CN111610172B - A dual-response optical probe rhodamine B derivative for the detection of hydrazine and cyanide in water samples - Google Patents
A dual-response optical probe rhodamine B derivative for the detection of hydrazine and cyanide in water samples Download PDFInfo
- Publication number
- CN111610172B CN111610172B CN202010452610.0A CN202010452610A CN111610172B CN 111610172 B CN111610172 B CN 111610172B CN 202010452610 A CN202010452610 A CN 202010452610A CN 111610172 B CN111610172 B CN 111610172B
- Authority
- CN
- China
- Prior art keywords
- probe
- dicyano
- fluorescence emission
- solution
- dihydro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 97
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 title claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 230000003287 optical effect Effects 0.000 title claims abstract description 16
- 230000004044 response Effects 0.000 title claims abstract description 12
- 230000009977 dual effect Effects 0.000 title claims abstract description 9
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 title 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims abstract description 122
- 239000005711 Benzoic acid Substances 0.000 claims abstract description 61
- 235000010233 benzoic acid Nutrition 0.000 claims abstract description 61
- 230000008859 change Effects 0.000 claims abstract description 11
- 238000002189 fluorescence spectrum Methods 0.000 claims description 26
- 239000000243 solution Substances 0.000 claims description 24
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 238000000862 absorption spectrum Methods 0.000 claims description 4
- 239000002351 wastewater Substances 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims 4
- 239000011550 stock solution Substances 0.000 claims 3
- 239000008055 phosphate buffer solution Substances 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000000295 emission spectrum Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- 239000007850 fluorescent dye Substances 0.000 abstract description 7
- 230000005284 excitation Effects 0.000 abstract description 4
- 125000005597 hydrazone group Chemical group 0.000 abstract 1
- 238000005935 nucleophilic addition reaction Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000011084 recovery Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 3
- 235000005811 Viola adunca Nutrition 0.000 description 3
- 240000009038 Viola odorata Species 0.000 description 3
- 235000013487 Viola odorata Nutrition 0.000 description 3
- 235000002254 Viola papilionacea Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000001506 fluorescence spectroscopy Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000001819 mass spectrum Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- -1 6-(diethylamino)-2,3-dihydro-1H-xanthene Chemical compound 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000004896 high resolution mass spectrometry Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000037384 skin absorption Effects 0.000 description 1
- 231100000274 skin absorption Toxicity 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 229940035637 spectrum-4 Drugs 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6419—Excitation at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
技术领域Technical field
发明涉及一种双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对水样中肼和氰根的检测。The invention relates to a dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid on water samples Detection of hydrazine and cyanide.
背景技术Background technique
肼和氰根作为工业生产中两个重要的角色,在农药、合成纤维、除草剂、塑料制造、树脂工业等化工、农业中得到了广泛的应用。与它们的用途形成鲜明对比的是,肼和氰化物对机体均能表现出有害作用,很容易通过口腔和皮肤吸收被人体吸收,从而对中枢神经、心脏、内分泌和代谢系统造成损害。同时,由于其良好的水溶性,社会环境安全也因此面临着威胁和挑战。为了防止肼和氰化物对人们身体健康及周边的生态环境造成危害,世界各国对环境中肼和氰化物的限量值都有严格的规定。因此,建立高效、高灵敏度、高选择性的检测联氨和氰化物的方法具有重要意义。As two important players in industrial production, hydrazine and cyanide have been widely used in chemical industry and agriculture such as pesticides, synthetic fibers, herbicides, plastic manufacturing, and resin industries. In sharp contrast to their uses, both hydrazine and cyanide can exhibit harmful effects on the body and are easily absorbed into the body through oral and skin absorption, causing damage to the central nervous system, heart, endocrine and metabolic systems. At the same time, due to its good water solubility, social and environmental safety are also facing threats and challenges. In order to prevent hydrazine and cyanide from causing harm to people's health and the surrounding ecological environment, countries around the world have strict regulations on the limit values of hydrazine and cyanide in the environment. Therefore, it is of great significance to establish efficient, highly sensitive, and highly selective methods for detecting hydrazine and cyanide.
目前所报道的肼和氰化物的检测方法主要有:色谱、滴定和电化学分析等方法,这些方法中在不同程度上解决了肼和氰化物的检测问题,但也在检测灵敏度、操作条件的繁琐或仪器的昂贵等方面分别存在着不同的缺陷。与上述方法相比,荧光探针因其高选择性、高灵敏度、易操作、无损伤和对生物环境的适用性而受到广泛关注。然而,如果分别去设计和合成肼或氰化物的荧光探针,无疑会耗费更多的财力和物力,同时对环境也不友好。基于此,本发明建立了一种高效、选择性好及灵敏度高的荧光分析方法,对环境水样中的肼和氰化物进行监测,不但可以提高检测效率和降低探针合成成本,并且达到控制环境污染的目的。The currently reported detection methods for hydrazine and cyanide mainly include: chromatography, titration, electrochemical analysis and other methods. These methods solve the detection problems of hydrazine and cyanide to varying degrees, but they also have problems with detection sensitivity and operating conditions. There are different drawbacks in terms of complexity or expensive instruments. Compared with the above methods, fluorescent probes have received widespread attention due to their high selectivity, high sensitivity, easy operation, non-damage, and applicability to biological environments. However, if we design and synthesize fluorescent probes for hydrazine or cyanide respectively, it will undoubtedly consume more financial and material resources, and it will also be unfriendly to the environment. Based on this, the present invention has established an efficient, selective and sensitive fluorescence analysis method to monitor hydrazine and cyanide in environmental water samples. It can not only improve detection efficiency and reduce probe synthesis costs, but also achieve control environmental pollution purposes.
现有的荧光探针技术检测N2H4和CN-,需要分别设计并合成两种不同的荧光探针,这样不仅消耗更多的时间和成本,也会对环境造成污染。本发明克服了现有技术的不足之处。利用简单反应合成了双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸。该探针可以基于不同的反应机理和溶剂比例分别与N2H4和CN-发生反应,实现不同荧光信号下的检测。探针与N2H4反应后生成(Z)-2-(6-(二乙氨基)-4-(亚联氨甲基)-2,3-二氢-1H-氧杂蒽)苯甲酸,其紫外吸收最大波长在623nm处显著降低,在420nm处略微增强,荧光发射比值I565/I645随N2H4浓度的增加而增强。探针与CN-发生加成反应后的产物在470nm处的发射荧光显著增强,荧光发射值随CN-浓度的增加而增强。本发明用于废水样品中N2H4和CN-含量的分别测定,基于荧光发射强度比值I565/I645与N2H4浓度以及470nm处荧光增强与CN-浓度的线性关系,分别计算出最低检测限为80nM和0.33μM,能够对所检测环境的安全性进行合理评价。Existing fluorescent probe technology detects N 2 H 4 and CN - , which requires the design and synthesis of two different fluorescent probes respectively, which not only consumes more time and cost, but also causes pollution to the environment. The invention overcomes the shortcomings of the prior art. The dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid was synthesized using a simple reaction. The probe can react with N 2 H 4 and CN - respectively based on different reaction mechanisms and solvent ratios to achieve detection under different fluorescence signals. The probe reacts with N 2 H 4 to generate (Z)-2-(6-(diethylamino)-4-(hydrazidinomethyl)-2,3-dihydro-1H-xanthene)benzoic acid , its maximum UV absorption wavelength is significantly reduced at 623nm and slightly enhanced at 420nm. The fluorescence emission ratio I 565 / I 645 increases with the increase in N 2 H 4 concentration. The emission fluorescence of the product after the addition reaction of the probe and CN - is significantly enhanced at 470 nm, and the fluorescence emission value increases with the increase of CN - concentration. The invention is used to separately measure the N 2 H 4 and CN - contents in wastewater samples. Based on the linear relationship between the fluorescence emission intensity ratio I 565 / I 645 and the N 2 H 4 concentration and the fluorescence enhancement at 470 nm and the CN - concentration, the calculations are respectively The lowest detection limits were found to be 80nM and 0.33μM, which enables a reasonable evaluation of the safety of the detected environment.
本发明合成的双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸光学性质稳定,选择性好,灵敏度高,是一种快捷简单的检测阱和氰根的方法。The dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid synthesized by the invention has stable optical properties , has good selectivity and high sensitivity, and is a quick and simple method for detecting traps and cyanogens.
发明内容Contents of the invention
本发明的目的是:一种双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对水样中N2H4和CN-的检测。The object of the invention is: a dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzene Detection of N 2 H 4 and CN - in water samples by formic acid.
本发明的目的是通过以下技术方案来实现:The object of the present invention is achieved through the following technical solutions:
光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的合成:Synthesis of optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid:
将0.403g 2-(6-(二乙氨基)-4-甲酰基-2,3-二氢-1H-氧杂蒽)苯甲酸和0.08g丙二腈溶解在10mL乙腈中,然后滴加5-7滴哌啶,在氮气保护下回流6个小时。反应结束后,将混合液旋干,得到的固体溶于二氯甲烷。然后用水洗三次,再用无水硫酸钠干燥,最后利用柱层析进行分离提纯,洗脱液比例为二氯甲烷/甲醇=50:1,得到蓝紫色的固体0.288g,产率为64%。Dissolve 0.403g 2-(6-(diethylamino)-4-formyl-2,3-dihydro-1H-xanthene)benzoic acid and 0.08g malononitrile in 10mL acetonitrile, then add 5 drops -7 drops of piperidine, reflux under nitrogen protection for 6 hours. After the reaction is completed, the mixture is spun dry, and the solid obtained is dissolved in methylene chloride. Then wash with water three times, then dry with anhydrous sodium sulfate, and finally use column chromatography for separation and purification. The eluent ratio is methylene chloride/methanol = 50:1 to obtain 0.288g of blue-violet solid, with a yield of 64%. .
光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的合成结构式如图1所示。The synthetic structural formula of the optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid is shown in Figure 1.
本发明的优点和产生的有益效果:Advantages and beneficial effects of the present invention:
如果用现有的荧光探针技术去检测N2H4和CN-,则分别需要设计并合成两种不同的荧光探针,这样不仅会对环境造成污染,也会消耗更多的时间和成本。本发明克服了现有技术的不足之处。利用简单有机反应合成了双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸。该探针可以基于不同的反应机理和溶剂比例分别与N2H4和CN-发生反应,图2,实现不同荧光信号下的检测。探针与N2H4反应后生成(Z)-2-(6-(二乙氨基)-4-(亚联氨甲基)-2,3-二氢-1H-氧杂蒽)苯甲酸,其紫外吸收最大波长在623nm处显著降低,在420nm处略微增强,荧光发射比值I565/I645随N2H4浓度的增加而增强。探针与CN-发生加成反应后的产物在470nm处的发射荧光显著增强,荧光发射值随CN-浓度的增加而增强。本发明用于废水样品中N2H4和CN-含量的分别测定,基于荧光发射强度比值I565/I645与N2H4浓度以及470nm处荧光增强与CN-浓度的线性关系,分别计算出最低检测限为80nM和0.33μM,能够对所检测环境的安全性进行合理评价。本发明合成的双响应光学探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸光学性质稳定,选择性好,灵敏度高,是一种快捷简单的检测阱和氰根的方法。If existing fluorescent probe technology is used to detect N 2 H 4 and CN - , two different fluorescent probes need to be designed and synthesized respectively, which will not only pollute the environment, but also consume more time and cost. . The invention overcomes the shortcomings of the prior art. A dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid was synthesized using a simple organic reaction. The probe can react with N 2 H 4 and CN - respectively based on different reaction mechanisms and solvent ratios, Figure 2, to achieve detection under different fluorescence signals. The probe reacts with N 2 H 4 to generate (Z)-2-(6-(diethylamino)-4-(hydrazidinomethyl)-2,3-dihydro-1H-xanthene)benzoic acid , its maximum UV absorption wavelength is significantly reduced at 623nm and slightly enhanced at 420nm. The fluorescence emission ratio I 565 / I 645 increases with the increase in N 2 H 4 concentration. The emission fluorescence of the product after the addition reaction of the probe and CN - is significantly enhanced at 470 nm, and the fluorescence emission value increases with the increase of CN - concentration. The invention is used to separately measure the N 2 H 4 and CN - contents in wastewater samples. Based on the linear relationship between the fluorescence emission intensity ratio I 565 / I 645 and the N 2 H 4 concentration and the fluorescence enhancement at 470 nm and the CN - concentration, the calculations are respectively The lowest detection limits were found to be 80nM and 0.33μM, which enables a reasonable evaluation of the safety of the detected environment. The dual-response optical probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid synthesized by the invention has stable optical properties , has good selectivity and high sensitivity, and is a quick and simple method for detecting traps and cyanogens.
附图说明Description of drawings
图1为2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的合成图。Figure 1 is a synthesis diagram of 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid.
图2为所合成的2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与N2H4和CN-的反应机理图。Figure 2 shows the synthesis of 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with N 2 H 4 and Reaction mechanism diagram of CN- .
图3为所合成的2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸在氘代氯仿中的1H NMR谱图。Figure 3 shows the results of the synthesized 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid in deuterated chloroform. 1H NMR spectrum.
图4为所合成的2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸在氘代二甲基亚砜中的13C NMR谱图。Figure 4 shows the synthesized 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid in deuterated dimethyl 13 C NMR spectrum in sulfoxide.
图5为所合成的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的高分辨质谱图,谱图中452.1968[M+H+]为探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的分子离子峰。Figure 5 shows the high-resolution mass spectrum of the synthesized probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid Figure, 452.1968[M+H + ] in the spectrum is the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene )Molecular ion peak of benzoic acid.
图6为所合成的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸分别与N2H4和CN-反应后的产物高分辨质谱图。Figure 6 shows the synthesized probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and N 2 respectively High-resolution mass spectrum of the product after the reaction of H 4 and CN - .
图7为20μM探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与40μM N2H4反应之前(虚线)和后的(实线)紫外吸收光谱(A)和荧光发射光谱(B)。Figure 7 shows the reaction between 20 μM probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and 40 μM N 2 H 4 UV absorption spectrum (A) and fluorescence emission spectrum (B) before (dashed line) and after (solid line) reaction.
图8为20μM探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与100μM CN-反应之前(虚线)和后的(实线)紫外吸收光谱(A)和荧光发射光谱(B)。Figure 8 shows the reaction of 20 μM probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with 100 μM CN - (dashed line) and post (solid line) UV absorption spectrum (A) and fluorescence emission spectrum (B).
图9为20μM探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸在其他干扰物存在下分别去检测N2H4(A)和CN-(B)荧光光谱柱状图。Figure 9 shows 20μM probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid in the presence of other interfering substances Detect the fluorescence spectrum histograms of N 2 H 4 (A) and CN - (B) respectively.
图10为20μM探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与不同浓度N2H4作用后的荧光光谱变化(A)以及荧光强度I565/I645与N2H4浓度的线性关系。Figure 10 shows the reaction of 20 μM probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with different concentrations of N 2 H Fluorescence spectrum change after the action of 4 (A) and the linear relationship between fluorescence intensity I 565 /I 645 and N 2 H 4 concentration.
图11为20μM探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与不同浓度的CN-作用后的荧光光谱变化(A)以及荧光强度λem=470nm与CN-浓度的线性关系。Figure 11 shows 20 μM probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and different concentrations of CN - Fluorescence spectrum change after action (A) and linear relationship between fluorescence intensity λ em =470nm and CN - concentration.
具体实施方式Detailed ways
下面结合附图和实施例对本发明技术方案再做进一步说明:The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and examples:
实施例1Example 1
将0.403g 2-(6-(二乙氨基)-4-甲酰基-2,3-二氢-1H-氧杂蒽)苯甲酸和0.08g丙二腈溶解在10mL乙腈中,然后滴加5-7滴哌啶,在氮气保护下回流6个小时。反应结束后,将混合液旋干,得到的固体溶于二氯甲烷。然后用水洗三次,再用无水硫酸钠干燥,最后利用柱层析进行分离提纯,洗脱液比例为二氯甲烷/甲醇=50:1,得到蓝紫色的固体0.288g,产率为64%,得到探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸。Dissolve 0.403g 2-(6-(diethylamino)-4-formyl-2,3-dihydro-1H-xanthene)benzoic acid and 0.08g malononitrile in 10mL acetonitrile, then add 5 drops -7 drops of piperidine, reflux under nitrogen protection for 6 hours. After the reaction is completed, the mixture is spun dry, and the solid obtained is dissolved in methylene chloride. Then wash with water three times, then dry with anhydrous sodium sulfate, and finally use column chromatography for separation and purification. The eluent ratio is methylene chloride/methanol = 50:1 to obtain 0.288g of blue-violet solid, with a yield of 64%. , the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid was obtained.
平行配制9个浓度为20μM的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液,向其中分别加入含有不同浓度的N2H4标准溶液,35分钟后,分别测定上述溶液的荧光光谱图,记录荧光发射强度,根据荧光强度值I565/I645与N2H4浓度的关系绘制标准曲线。Prepare 9 probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid solutions in parallel with a concentration of 20 μM. Add N 2 H 4 standard solutions containing different concentrations to them. After 35 minutes, measure the fluorescence spectra of the above solutions and record the fluorescence emission intensity. According to the relationship between the fluorescence intensity value I 565 / I 645 and the N 2 H 4 concentration Draw a standard curve.
配制浓度为20μM的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液,向其中加入样品溶液,35分钟后,测定其荧光光谱图,记录荧光发射强度的变化,根据上述标准曲线计算样品中N2H4的浓度。Prepare a solution of probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with a concentration of 20 μM, and add it to After 35 minutes of sample solution, measure its fluorescence spectrum, record the change in fluorescence emission intensity, and calculate the concentration of N 2 H 4 in the sample based on the above standard curve.
平行配制9个浓度为20μM的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液,向其中分别加入含有不同浓度的CN-标准溶液,30分钟后,分别测定上述溶液的荧光光谱图,记录荧光发射强度,根据470nm处荧光强度值与CN-浓度的关系绘制标准曲线。Prepare 9 probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid solutions in parallel with a concentration of 20 μM. Add CN - standard solutions containing different concentrations to them. After 30 minutes, measure the fluorescence spectra of the above solutions, record the fluorescence emission intensity, and draw a standard curve based on the relationship between the fluorescence intensity value at 470 nm and the CN - concentration.
配制浓度为20μM的探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液,向其中加入样品溶液,30分钟后,测定其荧光光谱图,记录荧光发射强度的变化,根据上述标准曲线计算样品中CN-的浓度。Prepare a solution of probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with a concentration of 20 μM, and add it to Sample solution, after 30 minutes, measure its fluorescence spectrum, record the change in fluorescence emission intensity, and calculate the concentration of CN - in the sample according to the above standard curve.
探针合成后用核磁共振波谱仪对产物进行测试,得到其氢谱图3,其化学位移数据为:1H NMR(400MHz,Chloroform-d)δ=8.21(d,J=7.8Hz,1H),8.09(s,1H),7.69(t,J=7.6Hz,1H),7.57(t,J=7.6Hz,1H),7.15(d,J=7.5Hz,1H),6.53(d,J=2.5Hz,1H),6.47(d,J=9.0Hz,1H),6.37(dd,J=9.0,2.5Hz,1H),3.42(d,J=7.4Hz,4H),2.83(t,J=6.2Hz,2H),2.19–2.09(m,2H),1.67(p,J=6.3Hz,2H),1.22(t,J=7.0Hz,6H)得到其碳谱图4,其化学位移数据为:13C NMR(101MHz,DMSO-d6)δ=167.37,160.66,154.88,150.93,148.28,147.96,135.97,133.20,131.10,131.06,130.14,129.56,127.48,119.62,118.90,118.08,111.85,110.74,108.82,After the probe was synthesized, the product was tested with a nuclear magnetic resonance spectrometer, and its hydrogen spectrum 3 was obtained. Its chemical shift data is: 1 H NMR (400MHz, Chloroform-d) δ = 8.21 (d, J = 7.8Hz, 1H) ,8.09(s,1H),7.69(t,J=7.6Hz,1H),7.57(t,J=7.6Hz,1H),7.15(d,J=7.5Hz,1H),6.53(d,J= 2.5Hz,1H),6.47(d,J=9.0Hz,1H),6.37(dd,J=9.0,2.5Hz,1H),3.42(d,J=7.4Hz,4H),2.83(t,J= 6.2Hz, 2H), 2.19–2.09 (m, 2H), 1.67 (p, J = 6.3Hz, 2H), 1.22 (t, J = 7.0Hz, 6H) to obtain its carbon spectrum 4, and its chemical shift data is : 13 C NMR (101MHz, DMSO-d 6 ) δ = 167.37, 160.66, 154.88, 150.93, 148.28, 147.96, 135.97, 133.20, 131.10, 131.06, 130.14, 129.56, 127.48, 119.62, 1 18.90,118.08,111.85,110.74, 108.82,
97.07,62.21,44.58,26.54,25.85,24.79,20.63,19.09,12.99.高分辨质谱图5显示其分子量为ESI-MS m/z[M+H+]=452.1968.97.07, 62.21, 44.58, 26.54, 25.85, 24.79, 20.63, 19.09, 12.99. High-resolution mass spectrum Figure 5 shows that its molecular weight is ESI-MS m/z[M+H + ]=452.1968.
以上表征证明了探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的合成成功。The above characterization proved that the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid was successfully synthesized.
高分辨质谱图6验证了探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸分别与N2H4和CN-反应的机理。High-resolution mass spectrometry Figure 6 verifies that the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and N Mechanism of 2H4 and CN - reaction.
实施例2Example 2
1.光谱实验1. Spectral experiment
首先测定化合物探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸的紫外-可见吸收光谱和荧光发射光谱。如图7所示,2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸本身在623nm处显示出强吸收带,与N2H4反应35分钟后,623nm处的吸收带明显减弱,同时在420nm处的吸收峰略微增强,同时伴随着溶液颜色由蓝紫到黄色的变化,说明N2H4与2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸反应生成的新物质具有与探针不同的光谱性质。此外,对探针溶液进行荧光光谱测定,图7-B显示当在515nm激发时,可以分别在565nm处和645nm观察到明显荧光增强和减弱信号。上述探针与N2H4反应前后荧光光谱性质的变化可以被利用于对样品中N2H4的含量检测。另外,探针与CN-反应30分钟后,可以在470nm处观察到明显的增强荧光信号,在荧光灯照射下发现原探针的红色荧光此时已转化为蓝色,因此该探针与CN-反应前后荧光光谱性质的变化也可以被利用于对样品中CN-的含量检测(如图8)。First, the UV-visible absorption spectrum and Fluorescence emission spectrum. As shown in Figure 7, 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid itself shows at 623 nm Strong absorption band. After reacting with N 2 H 4 for 35 minutes, the absorption band at 623 nm weakened significantly, while the absorption peak at 420 nm slightly enhanced. At the same time, the color of the solution changed from blue-violet to yellow, indicating that N 2 H 4 The new substance generated by the reaction with 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid has different properties from the probe. Spectral properties. In addition, the fluorescence spectrum of the probe solution was measured. Figure 7-B shows that when excited at 515nm, obvious fluorescence enhancement and weakening signals can be observed at 565nm and 645nm respectively. The changes in fluorescence spectral properties before and after the reaction of the above probe with N 2 H 4 can be used to detect the content of N 2 H 4 in the sample. In addition, after the probe reacted with CN- for 30 minutes, an obvious enhanced fluorescence signal could be observed at 470nm. Under fluorescent lamp irradiation, it was found that the red fluorescence of the original probe had been converted to blue at this time, so the probe and CN- The changes in fluorescence spectral properties before and after the reaction can also be used to detect the CN - content in the sample (Figure 8).
为了分别验证探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对N2H4和CN-检测的选择性,本发明将20μM 2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与其他可能的干扰成分(500μM,NH4 +,Ca2+,Mg2+,Zn2+,Fe3+,Ac-,Br-,Cl-,ClO4 -,F-,I-,NO2 -,HSO3 -,NO3 -,CO3 2-,S2-,SO3 2-,SO4 2-,PO4 3-,H2O2)分别孵化35分钟,孵化完成后,用荧光分光光度计分别记录探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸在515nm激发波长和375nm激发波长下的荧光发射光谱。如图9所示,当探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸分别与N2H4和CN-作用后,其荧光发射比值I565/I645和470nm处的发射显著增强,而与其他被分析物作用后,其荧光无明显变化。同时,在N2H4或CN-与其他干扰物共存情况下,2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸依然对N2H4或CN-具有很好的识别作用,如图9所示。这一结果证明,2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以对N2H4和CN-实现特异性的识别。In order to verify the response of probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid to N 2 H 4 and CN respectively -Selectivity of detection, the present invention combines 20 μM 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with other Possible interfering components (500μM, NH 4 + ,Ca 2+ ,Mg 2+ ,Zn 2+ ,Fe 3+ ,Ac - ,Br - ,Cl - ,ClO 4 - ,F - ,I - ,NO 2 - , HSO 3 - ,NO 3 - ,CO 3 2- ,S 2- ,SO 3 2- ,SO 4 2- ,PO 4 3- ,H 2 O 2 ) were incubated for 35 minutes respectively. After the incubation was completed, use fluorescence spectrophotometry The meter records the excitation wavelength of probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid at 515nm and 375nm respectively. Fluorescence emission spectrum at wavelength. As shown in Figure 9, when the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid was mixed with N After the interaction between 2 H 4 and CN - , its fluorescence emission ratio I 565 / I 645 and the emission at 470 nm were significantly enhanced, while after the interaction with other analytes, its fluorescence did not change significantly. At the same time, in the presence of N 2 H 4 or CN - and other interfering substances, 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H- Xanthene)benzoic acid still has a good recognition effect on N 2 H 4 or CN - , as shown in Figure 9. This result proves that 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid can react with N 2 H 4 and CN - achieves specific recognition.
2.浓度滴定实验基于探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以对N2H4或CN-进行特异性识别的特征,本发明研究了探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对于N2H4或CN-的定量检测能力。本发明用荧光发射光谱对其定量性能进行了考察。20μL 1mmol/L探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与480μL二甲基亚砜混合,并加入不同体积的1mM的N2H4溶液,用12mM的磷酸缓冲盐溶液定容至1mL,孵化35分钟后,用荧光分光光度计记录探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸及其与N2H4反应后的产物的荧光发射光谱。由图9-A可以看出,其荧光发射光谱随着N2H4浓度的增加,2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸分子在565nm处的荧光发射逐渐增强,伴随着在645nm处的荧光发射减弱,且其发射强度与0-10μMN2H4浓度呈现良好的线性关系,检出限LOD可以达到80nM,图9-B。说明探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以采用荧光光谱仪对N2H4进行定量分析。2. The concentration titration experiment is based on the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid which can react with N 2 H 4 or CN - has the characteristics of specific recognition. The present invention studied the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H- Quantitative detection capability of xanthene)benzoic acid for N 2 H 4 or CN - . The present invention uses fluorescence emission spectrum to examine its quantitative performance. 20μL 1mmol/L probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and 480μL dimethylsulfide Mix the sulfone and add different volumes of 1mM N 2 H 4 solution. Adjust the volume to 1mL with 12mM phosphate buffered saline solution. After incubation for 35 minutes, use a fluorescence spectrophotometer to record the probe 2-(4-(2,2 -Fluorescence emission spectrum of biscyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and its reaction product with N 2 H 4 . As can be seen from Figure 9-A, its fluorescence emission spectrum increases with the increase of N 2 H 4 concentration, 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3- The fluorescence emission of dihydro-1H-xanthene)benzoic acid molecule at 565nm gradually increases, accompanied by the weakening of the fluorescence emission at 645nm, and its emission intensity has a good linear relationship with the concentration of 0-10μMN 2 H 4. The detection The out-of-limit LOD can reach 80nM, Figure 9-B. It shows that the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid can be used to detect N 2 H 4 using a fluorescence spectrometer Perform quantitative analysis.
将20μL 1mmol/L探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸与880μL DMSO混合,并加入不同体积的1mM的偏二甲肼溶液,用12mM的磷酸缓冲盐溶液定容至1mL,孵化30分钟后,用荧光分光光度计记录探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸及其与氰根反应后的产物的荧光发射光谱。由图11-A可以看出,其荧光发射光谱随着CN-浓度的增加,2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸分子在470nm处的荧光发射逐渐增强,且其发射强度与0–30μM CN-浓度呈现良好的线性关系,检出限LOD可以达到0.22μM,图11-B说明探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以采用荧光光谱仪对CN-进行定量分析。Mix 20 μL of 1 mmol/L probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid with 880 μL DMSO. And add different volumes of 1mM undimethylhydrazine solution, adjust the volume to 1mL with 12mM phosphate buffer saline solution, incubate for 30 minutes, use a fluorescence spectrophotometer to record the probe 2-(4-(2,2-dicyanide) Fluorescence emission spectrum of 6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and its reaction product with cyanide. It can be seen from Figure 11-A that the fluorescence emission spectrum increases with the increase of CN - concentration, 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydrogen The fluorescence emission of -1H-xanthene)benzoic acid molecule at 470 nm gradually increases, and its emission intensity shows a good linear relationship with the 0–30 μM CN - concentration. The detection limit LOD can reach 0.22 μM, as shown in Figure 11-B The probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid can be used for quantitative analysis of CN - using a fluorescence spectrometer. .
3.水样中肼和氰根含量的测定3. Determination of hydrazine and cyanide content in water samples
为了验证探针在实际样品中对N2H4和CN-检测的适用性,本发明测定了兰州大学毓秀湖水样中N2H4和CN-的含量且进行了加标回收实验。实验测得毓秀湖水样中N2H4的加标回收率如表1所示,表中数据说明探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以应用于实际水样中N2H4和CN-的检测。In order to verify the applicability of the probe for the detection of N 2 H 4 and CN - in actual samples, the present invention measured the contents of N 2 H 4 and CN - in the water sample of Yuxiu Lake of Lanzhou University and performed a standard addition recovery experiment. The experimentally measured recovery rate of N 2 H 4 in the Yuxiu Lake water sample is shown in Table 1. The data in the table illustrates that the probe 2-(4-(2,2-dicyano)-6-(diethylamino) )-2,3-Dihydro-1H-xanthene)benzoic acid can be applied to the detection of N 2 H 4 and CN - in actual water samples.
具体方法为:The specific methods are:
a.样品处理a.Sample processing
毓秀湖水样取自兰州大学毓秀湖,所取得水样用0.22μm的微孔滤膜过滤。The water sample of Yuxiu Lake was taken from Yuxiu Lake of Lanzhou University, and the obtained water sample was filtered with a 0.22 μm microporous filter membrane.
b.荧光光谱法测定实际样品中肼和氰根的含量b. Fluorescence spectrometry to determine the content of hydrazine and cyanide in actual samples
取500μL上述处理好的实际样品,分别加入20μL 1mmol/L探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液和480μL二甲基亚砜,摇匀,室温孵化35分钟,用荧光分光光度计记录515nm的激发波长下的荧光发射光谱。此外,在实际样品中加入一定量的N2H4标准溶液,定容后按上述操作进行检测,计算得到相应的加标回收率。表1为毓秀湖水样中的N2H4加标回收率实验数据。Take 500 μL of the actual sample processed above and add 20 μL of 1mmol/L probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-oxygen Mix anthracene) benzoic acid solution and 480 μL dimethyl sulfoxide, shake well, and incubate at room temperature for 35 minutes. Use a fluorescence spectrophotometer to record the fluorescence emission spectrum at an excitation wavelength of 515 nm. In addition, a certain amount of N 2 H 4 standard solution is added to the actual sample, and after the volume is adjusted, the test is performed according to the above operation, and the corresponding standard recovery rate is calculated. Table 1 shows the experimental data of N 2 H 4 spike recovery rate in Yuxiu Lake water samples.
表1 2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对实际样品中N2H4的测定及加标回收率。Table 1 Determination of N 2 H 4 in actual samples by 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and spike recovery rate.
取100μL上述处理好的实际样品,分别加入20μL 1mmol/L探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸溶液和880μL二甲基亚砜,摇匀,室温孵化30分钟,用荧光分光光度计记录375nm的激发波长下的荧光发射光谱。此外,在实际样品中加入一定量的CN-标准溶液,定容后按上述操作进行检测,计算得到相应的加标回收率。表2为毓秀湖水样中的CN-加标回收率实验数据。Take 100 μL of the actual sample processed above, and add 20 μL of 1mmol/L probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-oxygen respectively. Mix anthracene) benzoic acid solution and 880 μL dimethyl sulfoxide, shake well, and incubate at room temperature for 30 minutes. Use a fluorescence spectrophotometer to record the fluorescence emission spectrum at an excitation wavelength of 375 nm. In addition, a certain amount of CN - standard solution is added to the actual sample, and after the volume is adjusted, the test is performed according to the above operation, and the corresponding standard recovery rate is calculated. Table 2 shows the experimental data of CN - spiked recovery rate in Yuxiu Lake water samples.
表2 2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸对实际样品CN-的测定及加标回收率Table 2 Determination and spiking of 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid on actual sample CN - Recovery rate
通过对探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸及其与N2H4或CN-反应前后光学性质的研究,证明本发明合成的分子探针2-(4-(2,2-双氰基)-6-(二乙氨基)-2,3-二氢-1H-氧杂蒽)苯甲酸可以通过荧光发射光谱实现对N2H4或CN-的测定,相比传统的检测方法,本发明光学性质稳定,特异性好,灵敏度高,检测效率高,是一种快捷简便的检测N2H4或CN-的简便方法。By pairing the probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-xanthene)benzoic acid and its combination with N 2 H 4 or CN - Study on the optical properties before and after the reaction proves that the molecular probe 2-(4-(2,2-dicyano)-6-(diethylamino)-2,3-dihydro-1H-oxygen synthesized by the present invention Heteroanthracene) benzoic acid can realize the determination of N 2 H 4 or CN - through fluorescence emission spectrum. Compared with traditional detection methods, the present invention has stable optical properties, good specificity, high sensitivity and high detection efficiency, and is a fast and efficient method. A simple and easy way to detect N2H4 or CN- .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010452610.0A CN111610172B (en) | 2020-05-26 | 2020-05-26 | A dual-response optical probe rhodamine B derivative for the detection of hydrazine and cyanide in water samples |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010452610.0A CN111610172B (en) | 2020-05-26 | 2020-05-26 | A dual-response optical probe rhodamine B derivative for the detection of hydrazine and cyanide in water samples |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111610172A CN111610172A (en) | 2020-09-01 |
CN111610172B true CN111610172B (en) | 2023-12-05 |
Family
ID=72204324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010452610.0A Active CN111610172B (en) | 2020-05-26 | 2020-05-26 | A dual-response optical probe rhodamine B derivative for the detection of hydrazine and cyanide in water samples |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111610172B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097262A1 (en) * | 2013-12-24 | 2015-07-02 | Paris Sciences Et Lettres - Quartier Latin | Fluorescent red emitting functionalizable ph probes |
CN106632215A (en) * | 2016-11-17 | 2017-05-10 | 陕西师范大学 | Fluorescent protein dyeing agent as well as preparation method and application of fluorescent protein dyeing agent |
CN106749004A (en) * | 2016-12-21 | 2017-05-31 | 兰州大学 | A kind of synthetic method of fluorescent molecular probe and the detection to chloride ion content in actual water sample |
CN108440547A (en) * | 2018-03-31 | 2018-08-24 | 浙江工业大学 | A kind of rhodamine 6G Schiff bases fluorescence probe and its preparation and application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9994713B2 (en) * | 2016-03-28 | 2018-06-12 | King Fahd University Of Petroleum And Minerals | Fluorescent schiff base conjugate Cu(II) chemosensors and methods thereof |
-
2020
- 2020-05-26 CN CN202010452610.0A patent/CN111610172B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097262A1 (en) * | 2013-12-24 | 2015-07-02 | Paris Sciences Et Lettres - Quartier Latin | Fluorescent red emitting functionalizable ph probes |
CN106632215A (en) * | 2016-11-17 | 2017-05-10 | 陕西师范大学 | Fluorescent protein dyeing agent as well as preparation method and application of fluorescent protein dyeing agent |
CN106749004A (en) * | 2016-12-21 | 2017-05-31 | 兰州大学 | A kind of synthetic method of fluorescent molecular probe and the detection to chloride ion content in actual water sample |
CN108440547A (en) * | 2018-03-31 | 2018-08-24 | 浙江工业大学 | A kind of rhodamine 6G Schiff bases fluorescence probe and its preparation and application |
Non-Patent Citations (2)
Title |
---|
A ratiometric fluorescent probe for the detection of endogenous hydroxyl radicals in living cells;Biliu Wu等;Talanta;第196卷;317-324 * |
TICT based fluorescence "turn-on" hydrazine probesBin;Bin Chen 等;Sensors and Actuators B;第199卷;93-100 * |
Also Published As
Publication number | Publication date |
---|---|
CN111610172A (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mu et al. | A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals | |
Jin et al. | Fast response near-infrared fluorescent probe for hydrogen sulfide in natural waters | |
Padhan et al. | Ultrasensitive detection of aqueous Cu 2+ ions by a coumarin-salicylidene based AIEgen | |
Wang et al. | Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection | |
Zhang et al. | A near infrared ratiometric fluorescent probe with aggregation induced emission (AIE) characteristics for hydrazine detection in vitro and in vivo | |
Huang et al. | A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection | |
Dong et al. | A new naphthopyran-based chemodosimeter with aggregation-induced emission: selective dual-channel detection of cyanide ion in aqueous medium and test strips | |
CN107082785B (en) | A kind of fluorescence probe and its synthesis and methods for using them of detection cyanide ion | |
CN106220640A (en) | One class mercury ion fluorescence probe and its preparation method and application | |
CN102127421A (en) | Copper ion/mercury ion fluorescence molecular probe, and preparation method and application thereof | |
CN109705111B (en) | A mercury ion detection probe and its preparation method and application | |
Yilmaz et al. | Novel integrated sensing system of calixarene and rhodamine molecules for selective colorimetric and fluorometric detection of Hg2+ ions in living cells | |
CN102735662A (en) | High sensitivity and high selectivity fluorescence emission spectrum analysis method for zinc ions | |
CN107417675A (en) | A kind of novel coumarin class Schiff base derivatives, preparation method and its application in copper ion fluorescence and cell imaging detection | |
CN108178766A (en) | A kind of fluorescent probe molecule of recognizable iron ion and dihydrogen phosphate ions and its preparation method and application | |
CN108398409A (en) | A kind of method of ratio fluorescent detection hypochlorite | |
Hoque et al. | Biphenyl-containing amido Schiff base derivative as a turn-on fluorescent chemosensor for Al 3+ and Zn 2+ ions | |
Chen et al. | A novel bifunctional-group salamo-like multi-purpose dye probe based on ESIPT and RAHB effect: Distinction of cyanide and hydrazine through optical signal differential protocol | |
Jin et al. | A highly selective chemiluminescent probe for the detection of chromium (VI) | |
Pan et al. | The preparation of a special fluorescent probe with an aggregation-induced emission effect for detecting hydrazine in water | |
Chen et al. | A highly selective colorimetric and fluorescent probe Eu (tdl) 2abp for H2S sensing: Application in live cell imaging and natural water | |
Boje et al. | Triazole-linked amidopyrene-tagged fluorometric probe for Au3+ ions and pH control aggregation-induced emission | |
CN105859722B (en) | It is a kind of being capable of relay identification cryanide ion and the sensor molecule of hydrogen sulfate ion and its synthesis and application | |
Zhao et al. | A Water-soluble fluorescent probe for rapid detection of sulfur dioxide derivatives | |
CN111662279B (en) | Naphthalene-substituted carbazole-benzothiazolyl hydrazone compound and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |