pipe is full of gas, the conductivity is minimum and can be assigned a value of zero. The voltage values at the two points are recorded. The theoretical expression is shown in formula (2).
其中,i,j表示坐标位置(丝网的网格点编号),k表示第几帧数据,ε(i,j,k)表示第k帧数据中坐标为(i,j)的局部含气率,c(i,j,k)表示第k帧数据中坐标为(i,j)的电导率,cgas(i,j)表示管道内充满气体的电导率(通常为0),cliquid(i,j)表示管道内充满液体的电导率。由于测量的电压与电导率线性相关,因此公式2转换为公式3。Among them, i,j represent the coordinate position (grid point number of the wire mesh), k represents the frame of data, ε(i,j,k) represents the local gas content at the coordinate (i,j) in the k-th frame of data, c(i,j,k) represents the conductivity at the coordinate (i,j) in the k-th frame of data, c gas (i,j) represents the conductivity of the pipe filled with gas (usually 0), and c liquid (i,j) represents the conductivity of the pipe filled with liquid. Since the measured voltage is linearly related to the conductivity,
其中,ugas(i,j)表示当坐标为(i,j)的测点全部为气体流过时的标定电压值,uliquid(i,j)表示当坐标为(i,j)的测点全部为液体流过时的标定电压值,u(i,j,k)表示第k帧数据中坐标为(i,j)的测点的电压值。利用公式(3)可将电压值矩阵转化为气相含气率矩阵。Among them, u gas (i, j) represents the calibrated voltage value when all the measuring points with coordinates (i, j) are gas flowing through, u liquid (i, j) represents the calibrated voltage value when all the measuring points with coordinates (i, j) are liquid flowing through, and u (i, j, k) represents the voltage value of the measuring point with coordinates (i, j) in the kth frame data. The voltage value matrix can be converted into the gas phase gas fraction matrix using formula (3).
本实施例中,使用16x16的丝网传感器,每帧测量数包含有256个测量值,由于该传感器电极分布在圆形管道截面中,48个交叉点位于横截面之外,只有208交叉点的测量值为有效测量值。在计算管道截面含气率参数时,需要考虑到测点位于中心区域还是边界区域,不同区域应给不同的权重值。根据公式(4)可计算出截面含气率。In this embodiment, a 16x16 wire mesh sensor is used, and each frame of measurement data contains 256 measurement values. Since the sensor electrodes are distributed in the circular pipe cross section, 48 intersections are located outside the cross section, and only the measurement values of 208 intersections are valid measurement values. When calculating the gas content parameter of the pipe cross section, it is necessary to consider whether the measurement point is located in the central area or the boundary area, and different weight values should be given to different areas. The cross-sectional gas content can be calculated according to formula (4).
其中,ai,j表示坐标为(i,j)的测点的测量值对应的权重值,其计算是基于简单的几何面积的计算,其公式为公式(5)。Wherein, a i,j represents the weight value corresponding to the measurement value of the measuring point with coordinates (i,j), and its calculation is based on simple geometric area calculation, and its formula is formula (5).
其中,Asensor表示圆形截面的总面积,Ai,j表示εi,j对应的有效面积。测量值的区域示意图如图12所示,图12中的阴影部分表示该点对应测量值的有效区域,当测点位于中心区域时Ai,j=Δx·Δy,当测点位于边界区域时Ai,j<Δx·Δy,由于传感器中同层相邻电极丝间距为3mm,因此Δx=Δy=3mm。Wherein, A sensor represents the total area of the circular cross section, and A i,j represents the effective area corresponding to ε i,j . The schematic diagram of the measurement area is shown in FIG12. The shaded part in FIG12 represents the effective area corresponding to the measurement value of the point. When the measurement point is located in the center area, A i,j = Δx·Δy, and when the measurement point is located in the boundary area, A i,j < Δx·Δy. Since the distance between adjacent electrode wires in the same layer in the sensor is 3 mm, Δx = Δy = 3 mm.
本实施例中,将相应的处理功能整合到电脑端软件后台处理函数当中,进行截面含气率的计算,实现含气率显示功能。实现过程为:先通过recvfrom()函数获取嵌入式端采集到的截面相态信息数据,然后对获取数据进行解析和截面含气率参数提取操作,最后将截面含气率参数更新到UI界面上。截面含气率显示流程图如图13所示。In this embodiment, the corresponding processing function is integrated into the background processing function of the computer software to calculate the cross-sectional gas content and realize the gas content display function. The implementation process is: first, the cross-sectional phase information data collected by the embedded end is obtained through the recvfrom() function, and then the obtained data is parsed and the cross-sectional gas content parameter extraction operation is performed, and finally the cross-sectional gas content parameter is updated to the UI interface. The cross-sectional gas content display flow chart is shown in Figure 13.
本实施例中,为了方便用户对历史数据的查看和分析,因此在电脑端软件实现了历史数据显示功能。主要有表格和视图方式显示两种功能。其中,视图中正视图与侧视图借助数据投影方法重构出测量管道的视图信息。正视图和侧视图只显示气泡相对于管壁的位置,不还原真实气泡的大小,图片中气泡可能会拉长或压扁。In this embodiment, in order to facilitate users to view and analyze historical data, the historical data display function is implemented in the computer software. There are mainly two functions: table and view display. Among them, the front view and side view in the view reconstruct the view information of the measurement pipeline with the help of data projection method. The front view and side view only show the position of the bubble relative to the pipe wall, and do not restore the real size of the bubble. The bubble in the picture may be elongated or flattened.
本实施例中,数据投影方法是基于测量值的行列最值进行投影的方法。对正视图投影而言,选用测量值的列最小值进行投影。投影算法的具体流程为:首先从历史数据文件中读取一帧数据,将数据转为16×16矩阵,并提取每列中有效测量值的最小值,得到一个16×1矩阵,然后再读取一帧数据,对数据进行同样的处理,并将两次投影结果进行拼接得到一个16×2矩阵,再然后继续读取、投影、拼接等操作处理,直到最后一帧数据为止。以8×8测点的丝网传感器测量数据为例,一帧的数据投影示意图如图14所示,其中“0”和“1”替代测量电压值。侧视图显示原理与正视图显示原理类似,不同之处是将测量值矩阵的行数据进行投影处理,这里就不再阐述。In this embodiment, the data projection method is a method of projecting based on the maximum values of the rows and columns of the measured values. For the front view projection, the minimum value of the column of the measured value is selected for projection. The specific process of the projection algorithm is: first, read a frame of data from the historical data file, convert the data into a 16×16 matrix, and extract the minimum value of the valid measured value in each column to obtain a 16×1 matrix, and then read another frame of data, perform the same processing on the data, and splice the two projection results to obtain a 16×2 matrix, and then continue to read, project, splice and other operations until the last frame of data. Taking the wire mesh sensor measurement data of 8×8 measuring points as an example, a schematic diagram of the data projection of a frame is shown in Figure 14, where "0" and "1" replace the measured voltage value. The side view display principle is similar to the front view display principle, the difference is that the row data of the measurement value matrix is projected, which will not be explained here.
本实施例中,一种气液两相流监测方法,采用如本实施例中所述的气液两相流监测系统,其方法包括以下步骤:In this embodiment, a gas-liquid two-phase flow monitoring method is provided, using the gas-liquid two-phase flow monitoring system as described in this embodiment, and the method comprises the following steps:
步骤1、将丝网传感器安装到垂直于流动方向的截面上;Step 1: Install the wire mesh sensor on the section perpendicular to the flow direction;
步骤2、激励模块采取循环扫描的策略,每次顺序向丝网传感器激励端的一个电极丝发送双极性电压激励信号,接收端所有响应信号经电流向电压转化、电压放大和AD转化处理,即完成丝网传感器中一个电极丝的数据采集;然后再次激励、接收、处理,依次类推,直到完成丝网传感器中所有电极丝的激励,由此得到一个能反映出被测流道截面处电导率的二维分布的电压矩阵,即得到一个完整截面点的相态信息,并将相态信息通过通信模块实时发送给电脑端;Step 2: The excitation module adopts a cyclic scanning strategy, and sends a bipolar voltage excitation signal to an electrode wire at the excitation end of the wire mesh sensor in sequence each time. All response signals at the receiving end are converted from current to voltage, amplified, and processed by AD conversion, thus completing the data acquisition of one electrode wire in the wire mesh sensor; then excitation, receiving, and processing are performed again, and so on, until the excitation of all electrode wires in the wire mesh sensor is completed, thereby obtaining a voltage matrix that can reflect the two-dimensional distribution of the conductivity at the cross section of the measured flow channel, that is, obtaining the phase state information of a complete cross-sectional point, and sending the phase state information to the computer end in real time through the communication module;
步骤3、电脑端对接收到的每一个完整截面点的相态信息进行数据解析、数据保存和截面数据成像处理,显示流场截面的两相分布特性,并计算和显示截面含气率。Step 3: The computer performs data analysis, data storage and cross-sectional data imaging processing on the phase state information of each complete cross-sectional point received, displays the two-phase distribution characteristics of the flow field cross section, and calculates and displays the cross-sectional gas content.
现在大多数气液两相流监测是基于“软场”测量,电场分布不均,图像重构算法复杂,成像精度低。而基于“硬场”的丝网传感器测量方法是测量气液两相流接触传感器瞬间的相态分布情况,具有结构简单、图像重构算法简单,成像精度高等优势,对气液两相流的可视化测量具有重要意义。能够满足因工业领域的需求不断提升而提高的对系统采样率和成像精度的要求。At present, most gas-liquid two-phase flow monitoring is based on "soft field" measurement, with uneven electric field distribution, complex image reconstruction algorithm and low imaging accuracy. The wire mesh sensor measurement method based on "hard field" measures the phase distribution of gas-liquid two-phase flow at the moment of contact with the sensor. It has the advantages of simple structure, simple image reconstruction algorithm and high imaging accuracy, which is of great significance for the visual measurement of gas-liquid two-phase flow. It can meet the requirements for system sampling rate and imaging accuracy that are increasing due to the increasing needs of the industrial field.
以下对本装置的采集速度、稳定性两个性能指标进行测试:The following tests are conducted on the two performance indicators of the device: acquisition speed and stability:
①采集速度测试①Acquisition speed test
采集速度测试是对嵌入式端发送数据进行统计并得到采集速度的测试。采样速度统计表如表1所示。The acquisition speed test is to collect statistics on the data sent by the embedded end and obtain the acquisition speed. The sampling speed statistics table is shown in Table 1.
表1采集速度统计表:Table 1 Collection speed statistics:
从表中数据看出,系统平均采样速度为625帧/s,采样速度达到预期要求。From the data in the table, we can see that the average sampling speed of the system is 625 frames/s, and the sampling speed meets the expected requirements.
②运行稳定性测试② Operation stability test
系统可在多次为期24小时的测试下稳定工作,在连续运行过程中,能够按照设置的系统参数正常完成对流场截面相态信息获取、传输、处理、储存。The system can work stably under multiple 24-hour tests. During continuous operation, it can normally complete the acquisition, transmission, processing and storage of flow field cross-section phase information according to the set system parameters.
系统参数:System parameters:
本实施例中,为了验证系统成像效果实验,根据相态分布是否变化,制定了静态测量和动态测量两种测量方案。In this embodiment, in order to verify the imaging effect experiment of the system, two measurement schemes, static measurement and dynamic measurement, are formulated according to whether the phase distribution changes.
静态测量是指丝网传感器位于恒定不变的气液两相分布环境中的测量。控制液体的高度刚好到丝网,管道倾斜45度,使丝网传感器一半区域侵入水中而另外一半区域露在空气中,形成一个静态的气液两相分布环境。Static measurement refers to the measurement of the wire mesh sensor in a constant gas-liquid two-phase distribution environment. The height of the liquid is controlled to just reach the wire mesh, and the pipeline is tilted 45 degrees, so that half of the wire mesh sensor area is immersed in water and the other half is exposed to the air, forming a static gas-liquid two-phase distribution environment.
动态测量是指丝网传感器位于不断变化的气液两相分布环境中的测量,分为两种测试实验:一种采用抽水泵循环向丝网注入液体的实验环境下,利用液体刚接触丝网传感器时的测量数据进行图像重构;另外一种用打气泵不断的向管道提供流动气泡的环境下,利用气泡刚接触丝网传感器时的测量数据进行图像重构。在实验之前,在实验段为全液体环境下和全气体环境下分别完成一组数据测量,该数据用于测量值进行校正处理,以避免丝网传感器的边界效应和加工误差的影响。Dynamic measurement refers to the measurement of the screen sensor in a constantly changing gas-liquid two-phase distribution environment. There are two types of test experiments: one is to use a water pump to circulate liquid into the screen, and the image is reconstructed using the measurement data when the liquid just contacts the screen sensor; the other is to use an air pump to continuously provide flowing bubbles to the pipeline, and the image is reconstructed using the measurement data when the bubbles just contact the screen sensor. Before the experiment, a set of data measurements were completed in the full liquid environment and the full gas environment respectively. The data is used to calibrate the measured values to avoid the influence of the screen sensor's boundary effect and processing errors.
对于静态测量,采用实验段沿着电极丝方向倾斜45度的方法形成一个静态的气液两相分布环境。选取不同测试液体进行实验,实验液体包括一级去离子水、二级去离子水、三级去离子水、自来水。当测试液体为一级去离子时,静态测量成像效果图如图15所示,图中蓝色部分表示液体,白色部分表示气体。实验数据如表2所示。For static measurement, a static gas-liquid two-phase distribution environment is formed by tilting the
表2:Table 2:
可从以上测试结果看出,系统能够对电导率范围为0.1-125μS/cm内的液体进行测量;在测量实验室中,成像结果中气液两相的分界明显,分界线角度与倾斜角度基本一致,因此,系统能够对检测范围内的气液进行较好的两相区分,故能够满足设计要求。It can be seen from the above test results that the system can measure liquids with a conductivity range of 0.1-125μS/cm; in the measurement laboratory, the boundary between the gas and liquid phases is obvious in the imaging results, and the angle of the boundary line is basically consistent with the inclination angle. Therefore, the system can better distinguish the gas and liquid phases within the detection range, so it can meet the design requirements.
对于动态测量,在实验中,利用抽水泵循环向丝网传感器注入液体,通过不断移动管道位置和挤压管道来改变水柱在丝网传感器的接触区域,将接触区域与电脑端软件截面成像中液体形状和位置进行比较。经测试,水柱接触丝网的位置与成像图片中液体位置能够实时对应起来,成像图片中蓝色图形形状随着水柱形状变化而变化。For dynamic measurement, in the experiment, a water pump was used to circulate liquid into the wire mesh sensor, and the contact area of the water column on the wire mesh sensor was changed by constantly moving the pipe position and squeezing the pipe, and the contact area was compared with the liquid shape and position in the cross-sectional imaging of the computer software. After testing, the position where the water column contacted the wire mesh and the position of the liquid in the imaging picture can be matched in real time, and the shape of the blue figure in the imaging picture changes with the shape of the water column.
从测试结果可以看出,截面成像结果能够较好地反映出水柱刚接触丝网传感器瞬间的真实情况。通过打气泵产生不同尺寸的单个气泡,并提取气泡刚接触传感器的测量数据,并将数据用于重构显示。系统使用相机记录进入丝网传感器前的气泡照片,通过实物照片能够测量气泡相对于管道直径的比例,用于截面成像图片中气泡尺寸比较,验证系统测量数据的成像效果。在实验中,测试液体为一级去离子水,气泡速度最大不超过0.5m/s。经测试,成像图片中气泡形状与照片中气泡形状近似。在不同气泡尺寸下截面成像效果如图16所示。图中蓝色部分表示液体,白色部分表示气体。It can be seen from the test results that the cross-sectional imaging results can better reflect the real situation when the water column just contacts the wire mesh sensor. Single bubbles of different sizes are generated by the air pump, and the measurement data of the bubbles just contacting the sensor are extracted, and the data is used to reconstruct the display. The system uses a camera to record the photos of the bubbles before entering the wire mesh sensor. The proportion of the bubbles to the pipe diameter can be measured through the real photos, which is used to compare the bubble size in the cross-sectional imaging pictures and verify the imaging effect of the system measurement data. In the experiment, the test liquid is first-grade deionized water, and the maximum bubble speed does not exceed 0.5m/s. After testing, the shape of the bubbles in the imaging picture is similar to the shape of the bubbles in the photo. The cross-sectional imaging effect under different bubble sizes is shown in Figure 16. The blue part in the figure represents liquid and the white part represents gas.
从实验能够看出,在运动单气泡实验环境下,截面成像结果能够较好地反映出气泡接触传感器瞬间的真实情况,白色区域形状与真实气泡形状近似,白色区域大小随着气泡大小变化而变化,故系统能够满足设计要求。It can be seen from the experiment that in the moving single bubble experimental environment, the cross-sectional imaging results can better reflect the actual situation at the moment the bubble contacts the sensor. The shape of the white area is similar to the shape of the real bubble, and the size of the white area changes with the size of the bubble, so the system can meet the design requirements.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010451803.4A CN111610229B (en) | 2020-05-25 | 2020-05-25 | Gas-liquid two-phase flow monitoring device, system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010451803.4A CN111610229B (en) | 2020-05-25 | 2020-05-25 | Gas-liquid two-phase flow monitoring device, system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111610229A CN111610229A (en) | 2020-09-01 |
CN111610229B true CN111610229B (en) | 2023-06-09 |
Family
ID=72196385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010451803.4A Active CN111610229B (en) | 2020-05-25 | 2020-05-25 | Gas-liquid two-phase flow monitoring device, system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111610229B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378980B (en) * | 2020-11-12 | 2021-09-21 | 上海交通大学 | Correction system and method for silk screen probe concentration detection device |
CN113125524B (en) * | 2021-04-19 | 2023-01-20 | 上海交通大学 | Single-layer net type silk screen sensor |
CN113984839A (en) * | 2021-11-02 | 2022-01-28 | 上海交通大学 | A Novel Capacitive Wire Mesh Sensor for High Conductivity Fluid Measurement |
CN114689667B (en) * | 2022-03-28 | 2023-04-07 | 上海交通大学 | Method for measuring intersection mixing characteristic of two-phase flowing liquid in rod bundle channel based on silk screen |
CN118329121A (en) * | 2024-05-16 | 2024-07-12 | 中国石油大学(北京) | Measuring device, method, equipment and medium for determining parameters of full-flow type flow field |
CN118590066B (en) * | 2024-08-06 | 2025-01-14 | 比亚迪股份有限公司 | Multi-channel acquisition circuit, multi-channel acquisition method, chip and vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007004822A1 (en) * | 2006-01-31 | 2007-08-09 | NGK Spark Plug Co., Ltd., Nagoya | Liquid state detection sensor |
CN101609066A (en) * | 2009-07-03 | 2009-12-23 | 天津大学 | A silk screen-based electromagnetic sensing imaging system and method |
-
2020
- 2020-05-25 CN CN202010451803.4A patent/CN111610229B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007004822A1 (en) * | 2006-01-31 | 2007-08-09 | NGK Spark Plug Co., Ltd., Nagoya | Liquid state detection sensor |
CN101609066A (en) * | 2009-07-03 | 2009-12-23 | 天津大学 | A silk screen-based electromagnetic sensing imaging system and method |
Non-Patent Citations (3)
Title |
---|
俞斌.基于丝网传感器的气水两相流可视化测量方法研究.《优秀硕士学位论文全文数据库》.2019,(第04期), * |
基于丝网传感器的气水两相流可视化测量方法研究;俞斌;《优秀硕士学位论文全文数据库》;20190415(第04期);摘要,第1-94页 * |
基于丝网传感器的气水两相流流型转换测量;孙圆圆;《传感技术学报》;20200315;第33卷(第03期);第364-369 * |
Also Published As
Publication number | Publication date |
---|---|
CN111610229A (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111610229B (en) | Gas-liquid two-phase flow monitoring device, system and method | |
CN103926276B (en) | A kind of online oil liquid abrasive grain monitoring device and detection method | |
CN105911107A (en) | Standing tree crack detecting device and method based on resistance tomography | |
CN108184110B (en) | Image definition measuring device and method for medical display | |
Zhen et al. | Design and evaluation of an FFT-based space-time image velocimetry (STIV) for time-averaged velocity measurement | |
CN107449485A (en) | Liquid level image identification method | |
CN205230140U (en) | Image boundary detection device based on FPGA and sobel operator | |
CN110243870B (en) | Water content measuring method based on dielectric loss tangent tomography technology | |
CN110501587B (en) | Radon inverse transformation capacitance tomography method based on power line distribution | |
CN110210359B (en) | Optimizing Method of Velocity Measurement in Spatial Filter Velocimetry | |
CN111462077A (en) | Method for characterizing biological tissues by utilizing nonlinear information entropy | |
CN1241032C (en) | Resistance tomography data acquisition system based on bipolar pulse current drive | |
CN117705754A (en) | Textile polyester fiber content online detection method based on hyperspectral imaging | |
CN117554254A (en) | Real-time monitoring system for resistance chromatography liquid-solid two-phase flow scanning imaging of dredger | |
CN114544708B (en) | FPGA-based deep learning electrical impedance imaging system and imaging evaluation method | |
CN117237667A (en) | A robust high-resolution geological body boundary identification method based on potential field data | |
Negahdaripour et al. | Robust optical flow estimation using underwater color images | |
Ma et al. | Research on single-frame super-resolution reconstruction algorithm for low resolution cell images based on convolutional neural network | |
CN107909559B (en) | Image denoising fusion method and system based on camera high and low data | |
CN118196181B (en) | Prefabricated part surface honeycomb pitted surface area detection method based on image processing | |
Wiranata et al. | Embedded System for Image Reconstruction in Electrical Resistance Tomography | |
CN118982595A (en) | Multiphase flow visualization system and method based on dual-modal electrical tomography | |
CN117129530A (en) | Multi-frequency capacitively coupled electrical impedance tomography systems and methods | |
CN209559973U (en) | A Frequency Characteristic Tester Based on DDS Technology | |
CN103869129B (en) | A kind of method and its oscillograph for calculating diversity factor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |