CN111601947B - 改进的密封元件 - Google Patents

改进的密封元件 Download PDF

Info

Publication number
CN111601947B
CN111601947B CN201980008442.1A CN201980008442A CN111601947B CN 111601947 B CN111601947 B CN 111601947B CN 201980008442 A CN201980008442 A CN 201980008442A CN 111601947 B CN111601947 B CN 111601947B
Authority
CN
China
Prior art keywords
layer
packer
sealing element
printer
wellbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980008442.1A
Other languages
English (en)
Other versions
CN111601947A (zh
Inventor
R·A·那皮尔
W·J·韦伯
C·W·格莱斯曼
T·A·弗里尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN111601947A publication Critical patent/CN111601947A/zh
Application granted granted Critical
Publication of CN111601947B publication Critical patent/CN111601947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • E21B33/1216Anti-extrusion means, e.g. means to prevent cold flow of rubber packing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1291Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2009/00Use of rubber derived from conjugated dienes, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1293Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement

Abstract

本公开总体上可涉及增材制造操作,并且更具体地涉及用于三维(3D)打印密封元件的系统和方法。具体地,可以实施本公开的实例以制造密封元件,所述密封元件可以设置在井筒中以密封井的一部分。

Description

改进的密封元件
背景技术
可以将井钻入地下地层以回收有价值的烃。可以在钻井之前、期间和之后进行各种操作,以产生并持续烃流体向地面的流动。
关于石油和天然气操作的典型操作可能是在井内施加密封件。密封件可以隔离并包含井内产生的烃和压力。可能存在各种不同的工具和装备用于在生产油管柱的外部和套管柱、衬管或井筒壁的内部之间形成密封件。密封件上的巨大压差可能会导致密封件失效,并且可能导致大量的时间、金钱和装备损失,甚至可能对人员造成伤害。另外,使井筒密封件膨胀可能会在密封元件上引起显著变形和内部应力,这可能会增加失效的可能性(例如,由于断裂或撕裂)。井筒密封件的设计和制造可能会在结构和材料选择上受到限制,以最大程度地降低发生失效的可能性。探索替代的制造工艺以产生改进的密封元件可能是合适的。
附图说明
这些附图示出了本公开的某些方面,并且不应被用来限制或限定本公开。
图1示出了井下系统的实例;
图2A至图2C示出了封隔器的实例;
图3A至图3C示出了封隔器的实例;
图4示出了3D打印机的实例;
图5示出了信息处理系统的实例;
图6示出了材料构造的实例;
图7示出了材料构造的实例;
图8示出了井下工具的实例;
图9示出了密封件的实例;以及
图10示出了材料构造的实例。
具体实施方式
本公开总体上可涉及增材制造操作,并且更具体地涉及用于三维(3D)打印密封元件的系统和方法。具体地,可以实施本公开的实例以制造密封元件,该密封元件可以设置在井筒中以密封井的一部分。有利地,密封元件可以包括具有彼此不同的第一材料和第二材料的增材制造的物体。如本文所使用,如果第一材料和第二材料具有不同的化学组成、结构或其他性质,则认为它们彼此不同。可以定制第一材料和第二材料的性质例如以优化密封元件的性能。可以定制第一材料和第二材料的任何数量的不同性质,包括但不限于硬度、弹性、耐气体性、耐化学性、高温强度、密度、热膨胀率和摩擦系数等。
可以使用一种系统和方法来制造密封元件。密封元件可以用于任何合适的工具或装备中。非限制性地,合适的工具或装备可包括封隔器、密封组套、安全阀、插塞、坐放短节和/或它们的组合。应当注意,虽然将更详细地讨论封隔器内密封元件的实施,但是本领域技术人员将容易认识到,在不脱离本公开的范围的情况下,这里描述的原理同样适用于使用密封件和/或用于产生密封件的任何装备。
本文公开的密封元件可使用各种合适的增材制造工艺中的任何一种来制造。术语“增材制造”指的是一次一层地扩增三维物体的各种技术中的任何一种,其中每个连续层粘结到前一层,该层可以是熔化的或部分熔化的材料。增材制造也可称为3D打印,并且包括各种不同的制造工艺,包括但不限于材料挤出、定向能量沉积、材料喷射、粘合剂喷射、片材层压、光聚合和粉末床熔合。可以在密封元件的增材制造中使用的合适材料可以包括但不限于热塑性材料、陶瓷和金属等。合适的热塑性塑料的实例可包括但不限于聚缩醛(例如聚氧乙烯和聚甲醛)、聚(Ci-6烷基)丙烯酸酯、聚丙烯酰胺、聚酰胺(例如脂族聚酰胺、聚邻苯二甲酰胺和聚芳酰胺)、聚酰胺酰亚胺、聚酐、聚亚芳基醚(例如聚苯醚)、聚芳硫醚(例如聚苯硫醚)、聚芳硫醚砜(例如聚苯砜)、聚苯并噻唑、聚苯并噁唑、聚碳酸酯(包括聚碳酸酯共聚物如聚碳酸酯-硅氧烷、聚碳酸酯-酯和聚碳酸酯-酯-硅氧烷)、聚酯(例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚芳酯、和聚酯共聚物如聚酯-醚)、聚醚醚酮、聚醚酰亚胺(包括共聚物如聚醚酰亚胺-硅氧烷共聚物)、聚醚酮、聚醚砜、聚芳醚酮、聚酰亚胺(包括共聚物如聚酰亚胺-硅氧烷共聚物)、聚(Ci-6烷基)甲基丙烯酸酯、聚甲基丙烯酰胺、聚降冰片烯(包括含降冰片烯单元的共聚物)、聚烯烃(例如聚乙烯、聚丙烯、聚四氟乙烯及其共聚物、例如乙烯-α-烯烃共聚物)、聚恶二唑、聚甲醛、聚邻苯二甲酸酯、聚硅氮烷、聚硅氧烷、聚苯乙烯(包括诸如丙烯腈-丁二烯-苯乙烯(ABS)和甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)之类的共聚物)聚硫化物、聚磺酰胺、聚磺酸盐、聚砜、聚硫酯、聚三嗪、聚脲、聚氨酯、聚乙烯醇、聚乙烯酯、聚乙烯醚、聚乙烯卤化物、聚乙烯酮、聚乙烯硫醚、聚偏氟乙烯、聚乳酸、聚乙醇酸、聚3-羟基丁酸酯、聚羟基链烷酸酯、热塑性淀粉、纤维素酯、聚硅酮等,或包括至少一种前述聚合物的组合。
如前所述,第一材料和第二材料的任何数量的不同性质可以被定制,例如,以提供具有期望性质的密封元件。举例来说,通过使用增材制造,可以在密封元件中使用两种或更多种不同的材料,从而能够定制密封元件的性能和功能。应当理解,可选择材料、它们的混合比和/或它们的沉积取向以实现期望的性能。可以定制的性质可以包括但不限于硬度、弹性、耐气体性、耐化学性和高温强度等。在一些实施方案中,可以将坚固但不易弯曲的第一材料与柔性但不牢固的第二材料结合以提供表现出整体性能的密封元件。在其他实施方案中,可以将具有第一硬度的第一材料与具有第二硬度的第二材料结合以提供多硬度密封元件。
在一些实施方案中,密封元件可以包括第一材料,并且第二材料可以具有不同的硬度。可以使用第一材料和第二材料的不同硬度,例如以提供多硬度密封元件。举例来说,第一材料和第二材料可以在肖氏A标度上变化5A、10A、20A或更大。肖氏A硬度标度是从0到100的标度,用于测量柔性模具橡胶的硬度,该柔性模具橡胶的硬度范围可以从非常柔软和柔性到没有柔性的硬质。
图1示出了包括封隔器102的井下系统100。地面装备104可以设置在地层106上方。如图所示,地面装备104可包括提升设备108和井架110。提升设备108可用于升高和降低管柱诸如输送管线112。输送管线112可以包括用于为封隔器坐封组件102提供机械输送的任何合适的装置,包括但不限于钢丝绳、钢丝、连续油管、油管柱、管子、钻杆、钻柱等。在一些实例中,输送管线112可以为井下工具提供机械悬挂以及电连接。如图所示,井下工具可以设置在输送管线112上和/或其周围。这可允许操作者致动封隔器102以密封井筒114的一部分。
如图所示,井下工具可以在输送管线112上下入到井筒104中。井筒114可延伸穿过包括地层106的各种地球岩层。套管116可以通过水泥(未示出)固定在井筒114内。套管116可以由任何材料诸如金属、塑料、复合材料制成,可作为安装过程的一部分膨胀或不膨胀。另外,不需要将套管116用水泥固定在井筒114中。在实例中,生产油管118可以固定在套管116内。生产油管118可以是在烃的生产中使用的任何合适的油管柱。在实例中,生产油管可以通过水泥(未示出)永久地设置在套管116内。封隔器102可以设置在生产油管118上或其附近。
非限制性地,可以使用任何合适类型的封隔器102。封隔器的合适类型可包括它们是永久坐封的还是可收回的、机械坐封的、液压坐封的和/或它们的组合。如将在下面更详细地讨论的,封隔器102可以包括一个或多个密封元件(例如,可膨胀密封元件244、246、248),这些密封元件可以被增材制造以提供优化的性能。封隔器102可坐封在井下以密封井筒114的一部分。当坐封时,封隔器102可通过在生产油管118和套管116之间提供密封来隔离井筒114和油管柱之间环空的区域。在实例中,封隔器102可以坐封在生产油管118上。井下工具可以在期望致动封隔器102时设置在输送管线112周围并且下入井筒114中。井下工具可以临时联接到封隔器102,以启动井筒114内的密封操作。
本领域技术人员应当理解,本实例同样适用于具有其他定向构造的井筒,包括竖直井筒、水平井筒、偏斜井筒、分支井等。因此,本领域人员应当理解的是,方向术语如上方、下方、上部、下部、向上、向下、井上、井下等的使用与说明性实施方案相关地使用,如其在附图中所描绘,向上方向是朝向对应附图的顶部并且向下方向是朝向对应附图的底部,井上方向是朝向井的地面,并且井下方向是朝向井的底部。而且,虽然图1描绘陆上作业,但是本领域技术人员应当理解的是,本发明的封隔器同样适用于海上作业。另外,尽管图1描绘了在井筒114的套管部分中使用封隔器102,但是应当理解,封隔器102也可以在井筒114的无套管部分中使用。
现在参考图2A至图2C,其中描绘了封隔器102的连续轴向部段。非限制性地,可以使用任何合适类型的封隔器。封隔器的合适类型可包括它们是永久坐封的还是可收回的、机械坐封的、液压坐封的和/或它们的组合。封隔器102可以螺纹方式联接到作为输送管线110(参见图1)的一部分的其他井下工具。封隔器102可包括封隔器心轴202。封隔器心轴202可包括如图2A最佳所示的销槽204和如图2B最佳所示的销槽206。围绕封隔器心轴202的上部部分定位的可以是上壳体部段208,该上壳体部段可以螺纹方式联接到封隔器心轴202。一个或多个螺纹销210可用于固定上壳体部段208以防止旋转。上壳体部段208可以在其下端通过一个或多个销212牢固地联接到第一楔形件214,该第一楔形件可以围绕封隔器心轴202设置。第一楔形件214可包括一对斜面216、218,该对斜面可操作以接合可设置在封隔器心轴202周围的上滑动元件220的内表面。上滑动元件220可包括基本上圆柱形的非定向接触表面222,用于在坐封时将力转移到井筒116的壁(参见图1),以及基本上圆柱形的定向抓持表面224,该定向抓持表面被描绘为包括多个齿226,用于在坐封时提供与井筒116的壁的内部的抓持布置。如图所示,上滑动元件220位于第一楔形件214和第二楔形件230之间,第二楔形件可包括一对斜面232、234。在图2A至图2C所示的封隔器102的运行构造中,第二楔形件230可通过一个或多个销236牢固地联接到封隔器心轴202。另外,可以通过一个或多个销238防止上滑动元件220沿第二楔形件230的斜面232向上移动。如下面更详细地解释的,当在第一楔形件214和第二楔形件230之间产生压缩力时,上滑动元件220可以径向膨胀成与井筒116的壁接触。
可围绕封隔器心轴202滑动地定位的上元件支撑靴240可以与第二楔形件230相邻。另外,描绘为可膨胀密封元件244、246、248的密封组件242可围绕封隔器心轴202滑动地定位在上元件支撑靴240和下元件支撑靴250之间。尽管示出并描述了三个可膨胀密封元件244、246、248,但本领域技术人员将认识到,本发明的封隔器的密封组件可包括任意数量的密封元件。如前所述,可膨胀密封元件244、246、248中的一个或多个可被增材制造以包括第一材料和第二材料。通过增材制造,可定制可膨胀密封元件244、246、248的一个或多个的性质以提供改善的性能。
上元件支撑靴240和下元件支撑靴250可以由可变形或可延展的材料制成,诸如低碳钢、软钢、黄铜等,并且可以在其远侧端部被薄切。上元件支撑靴240和下元件支撑靴250的端部在坐封期间可变形并朝向井筒116的壁的内表面向外张开。在一个实例中,上元件支撑靴240和下元件支撑靴250可以在封隔器102与井筒116的壁的内表面之间形成金属对金属的屏障(参考图1)。
第三楔形件252可围绕封隔器心轴202坐封并且包括一对斜面254、256。在图2A至图2C所示的封隔器102的运行构造中,第三楔形件252可通过一个或多个销258牢固地联接到封隔器心轴202。可以围绕封隔器心轴202设置的下滑动元件260可以在第三楔形件252的下方。下滑动元件260可包括基本上圆柱形的定向抓持表面262,其被描绘为包括多个齿264,以便在坐封时提供与井筒116的壁的内部的抓持布置,以及基本上圆柱形的非定向接触表面266,以便在坐封时将力转移到井筒116的壁。力环268可坐封在下滑动元件260和封隔器心轴202之间。下滑动元件260可位于第三楔形件252和第四楔形件270之间,该第四楔形件可包括可操作以接合下滑动元件260的内表面的一对斜面272、274。最初,第四楔形件270可以通过一个或多个销269联接到力环268。如下面更详细地解释的,当在第三楔形件252和楔形件270之间产生压缩力时,下滑动元件260可以径向膨胀成与井筒116的壁接触。
坐封活塞组件276可以可滑动地设置在封隔器心轴202周围,并且通过螺纹连接联接到第四楔形件270。在所示的实例中,活塞组件276可以包括上活塞部段278、可以螺纹方式和密封方式联接到上活塞部段278的中间活塞部段280、可以螺纹方式联接到中间活塞部段280的下活塞部段282、以及可以螺纹方式联接到下活塞部段282的保持器环284。尽管活塞组件276被描绘和描述为具有特定数量的部段,但是本领域的技术人员将认识到,包括更多或更少数量的活塞部段(包括单个活塞部段)的活塞部段的其他布置可替代地用于本发明中。上活塞部段278可以包括具有多个密封元件的密封轮廓286,所述多个密封元件提供与封隔器心轴202的密封。
下部缸288可设置在封隔器心轴202与活塞组件276的下部部段之间。下部缸288可以包括具有多个密封元件的密封轮廓290,所述多个密封元件可提供与封隔器心轴202的密封。下部缸288可以包括具有多个密封元件的第二密封轮廓292,所述多个密封元件提供与中间活塞部段280的密封。封隔器心轴202和中间活塞部段280以及上活塞部段278和下部缸288的密封件可限定坐封腔室294,该坐封腔室可与延伸穿过封隔器心轴202的一个或多个流体端口296流体连通。保持器环284可以最初通过描绘为剪切螺钉298的一个或多个易碎构件联接到下部缸288。下部缸288可包括锯齿状外表面300,该锯齿状外表面可操作以与设置在下部缸288和下活塞部段282之间的本体锁定环302相互作用。下部缸288可以在其下端以螺纹方式联接到下壳体部段304。锁定环306可以设置在下壳体部段304与封隔器心轴202之间,该锁定环可以将下壳体部段304固定在封隔器心轴202上。
图2A至图2C和图3A至图3C共同示出了封隔器102的操作模式。封隔器102可在图2A至图2C和图3A至图3C中分别示出在可膨胀密封元件244、246、248和滑动元件220、260的激活和膨胀之前和之后。封隔器102可以在输送管线110(参考图1)上被下入井筒116中到达期望的深度,然后紧靠套管柱、衬管柱或井筒116的壁坐封。可以通过将封隔器心轴202和坐封腔室294内的油管压力增加到足以向上移位坐封活塞组件276的致动压力来实现坐封。由作用在坐封活塞组件276的下表面上的流体压力产生的力可能会使剪切螺钉298断裂,从而使坐封活塞组件276相对于下部缸288和封隔器心轴202向上移动。
向上指向的力可能会使销258和销236断裂,从而从封隔器心轴202释放滑动元件220、260。向上移动的坐封活塞组件276可以使第二楔形件230朝向第一楔形件214移动,从而使滑动元件220通过斜面216、218、232、234径向向外移位,所述斜面将滑动元件220坐封抵靠井筒116的坐封表面。随着滑动元件220坐封,可以在第二楔形件230和第三楔形件252之间施加更大的力。这可以对密封组件242施加压缩力,这导致密封元件244、246、248相对于井筒116的密封表面径向膨胀。另外,压缩力可导致上元件支撑靴240和下元件支撑靴250朝向密封表面向外张开,以提供抵靠套管或衬管柱(即如果井筒116被下套管)的金属对金属的密封。随着密封组件242坐封,可以在第四楔形件270和力环268之间施加更大的力,这可能会使销269断裂,从而将楔形件270从力环268释放。向上移动的坐封活塞组件276可以使第四楔形件270朝向第三楔形件252移动,从而使滑动元件260通过斜面254、256、272、274径向向外移位,所述斜面可将滑动元件260坐封抵靠井筒116的坐封表面。坐封之后,由于本体锁定环302和下部缸288的锯齿状外表面300的相互作用,可以防止活塞组件276的向下移动。
以这种方式,封隔器102可在密封元件244、246、248与井筒116的密封表面之间形成密封关系(参考图1)。另外,封隔器102可在滑动元件220的定向抓持表面224、滑动元件260的定向抓持表面262和井筒116的坐封表面之间形成抓持关系。此外,封隔器102可以在滑动元件220的非定向接触表面222、滑动元件260的非定向接触表面266和井筒116的坐封表面之间形成接触关系。在该坐封构造中,滑动元件220的定向抓持表面224可以抵抗滑动元件220沿着井上方向移动,并且滑动元件260的定向抓持表面262可以抵抗滑动元件260沿着井下方向移动。另外,滑动元件220的非定向接触表面222可将作用在滑动元件220上的力沿井下方向转移到井筒,并且滑动元件260的非定向接触表面266可将作用在滑动元件260上的力沿井筒116的井口方向转移。
在一些实施方案中,可膨胀密封元件244、246、248中的一个或多个可通过适当的增材制造工艺来产生。通常,密封元件244、246、248可包括单一橡胶材料。根据本实施方案,密封元件244、246、248中的一个或多个可以包括第一材料和第二材料。通过使用增材制造,可以在密封元件244、246、248中使用两种或更多种不同的材料,从而能够定制密封元件的性能和功能。密封元件244、246、248的可以定制的性质可以包括但不限于硬度、弹性、耐气体性、耐化学性和高温强度等。例如,通过经由增材制造将两种不同的材料混合,实施方案可以为密封元件244、246、248提供额外的强度,从而允许密封元件244、246、248的完整性在操作期间持续更长的时间量。当前,密封元件244、246、248可限于各种合适材料的重复图案,以提供必要的性能。在实例中,密封元件244、246、248可包括不同材料之间的不同边界,这些材料可以通过粘结组装。在一些实施方案中,在使用合适的增材制造工艺的情况下,用户能够相对于另一种合适的材料选择性地放置合适的材料。密封元件244、246、248可以被制造成在第一材料和第二材料之间没有明显的边界,而不是包括明显的边界,从而在第一材料和第二材料的相邻材料之间形成分散区域。因此,增材制造可以通过允许相邻材料之间的整合而不是材料的突然变化来促进密封元件244、246、248内的增强的性能。在实例中,可以通过3D打印工艺来产生分散区域。
图4示出了三维(3D)打印机400。应当理解,图4所示的3D打印机400仅仅是示例性的,并且根据本实施方案,可以使用任何合适的装置生成增材制造的物体。3D打印机400可用于构造具有彼此不同的第一材料和第二材料的增材制造的物体。如所讨论的,3D打印机400可操作并起到将密封元件244、246、248构造为增材制造的物体的作用。密封元件244、246、248可以是任何合适的尺寸,高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形、D形、V形和/或它们的组合的横截面形状。在实例中,3D打印机400可以逐层沉积材料以构造三维物体。通常,3D打印机400可能需要模型作为操作的基础。在实例中,可以采用计算机辅助设计(CAD)来创建3D打印机可以用来产生所需物体的模型。操作员可以使用CAD软件、3D扫描仪和/或其组合来创建要打印的模型。可以使用任何合适的CAD软件程序。通常,3D扫描仪可以收集有关现有物体的形状和外观的数字数据,并且将其保存为与3D打印机400兼容的文件。非限制性地,模型可以另存为STL文件或AMF文件。在实例中,保存的文件可以使3D打印机400内的部件操作以产生材料的沉积层。3D打印机400可以使用各种工艺来构造密封元件244、246、248。非限制性地,3D打印机400可以使用选择性激光烧结、光聚合固化技术、熔融沉积成型、粘合剂喷射和/或其组合。3D打印机400可以包括框架402、底板404、挤压机406和材料容器408。
框架402可以是用于3D打印机400的结构支撑系统。框架402可包括刚性连接在一起的多个单独的构件。在实例中,所述多个单独的构件可以通过使用任何合适的机构彼此连接,包括但不限于通过使用合适的紧固件、螺纹、粘合剂、焊接和/或它们的任意组合。非限制性地,合适的紧固件可以包括螺母和螺栓、垫圈、螺钉、销、插座、杆和螺柱、铰链和/或它们的任意组合。框架402可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。在实例中,框架402可具有矩形和正方形横截面形状两者。框架402可以由任何合适的材料制成。合适的材料可以包括但不限于金属、非金属、聚合物、陶瓷和/或其组合。
在实例中,底板404可以设置在框架402内。底板404可以是在其上产生增材制造的物体的表面。底板404可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。在实例中,底板404可具有正方形横截面形状。底板404可以由任何合适的材料制成。合适的材料可以包括但不限于金属、非金属、聚合物、陶瓷和/或其组合。底板404可以涂覆有一种物质,以防止沉积的材料粘附到底板404上。底板404可被致动以沿着运动线移动。通常,底板404可以移动靠近和/或远离挤压机406。
挤压机406可以是3D打印机400的材料流动通过的部件。在实例中,随着3D打印机400操作,材料可以通过挤压机406流到底板404上。挤压机406可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。挤压机406可以由任何合适的材料制成。合适的材料可以包括但不限于金属、非金属、聚合物、陶瓷和/或其组合。3D打印机400内可以有多个挤压机106。在实例中,挤压机406可以包括马达和喷嘴。通常,可以使用步进马达,但是可以在3D打印机400内使用任何合适的马达。在实例中,马达可被致动以使材料移动通过喷嘴。在实例中,可以使用任何合适的喷嘴来控制材料的输出流。当材料从喷嘴沉积时,材料可以通过电磁辐射被诱导固化。在实例中,挤压机406还可以包括发射电磁辐射的紫外(UV)源410。
UV源410可邻近挤压机406内任何合适的喷嘴设置。UV源410可将合适的材料暴露于电磁辐射。UV源410可包括任何合适的UV灯和/或任何合适的电源以产生电磁辐射。在实例中,合适的材料可以经历由电磁辐射的吸收引发的聚合。聚合过程可改变合适材料的性质。UV源410可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。UV源410可以由任何合适的材料制成。合适的材料可以包括但不限于金属、非金属、聚合物、陶瓷和/或其组合。挤压机406内可以有多个UV源110。在另选实例中,UV源410可以设置在3D打印机400内和/或之上的任何位置,只要所发射的电磁辐射能够从3D打印机400到达沉积的材料。可经历光聚合的材料可以容纳在材料容器408中,其中光聚合由光吸收触发。在实例中,材料可经历相变(即从液体到固体)。
材料容器408可以容纳要用于打印的材料。可以使用任何合适类型的材料。可以存在多个材料容器408和/或随后的合适的材料,所述材料可以驻留在每个材料容器408中。取决于所使用的特定工艺,合适的材料类型可以变化。通常,热塑性塑料可用于熔融沉积成型诸如丙烯腈-丁二烯-苯乙烯(ABS)、聚乳酸(PLA)、高抗冲聚苯乙烯(HIPS)、热塑性聚氨酯(TPU)、脂肪族聚酰胺(尼龙)、聚醚醚酮(PEEK)和/或其组合。关于本公开,3D打印机400可以采用传统喷墨打印机工艺的变型。在示例中,3D打印机400可以沉积作为液体的任何合适类型的聚合物的液滴,而不是沉积墨滴。在实例中,可以使用光敏聚合物。在另选实例中,3D打印机400能够以聚异戊二烯(天然橡胶)的形式进行打印。该合适的材料中可能存在第二种成分诸如碳、石墨、碳化钨等。这些聚合物改性剂的原位混合可以增强合适材料的性能。材料容器408可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。材料容器408可以由任何合适的材料制成。合适的材料可以包括但不限于金属、非金属、聚合物、陶瓷和/或其组合。可以存在多个材料容器108以容纳用于期望物体的多种材料的打印。在实例中,用于打印的材料可以设置在材料容器408内。信息处理系统可以控制材料从材料容器408的移动,以流动通过挤压机406并设置在底板404上。
图5示出了信息处理系统500的实例。信息处理系统500可以包括可操作以计算、估计、分类、处理、发送、接收、检索、产生、切换、存储、显示、显现、检测、记录、再现、处理或利用任何形式的信息、情报或数据以用于商业、科学、控制或其他目的的任何工具或工具的集合。例如,信息处理系统500可以是处理单元、网络存储装置或任何其他合适的装置,并且可以在尺寸、形状、性能、功能和价格上变化。信息处理系统500可以包括随机存取存储器(RAM)、一个或多个处理资源诸如中央处理单元(CPU)或硬件或软件控制逻辑、ROM和/或其他类型的非易失性存储器。信息处理系统500的附加部件可以包括一个或多个磁盘驱动器、用于与外部装置以及输入装置(例如,键盘、鼠标等)通信的一个或多个网络端口和视频显示器。信息处理系统500还可包括一条或多条总线,所述一条或多条总线可操作以在各种硬件部件之间传输通信。
另选地,本公开的系统和方法可以至少部分地利用非暂时性计算机可读介质来实现。非暂时性计算机可读介质可以包括可以在一段时间内保留数据和/或指令的任何工具或工具的集合。非暂时性计算机可读介质可以包括例如存储介质诸如直接存取存储装置(例如,硬盘驱动器或软盘驱动器)、顺序存取存储装置(例如,磁带磁盘驱动器)、光盘、CD-ROM、DVD、RAM、ROM、电可擦除可编程只读存储器(EEPROM)和/或闪存;以及通信介质诸如电线、光纤、微波、无线电波和其他电磁和/或光学载体;以及/或者前述的任何组合。
用于执行方法步骤的软件可以存储在信息处理系统500中和/或外部计算机可读介质上。本领域的普通技术人员将理解,信息处理系统500可以包括包含电路的硬件元件、包含存储在机器可读介质上的计算机代码的软件元件、或硬件元件和软件元件两者的组合。另外,所示的块仅仅是可以实现的块的一个实例。处理器502诸如中央处理单元或CPU控制信息处理系统500的整体操作。处理器502可以连接到存储器控制器504,该存储器控制器可以从系统存储器506读取数据和向其写入数据。存储器控制器504可以具有包括非易失性存储器区域和易失性存储器区域的存储器。如本领域普通技术人员将理解的,系统存储器506可以由多个存储器模块组成。另外,系统存储器506可以包括非易失性部分和易失性部分。系统基本输入输出系统(BIOS)可以存储在系统存储器506的非易失性部分中。系统BIOS可以适于控制启动或引导过程以及控制信息处理系统500的低级操作。
如图所示,处理器502可以连接到至少一条系统总线508,例如以允许处理器502与其他系统装置之间的通信。系统总线可以在诸如外围组件互连(PCI)总线的变型等的标准协议下操作。在图5所示的实例中,系统总线508可以将处理器502连接到硬盘驱动器510、图形控制器512和至少一个输入装置514。硬盘驱动器510可以为信息处理系统500使用的数据提供非易失性存储。图形控制器512可以继而连接到显示装置516,该显示装置基于信息处理系统500执行的活动向用户提供图像。信息处理系统500的存储器装置(包括系统存储器506和硬盘510)可以是有形的机器可读介质,其存储计算机可读指令以使处理器502执行根据本技术的实例的方法。
在实例中,信息处理系统500可以接收包含要由3D打印机400(参考图4)打印的模型的STL文件。在信息处理系统500已经接收到STL文件之前或之后,可以处理STL文件以将模型转换成一系列层,称为切片。在实例中,信息处理系统500可以包含对STL文件进行切片的软件。3D打印机400可以根据模型的每个连续层,使用切片的STL文件将材料容器408(参考图4)内的材料设置在指定位置。在实例中,信息处理系统500可以指示底板404(参考图4)移动到挤压机406(参考图4)附近。信息处理系统500可以控制和致动挤压机406的位置以匹配STL文件内的切片层的位置。设置在材料容器408内的材料可以从材料容器408行进到挤压机406。随着材料行进并通过挤压机406,挤压机406可以根据切片的STL文件在底板404上移动。随着挤压机406将材料沉积到底板404上,材料可以暴露于由UV源410(参考图4)产生的电磁辐射。随着材料吸收电磁辐射,当沉积材料内的聚合物链之间发生交联时,材料可能聚合并固化。挤出机406可以继续将材料沉积到在已经固化或处于固化过程中的先前沉积的材料上构建的层中。在另选实例中,可以独立于挤压机406完成固化工艺。固化可通过施加热量和/或压力而发生。在实例中,3D打印机400能够原位混合和/或沉积至少两种合适的材料。另选地,3D打印机400能够同时沉积至少两种合适的材料,如图4所示。操作员能够在信息处理系统500内旋转要使用的合适材料、混合比和沉积取向,以便3D打印机400被适当地构造成产生期望的三维物体。
在实例中,可以产生具有任何合适的材料构造的增材制造的物体。非限制性地,合适的材料构造可以包括分层的、混合的、蜂窝状的和空隙等。图6和图7示出了例如可以由3D打印机400(参考图4)产生的不同的材料构造。如图6所示,可能存在第一材料600、混合区域602和第二材料604。如前所述,第一材料600和第二材料604可以是3D打印机400使用的任何合适的材料。例如,第一材料600和/或第二材料604可以包括光敏聚合物诸如聚异戊二烯。第一材料600可以不同于第二材料604。在实例中,第一材料600可以具有比第二材料604更低的硬度值或更高的硬度值。硬度值可以定义为抵抗变形的材料能力。第一材料600可以通过混合区域602与第二材料604分离。
混合区域602可以是不同材料之间的边界区域,其中不同材料可以在给定区域上整合,而不是相邻材料之间的突然分离。混合区域602可能不显示明显的材料分离边界,因为混合区域602可包括第一材料600和第二材料604的混合物。可以形成混合区域602以增强打印物体的性质。通常,分离边界指示分离的材料具有不同的性质值。包括不同性质值之间的过渡区域(诸如在混合区域602中)以更好地分布打印物体的性质值可能是有益的。例如,第一材料600可以具有10MPa的屈服应力,并且第二材料604可以具有50MPa的屈服应力。给定施加的应力,打印物体可能沿着第一材料600和第二材料604之间的分离边界失效。在本实例中,可以包括混合区域602,其中混合区域602具有第一材料600和第二材料604之间的性质的组合。例如,混合区域602可具有30MPa的屈服应力。在实例中,施加的应力可能不足以影响混合区域602。可以通过在当前打印层中和/或在不同打印层之间选择性地分配第一材料600和第二材料604以形成混合区域602。例如,打印层可以仅包括第一材料600。辅助打印层可以仅包括第二材料604。取决于混合区域602的期望宽度,后续打印层可以在第一材料600和第二材料604之间交替。一旦完成了材料之间的过渡,3D打印机400(参考图4)即可在待打印的其余层中分配材料中的一种。混合区域602可通过在印刷工艺期间由于暴露于电磁辐射而使第一材料600与第二材料604交联来改善材料构造。附加的材料构造可以产生改进的性能值和特性。在实例中,引入空隙可以被结合到印刷工艺中。
在另选实例中,用于创建打印物体的模型可以利用蜂窝状结构。例如,第一材料600和第二材料604的第一层可以根据操作员设计的切片模型沉积在底板404上(参考图4)。应当注意,第一材料600和第二材料604可以互换使用。第一材料600和第二材料604两者可以通过相同的喷嘴分配,或者每种材料可以有一个喷嘴。在第一层内,第一材料600可以以网格结构(即蜂窝结构)的变型分配在底板404上。第二材料604可以在由第一材料600产生的网格结构之间的间歇空间中分配在底板404上。应当注意,空气可取代第二材料604,其可形成封闭的气穴以产生一个空隙或多个空隙,如下文所论述。第一材料600和第二材料604的分配可以同时和/或间隔地发生。当后续层沉积在底板404上时,每层中的结构的宽度和长度可以变化。例如,间歇空间可能缩小或变大。另选地,相同的蜂窝状结构可以存在于整个印刷物体中。
如图7所示,可能存在空隙700。空隙700可以被特意设计成密封元件244、246、248(参考图2A至图2C)。空隙700可以是空气和/或与围绕空隙700的材料不同的材料的外壳。空隙的选择性安置可以减少材料使用,同时能够保持密封元件244、246、248的结构完整性。可以存在多个空隙700。如图所示,第一材料600可以通过混合区域602与第二材料604分离。第二材料604可以包括空隙700。空隙700可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。
例如,为了形成空隙700,第一材料的第一层可以根据操作员设计的切片模型沉积在底板404上(参考图4),其中每个切片可被识别为单层。通常,随着挤压机406(参考图4)的移动,可以从其分配第一材料。非限制性地,模型可以利用包含材料空隙的结构。在本实例中,当后续层被沉积到底板404上时,在打印物体内可能形成空隙。信息处理系统500(参考图5)可以停止第一材料从挤压机406的喷嘴中流出。可以从空隙的位置调整挤压机406的位置,并且第一材料可以继续分配到底板404上。停止第一材料的流动和调整挤压机406的位置所需的时间可以根据当前的操作层而变化。空隙700可以被第一层和最终层封闭。应当注意,可以将第三材料702结合到材料构造中。如图所示,第三材料702可以直接邻接第二材料604。第三材料702可以不同于第一材料600和第二材料604两者。
如图6和图7所示,公开的密封元件可以包括在提供给3D打印机400的模型中设计的任何合适的材料构造。使用3D打印机400来制造密封元件可以实现材料构造内材料安置的定制。如所公开的,由于材料的组合,密封元件可包括多种性质。各种性质可以局部化和/或分布在整个密封元件中。在实例中,密封元件可以表现出贡献材料的整体性能特性。非限制性地,各种性质可包括用于抗挤压的高温强度、用于低温密封的高弹性、耐气体性、耐化学性和/或它们的组合。在实例中,密封元件可以包括各种硬度值。通过允许改进的密封件承受更宽的温度范围、在低压环境中操作以及抑制密封件的不期望的膨胀和/或收缩,在密封元件内包括多种性质可以允许进一步的烃勘探和/或开采。
图8示出了井下工具800的实例。在实例中,井下工具800可以是设置在井筒116(例如,参考图1)内的任何合适的工具。井下工具800可包括心轴801和围绕心轴801设置的密封组套802。密封组套802可以是用于密封井筒116的一部分的各个密封元件804、806、808的组件。另外,在密封组套802内可能存在其他合适的材料,该材料为各个密封元件804、806、808提供结构支撑。根据本实施方案,密封元件804、806、808中的一个或多个可以包括第一材料和第二材料。通过使用增材制造,第一材料和第二材料可以用于密封元件804、806、808中的至少一个,使得能够定制密封元件804、806、808的性能和功能。密封元件804、806、808的可以定制的性质可以包括但不限于硬度、弹性、耐气体性、耐化学性和高温强度等。如图所示,密封组套802内的各个密封元件804、806、808可以是任何合适的尺寸、高度和/或形状。非限制性地,合适的形状可包括但不限于圆形、椭圆形、三角形、矩形、正方形、六边形和/或它们的组合的横截面形状。
如图9所示,可以例如通过使用3D打印机400(例如,参考图4)来构造单独的密封元件900。如图所示,密封元件900可具有大致环形的本体902。环形本体902可以是具有第一材料和第二材料的增材制造的物体。在一些实施方案中,环形本体902可以是圆形和/或中空的。在实例中,密封元件900可以被设计成具有各种不同的横截面形状,如先前所讨论的。非限制性地,密封元件900可以具有形状类似于V形902、D形904、正方形906和/或其组合的横截面。
图10示出了增材制造的物体的不同潜在材料构造的实例。如图所示,可能存在增材制造的物体的第一构造1000和增材制造的物体的第二构造1002。第一构造1000和/或第二构造1002可以包括第一材料1004、第二材料1006和第三材料1008。第一构造1000与第二构造1002区别可在于,第一构造1000可以在第一材料1004、第二材料1006和第三材料1008之间具有逐渐过渡的区域。如图所示,第二构造1002可以将第一材料1004、第二材料1006和第三材料1008明显地分离成层。可以使用3D打印机400(例如,参考图4)来实现第一构造1000和/或第二构造1002。
因此,本公开总体上可涉及增材制造操作,并且更具体地涉及用于三维(3D)打印密封元件的系统和方法。非限制性地,所述系统和方法的特征还可以在于以下声明中的一项或多项:
声明1.一种用于井中的井下工具,包括:心轴;围绕所述心轴设置的密封元件,其中所述密封元件包括增材制造的物体,其中所述增材制造的物体包括第一材料和第二材料。
声明2.如声明1所述的井下工具,其中所述井下工具包括围绕所述芯轴设置的密封组套,其中所述密封组套包括所述密封元件和包括第二增材制造的物体的第二密封元件。
声明3.如声明1或声明2所述的井下工具,其中所述增材制造的物体具有环形本体。
声明4.如前述声明中任一项所述的井下工具,其中所述第一材料和所述第二材料具有在肖氏A硬度标度上彼此相差5或更大的硬度。
声明5.如任一前述声明所述的井下工具,其中所述第一材料和所述第二材料各自单独地选自由热塑性塑料、陶瓷和金属组成的组。
声明6.如任一前述声明所述的井下工具,其中所述第一材料包括光敏聚合物,并且其中所述第二材料包括与所述第一材料的所述光敏聚合物不同的另一光敏聚合物。
声明7.如声明6所述的井下工具,其中所述光敏聚合物和所述另一光敏聚合物各自包括具有不同性质的聚异戊二烯。
声明8.如任一前述声明所述的井下工具,其中所述增材制造的物体还包括所述第一材料和所述第二材料的混合区域,所述混合区域将所述第一材料的第一区域和所述第二材料的第二区域分开。
声明9.如任一前述声明所述的井下工具,其中所述增材制造的物体还包括设置在所述第一材料和/或所述第二材料中的至少一者中的一个或多个空隙。
声明10.一种生产用于井下工具的密封元件的方法,包括:将第一材料的第一层沉积到3D打印机的底板上;在所述第一层上沉积所述第一材料的第二层;以及顺序地沉积附加层,其中每个顺序层设置在前一层上,产生所述密封元件。
声明11.如声明10所述的方法,其中所述密封元件具有环形本体。
声明12.如声明10或声明11所述的方法,其中所述第一材料和所述第二材料具有在肖氏A硬度标度上彼此相差5或更大的硬度。
声明13.如声明10至12中任一项所述的方法,还包括停止所述第一材料在所述第二层和所述顺序层的至少一部分上的流动以形成空隙,其中所述空隙被所述第一层和最终层封闭。
声明14.如声明13所述的方法,其中所述空隙被空气填充。
声明15.如声明10至14中任一项所述的方法,还包括停止所述第一材料在所述第二层和所述顺序层的至少一部分上的流动,以形成填充有空气并由网格结构分隔的多个空隙。
声明16.如声明10至15中任一项所述的方法,还包括将所述第一材料暴露于电磁辐射以促进聚合。
声明17.如声明10至16中任一项所述的方法,还包括将所述第一材料暴露于紫外源以引发相变。
声明18.如声明10至17中任一项所述的方法,还包括顺序地沉积所述第一材料或所述第二材料的附加层,其中每个顺序层设置在前一层上。
声明19.如声明18所述的方法,还包括停止所述第一材料在所述第二层和所述顺序层的至少一部分上的流动以形成空隙,其中所述空隙被所述第一层和最终层封闭。
声明20.如声明18所述的方法,还包括停止所述第一材料在所述第二层和所述顺序层的至少一部分上的流动以形成填充有空气并由网格结构分隔的多个空隙,其中蜂窝结构被所述第一层和最终层封闭。
虽然已详细描述本发明及其优点,但应理解,可以在不脱离如由所附权利要求界定的本发明的精神和范围的情况下,在本文中进行各种改变、替代和更改。前面的描述提供了本文公开的系统和使用方法的各种实例,这些实例可以包含不同的方法步骤和部件的替代组合。应当理解,尽管这里可能讨论各个实例,但是本公开覆盖所公开实例的所有组合,包括但不限于不同的部件组合、方法步骤组合和系统的性质。应当理解,组合物和方法是就“包括”、“包含”或“含有”各种组分或步骤而言来描述,但是组合物和方法还可“基本上由各种组分和步骤组成”或“由各种组分和步骤组成”。此外,如权利要求中使用的不定冠词“一(a或an)”在本文中被定义为意指其引入的一个或一个以上元件。
为了简洁起见,本文仅明确公开了某些范围。然而,从任何下限起的范围可与任何上限结合来列举未明确列举的范围,并且从任何下限起的范围可与任何其他下限结合来列举未明确列举的范围,以相同的方式,从任何上限起的范围可与任何其他上限结合来列举未明确列举的范围。另外,每当公开了具有下限和上限的数值范围时,其明确公开了在所述范围内的任何数字和任何所包括的范围。具体地,本文公开的值的每个范围(“约a至约b”,或等效地“约a到b”,或等效地“约a-b”的形式)应理解为阐述在所述值的较宽范围内所涵盖的每个数字和范围,即使未明确地列出也是如此。因此,每个点或单个值可用作其自身的下限或上限来与任何其他点或单个值或者任何其他下限或上限结合,以便列举未明确列举的范围。
因此,本实例非常适合达到所提到的目的和优势以及本文固有的那些目的和优势。上面公开的特定实例仅是说明性的,并且可以按照受益于本文教导内容的本领域技术人员显而易见的不同但等效的方式加以修改和实践。尽管讨论了单个实例,但是本公开涵盖所有实例的所有组合。此外,除了如以下权利要求中描述之外,不希望限制本文中所示的结构或设计的细节。此外,除非专利所有人另有明确无误地定义,否则权利要求中的术语具有其普通常见的含义。因此,很明显的是,上文公开的特定说明性实例可加以改变或修改,并且所有这些变化都视为处于这些实例的范围和精神内。如果在本说明书与可以引用方式并入本文的一个或多个专利或其他文件中的措词或术语的使用上存在任何冲突,那么应采用与本说明书一致的定义。

Claims (11)

1.一种生产用于井下工具的密封元件的方法,包括:
将第一材料的第一层以网格结构沉积到3D打印机的底板上;
在所述网格结构之间的间歇空间中沉积第二材料;以及
顺序地沉积附加层,其中每个顺序层设置在前一层上,产生所述密封元件。
2.如权利要求1所述的方法,其中所述密封元件具有环形本体。
3.如权利要求1所述的方法,其中所述第一材料和所述第二材料具有在肖氏A硬度标度上彼此相差5或更大的硬度。
4.如权利要求1所述的方法,还包括停止所述第一材料在由所述第二材料沉积成的第二层和所述顺序层的至少一部分上的流动以形成空隙,其中所述空隙被所述第一层和最终层封闭。
5.如权利要求4所述的方法,其中所述空隙被空气填充。
6.如权利要求1所述的方法,还包括停止所述第一材料在由所述第二材料沉积成的第二层和所述顺序层的至少一部分上的流动,以形成填充有空气并由网格结构分隔的多个空隙。
7.如权利要求1所述的方法,还包括将所述第一材料暴露于电磁辐射以促进聚合。
8.如权利要求1所述的方法,还包括将所述第一材料暴露于紫外源以引发相变。
9.如权利要求1所述的方法,还包括顺序地沉积所述第一材料或所述第二材料的附加层,其中每个顺序层设置在前一层上。
10.如权利要求9所述的方法,还包括停止所述第一材料在由所述第二材料沉积成的第二层和所述顺序层的至少一部分上的流动以形成空隙,其中所述空隙被所述第一层和最终层封闭。
11.如权利要求9所述的方法,还包括停止所述第一材料在由所述第二材料沉积成的第二层和所述顺序层的至少一部分上的流动以形成填充有空气并由网格结构分隔的多个空隙,其中网格结构被所述第一层和最终层封闭。
CN201980008442.1A 2018-02-27 2019-01-28 改进的密封元件 Active CN111601947B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862636027P 2018-02-27 2018-02-27
US62/636,027 2018-02-27
PCT/US2019/015346 WO2019168621A1 (en) 2018-02-27 2019-01-28 Improved sealing element

Publications (2)

Publication Number Publication Date
CN111601947A CN111601947A (zh) 2020-08-28
CN111601947B true CN111601947B (zh) 2023-06-20

Family

ID=67805529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980008442.1A Active CN111601947B (zh) 2018-02-27 2019-01-28 改进的密封元件

Country Status (11)

Country Link
US (1) US11536110B2 (zh)
CN (1) CN111601947B (zh)
AU (1) AU2019227427A1 (zh)
DE (1) DE112019000294T5 (zh)
FR (1) FR3078359B1 (zh)
GB (1) GB2582872B (zh)
IE (1) IE20190023A1 (zh)
NL (1) NL2022502B1 (zh)
NO (1) NO20200777A1 (zh)
SG (1) SG11202004882SA (zh)
WO (1) WO2019168621A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20210935A1 (en) * 2019-03-28 2021-07-21 Halliburton Energy Services Inc Lattice formation of thermoplastic materials to model elastic behavior
GB2605896B (en) * 2020-01-24 2023-11-15 Halliburton Energy Services Inc High performance regular and high expansion elements for oil and gas applications
US11724443B2 (en) * 2020-05-14 2023-08-15 Saudi Arabian Oil Company Additive manufacture-assisted method for making structural elements having controlled failure characteristics
CN114274512B (zh) * 2021-12-27 2023-08-08 南京铖联激光科技有限公司 一种3d打印设备料缸密封结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133498A1 (en) * 2015-02-17 2016-08-25 Halliburton Energy Services, Inc. Lattice seal packer assembly and other downhole tools

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290603A1 (en) 2007-05-24 2008-11-27 Baker Hughes Incorporated Swellable material and method
GB0802235D0 (en) 2008-02-07 2008-03-12 Swellfix Bv Downhole seal
US8087700B2 (en) * 2009-03-27 2012-01-03 National Coupling Company, Inc. Hydraulic coupling member with bidirectional pressure-energized probe seal
GB201004045D0 (en) * 2010-03-11 2010-04-28 Tendeka Bv Fully bonded end rings
US9080098B2 (en) * 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8997853B2 (en) 2011-08-22 2015-04-07 National Boss Hog Energy Services, Llc Downhole tool and method of use
US10246967B2 (en) 2011-08-22 2019-04-02 Downhole Technology, Llc Downhole system for use in a wellbore and method for the same
GB2521394A (en) 2013-12-18 2015-06-24 Skf Ab Multi-material seal, bearing and method of producing
MX2016006282A (es) 2014-02-05 2016-07-26 Halliburton Energy Services Inc Componentes de fondo de pozo impresos en tercera dimension (3d).
US10526868B2 (en) * 2014-08-14 2020-01-07 Halliburton Energy Services, Inc. Degradable wellbore isolation devices with varying fabrication methods
US10597970B2 (en) 2015-01-27 2020-03-24 Schlumberger Technology Corporation Downhole cutting and sealing apparatus
US10378303B2 (en) * 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
WO2017039619A1 (en) 2015-08-31 2017-03-09 Halliburton Energy Services, Inc. Wellbore seals with complex features through additive manufacturing
JP2018537320A (ja) 2015-12-11 2018-12-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 特性が改善され、調整された物体を製造するための付加製造方法
WO2017160265A1 (en) 2016-03-14 2017-09-21 Halliburton Energy Services, Inc. 3d printed tool with integral stress concentration zone
TWI712509B (zh) * 2016-05-02 2020-12-11 愛爾蘭商滿捷特科技公司 具有伸展和縮回經過維護模組之列印頭的印表機
US10119615B2 (en) 2016-05-31 2018-11-06 Cameron International Corporation Sealing components and methods of manufacture
CN108215173A (zh) * 2016-12-15 2018-06-29 上海普利生机电科技有限公司 能够自动连续打印的光固化型三维打印设备、方法及系统
US20180296343A1 (en) * 2017-04-18 2018-10-18 Warsaw Orthopedic, Inc. 3-d printing of porous implants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133498A1 (en) * 2015-02-17 2016-08-25 Halliburton Energy Services, Inc. Lattice seal packer assembly and other downhole tools

Also Published As

Publication number Publication date
DE112019000294T5 (de) 2020-10-15
AU2019227427A1 (en) 2020-06-11
US11536110B2 (en) 2022-12-27
SG11202004882SA (en) 2020-06-29
WO2019168621A1 (en) 2019-09-06
IE20190023A1 (en) 2020-06-24
FR3078359B1 (fr) 2022-03-04
NO20200777A1 (en) 2020-07-02
GB2582872B (en) 2022-08-10
NL2022502B1 (en) 2021-10-14
GB202008624D0 (en) 2020-07-22
NL2022502A (en) 2019-09-03
GB2582872A (en) 2020-10-07
FR3078359A1 (fr) 2019-08-30
US20200199966A1 (en) 2020-06-25
CN111601947A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN111601947B (zh) 改进的密封元件
US9212542B2 (en) Expandable tubing run through production tubing and into open hole
US20210254433A1 (en) Wireless activation of wellbore completion assemblies
CN104428487A (zh) 多级井隔离
US8267173B2 (en) Open hole completion apparatus and method for use of same
GB2458751A (en) A method of forming a swellable downhole apparatus
US9416611B2 (en) Method for forming slots in a wellbore casing
US9243480B2 (en) System and method for activating a down hole tool
CN110691887A (zh) 井筒流体连通工具
AU2015383114A1 (en) Flow-activated fill valve assembly for cased hole
WO2016076853A1 (en) Internally trussed high-expansion support for inflow control device sealing applications
US20170247966A1 (en) Damaged seal bore repair device
WO2020197560A1 (en) Lattice formation of thermoplastic materials to model elastic behavior
US20160138370A1 (en) Mechanical diverter
WO2022093277A1 (en) Well sealing tool with controlled-volume gland opening
WO2023163154A1 (ja) ジョイントアセンブリ、生産井製造方法、およびガス生産方法
US9828839B2 (en) Barrier device with fluid bypass for multi-zone wellbores
EP2904191B1 (en) High flow area swellable cementing packer
AU2010214650A1 (en) Method of forming a downhole apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant