CN111598465B - Multi-station multi-parameter task scheduling method for testing power lithium battery module - Google Patents
Multi-station multi-parameter task scheduling method for testing power lithium battery module Download PDFInfo
- Publication number
- CN111598465B CN111598465B CN202010426379.8A CN202010426379A CN111598465B CN 111598465 B CN111598465 B CN 111598465B CN 202010426379 A CN202010426379 A CN 202010426379A CN 111598465 B CN111598465 B CN 111598465B
- Authority
- CN
- China
- Prior art keywords
- test
- task
- lithium battery
- power lithium
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 372
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000003016 pheromone Substances 0.000 claims description 18
- 241000257303 Hymenoptera Species 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 7
- 238000004904 shortening Methods 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 238000011056 performance test Methods 0.000 description 8
- 238000010998 test method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Primary Health Care (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Molecular Biology (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及动力锂电池模组电性能测试方法,尤其涉及一种用于动力锂电池模组测试的多工位多参数任务调度方法。The invention relates to a method for testing the electrical performance of a power lithium battery module, and in particular to a multi-station multi-parameter task scheduling method for testing a power lithium battery module.
背景技术Background Art
动力锂电池是目前绝大多数电动汽车能量来源,其能量密度、充放电性能直接影响动力汽车使用性能。目前动力锂电池行业发展迅速,相关测试标准中针对动力锂电池模组需要测试多种点性能参数,包括室温放电容量、开路电压、交流内阻、室温倍率放电容量、室温倍率充电性能、低温放电容量、高温放电容量等。动力锂电池模组电性能测试采用电池模组充放电测试系统进行,当进行多组动力锂电池多参数性能测试情况时,传统测试方法将单块动力锂电池模组接在测试通道中,由于电性能参数测试任务之间存在动力锂电池模组搁置时间,使测试过程中存在测试通道闲置,整体测试时间较长,测试效率低。Power lithium batteries are the energy source for most electric vehicles. Their energy density and charge and discharge performance directly affect the performance of power vehicles. At present, the power lithium battery industry is developing rapidly. The relevant test standards require testing of multiple performance parameters for power lithium battery modules, including room temperature discharge capacity, open circuit voltage, AC internal resistance, room temperature rate discharge capacity, room temperature rate charging performance, low temperature discharge capacity, high temperature discharge capacity, etc. The electrical performance test of power lithium battery modules is carried out using a battery module charge and discharge test system. When performing multi-parameter performance tests on multiple groups of power lithium batteries, the traditional test method connects a single power lithium battery module to the test channel. Since there is a lay-by time for the power lithium battery module between electrical performance parameter test tasks, the test channel is idle during the test process, the overall test time is long, and the test efficiency is low.
本发明公开了一种用于动力锂电池模组测试的多工位多参数任务调度方法,该方法通过建立动力锂电池多工位多测试参数任务调度模型,利用蚁群算法求解最优任务测试路径集,在极大缩短电池测试系统测试时间、提高测试效率的同时,缩短高低温试验箱总使用时间,较好地节省测试成本。The present invention discloses a multi-station multi-parameter task scheduling method for power lithium battery module testing. The method establishes a multi-station multi-test parameter task scheduling model for power lithium batteries, and uses an ant colony algorithm to solve an optimal task test path set. While greatly shortening the test time of a battery test system and improving the test efficiency, the method also shortens the total use time of a high and low temperature test chamber, thereby effectively saving test costs.
上述具体专利对比文件和相关文献为:The above-mentioned specific patent reference documents and related literature are:
1)、“动力锂电池性能测试装置及测试方法”,专利申请号201810544795.0。该发明公开了一种动力锂电池性能测试装置及测试方法,该方法包括在小型动力锂电池性能测试装置开启充电开关、关闭放电开关,对动力锂电池进行充电测试;关闭充电开关、开启放电开关,对动力锂电池进行放电测试。该方法虽然能较为简便地实现动力锂电池性能测试,但单次只能对单个动力锂电池进行测试,测试效率较低。1) "Power lithium battery performance test device and test method", patent application number 201810544795.0. This invention discloses a power lithium battery performance test device and test method, which includes turning on the charging switch and turning off the discharging switch in a small power lithium battery performance test device to perform a charging test on the power lithium battery; turning off the charging switch and turning on the discharging switch to perform a discharging test on the power lithium battery. Although this method can easily implement the power lithium battery performance test, it can only test a single power lithium battery at a time, and the test efficiency is low.
2)、“一种新能源汽车动力锂电池性能检测测试方法”,专利申请号201810347856.4。该发明公开了一种新能源汽车动力锂电池性能检测测试方法。该方法通过组装动力锂电池性能检测装置,针对温度测试、振动测试、负载检测、复杂环境测试等性能测试需要不同地测试环境,启动动力锂电池性能检测装置中的不同结构装置。该方法能实现动力锂电池各种性能测试,但是未提出测试优化方案,测试效率较低。2) "A performance testing method for power lithium batteries of new energy vehicles", patent application number 201810347856.4. This invention discloses a performance testing method for power lithium batteries of new energy vehicles. This method assembles a power lithium battery performance testing device, and starts different structural devices in the power lithium battery performance testing device for different test environments required for performance tests such as temperature testing, vibration testing, load testing, and complex environment testing. This method can realize various performance tests of power lithium batteries, but no test optimization plan is proposed, and the test efficiency is low.
3)、“一种多任务进度管理系统与方法”,专利号201810606314.4。该发明公开了一种多任务进度管理系统与方法,该发明通过构建任务调度中心、任务执行器、任务解析器、任务显示器为一体的多任务管理系统,通过将不同类型的任务结合,进行统一的任务进度管理,同时又包含嵌套的效果,可更加准确地描述程序具体的执行情况。该方法保证了多任务进度可实时观察,但并未实质性提出多任务管理具体实施方案。3) "A multi-task progress management system and method", patent number 201810606314.4. This invention discloses a multi-task progress management system and method. This invention constructs a multi-task management system that integrates a task scheduling center, a task executor, a task parser, and a task display. By combining different types of tasks, unified task progress management is performed, and the nested effect is included, which can more accurately describe the specific execution of the program. This method ensures that the progress of multiple tasks can be observed in real time, but does not substantially propose a specific implementation plan for multi-task management.
4)、大连理工大学的黄学文、张晓彤、艾亚晴在2017年第3期《计算机集成制造系统》上《基于蚁群算法的多加工路线柔性车间调度问题》,该文章提出了一种蚁群算法,能解决工艺路径柔性和机器柔性的多加工路线柔性车间调度问题,获得最佳车间工艺路线。该文章提出的调度模型适用于多机器多测试工艺的调度模型,但是动力锂电池模组电性能多工位多参数任务测试不具有不具有柔性的特点,故其方法不适用于动力锂电池模组电性能多工位多参数任务测试调度中。4) Huang Xuewen, Zhang Xiaotong, and Ai Yaqing from Dalian University of Technology published an article titled "Flexible workshop scheduling problem of multiple processing routes based on ant colony algorithm" in the 3rd issue of "Computer Integrated Manufacturing Systems" in 2017. This article proposed an ant colony algorithm that can solve the flexible workshop scheduling problem of multiple processing routes with process path flexibility and machine flexibility, and obtain the optimal workshop process route. The scheduling model proposed in this article is suitable for the scheduling model of multi-machine multi-test processes, but the multi-station multi-parameter task test of the electrical performance of power lithium battery modules does not have the characteristics of non-flexibility, so its method is not suitable for the scheduling of multi-station multi-parameter task test of the electrical performance of power lithium battery modules.
发明内容Summary of the invention
为解决上述技术问题,本发明的目的是提供一种用于动力锂电池模组测试的多工位多参数任务调度方法。In order to solve the above technical problems, the purpose of the present invention is to provide a multi-station multi-parameter task scheduling method for power lithium battery module testing.
本发明的目的通过以下的技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:
一种用于动力锂电池模组测试的多工位多参数任务调度方法,包括以下步骤:A multi-station multi-parameter task scheduling method for power lithium battery module testing comprises the following steps:
步骤A根据各组动力锂电池模组额定容量及额定电压的不同,对动力锂电池模组进行分组,并接入电池测试系统各个工位中;Step A: grouping the power lithium battery modules according to the rated capacity and rated voltage of each group of power lithium battery modules, and connecting them to various stations of the battery testing system;
步骤B将分组后的各组动力锂电池模组所需测试内容拆分为测试过程中不可中断的最小连续测试任务,设定优先测试任务,并建立所有测试任务的测试序列集;Step B divides the test contents required for each group of power lithium battery modules into minimum continuous test tasks that cannot be interrupted during the test process, sets priority test tasks, and establishes a test sequence set for all test tasks;
步骤C建立任务测试路径集与总测试时间的关系,根据各测试任务的测试时间及测试等待时间计算测试路径集所对应的总测试时间及高低温试验箱使用总时间;Step C establishes the relationship between the task test path set and the total test time, and calculates the total test time corresponding to the test path set and the total use time of the high and low temperature test chamber according to the test time and test waiting time of each test task;
步骤D利用蚁群算法建立测试路径集集合,求解最优任务测试路径集,并给各测试任务测试开始时间和测试结束时间;Step D uses the ant colony algorithm to establish a test path set, solve the optimal task test path set, and give each test task a test start time and a test end time;
步骤E根据最优测试路径集的任务测试顺序、测试开始时间及测试结束时间,依次对各个工位的动力锂电池模组进行各项任务测试。Step E: According to the task test sequence, test start time and test end time of the optimal test path set, each task test is performed on the power lithium battery module of each station in turn.
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:Compared with the prior art, one or more embodiments of the present invention may have the following advantages:
本方法通过对动力锂电池多工位多测试参数任务进行调度,利用蚁群算法求解最优任务测试路径集,在极大缩短电池测试系统测试时间的同时,缩短高低温试验箱使用时间,较好地节省测试成本。This method schedules multi-station and multi-test parameter tasks for power lithium batteries and uses the ant colony algorithm to solve the optimal task test path set. It greatly shortens the test time of the battery test system and shortens the use time of the high and low temperature test chamber, thus saving test costs.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是用于动力锂电池模组测试的多工位多参数任务调度方法流程图;FIG1 is a flow chart of a multi-station multi-parameter task scheduling method for power lithium battery module testing;
图2是用于动力锂电池模组测试的多工位多参数任务调度方法详细流程图。FIG. 2 is a detailed flow chart of a multi-station multi-parameter task scheduling method for power lithium battery module testing.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例及附图对本发明作进一步详细的描述。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with embodiments and drawings.
如图1所示,本发明提供的用于动力锂电池模组测试的多工位多参数任务调度方法流程图包括以下步骤:As shown in FIG1 , the flowchart of the multi-station multi-parameter task scheduling method for power lithium battery module testing provided by the present invention includes the following steps:
步骤10、根据各组动力锂电池模组额定容量及额定电压的不同,对动力锂电池模组进行分组,接入电池测试系统各个工位中;Step 10: Group the power lithium battery modules according to the rated capacity and rated voltage of each group of power lithium battery modules, and connect them to various stations of the battery testing system;
步骤20、将分组后的各组动力锂电池模组所需测试内容拆分为测试过程中不可中断的最小连续测试任务,设定优先测试任务,并建立所有测试任务的测试序列集;Step 20: Split the test contents required for each group of power lithium battery modules into minimum continuous test tasks that cannot be interrupted during the test process, set priority test tasks, and establish a test sequence set for all test tasks;
步骤30、建立任务测试路径集与总测试时间的关系,根据各测试任务的测试时间及测试等待时间计算测试路径集所对应的总测试时间及高低温试验箱使用总时间;Step 30: Establish the relationship between the task test path set and the total test time, and calculate the total test time corresponding to the test path set and the total use time of the high and low temperature test chamber according to the test time and test waiting time of each test task;
步骤40、利用蚁群算法建立测试路径集集合,求解最优任务测试路径集,并给各测试任务测试开始时间和测试结束时间;Step 40: Use the ant colony algorithm to establish a test path set, solve the optimal task test path set, and give each test task a test start time and a test end time;
步骤50、根据最优测试路径集的任务测试顺序、测试开始时间及测试结束时间,依次对各个工位的动力锂电池模组进行各项任务测试。Step 50: Perform various task tests on the power lithium battery modules at each station in turn according to the task test sequence, test start time and test end time of the optimal test path set.
步骤10中,如图2所示,按照各组动力锂电池模组额定容量及额定电压的不同,对动力锂电池模组进行分组,接入电池测试系统各个工位中;In
步骤20中,具体步骤包括:In
设分组后某组动力锂电池模组共有m块动力锂电池模组,即需要接入电池测试系统的m个工位中,该m个工位仅由一个测试通道进行充放电操作,设各块动力锂电池模组测试内容可被拆分为ni(i∈(1,m))项连续测试任务,则该组动力锂电池模组测试内容共被拆分为n=(n1+n2+L+nm)项连续测试任务,设定优先测试任务,并将优先测试任务序列置于前端,记测试任务为Pab,a(1≤a≤m)表示为动力锂电池模组序号,即电池系统工位序号;b表示为该动力锂电池模组内部测试序号,则该组动力锂电池模组测试序列集同一工位内的动力锂电池模组测试顺序需按照序列先后进行,如第一块动力锂电池模组中任务P11需要在任务P12前进行。Suppose that after grouping, a group of power lithium battery modules has a total of m power lithium battery modules, that is, among the m workstations that need to be connected to the battery test system, the m workstations are only charged and discharged by one test channel. Suppose the test content of each power lithium battery module can be divided into n i (i∈(1,m)) continuous test tasks, then the test content of this group of power lithium battery modules is divided into n=(n 1 +n 2 +L+n m ) continuous test tasks, set the priority test task, and put the priority test task sequence at the front. The test task is recorded as P ab , a (1≤a≤m) represents the power lithium battery module serial number, that is, the battery system workstation serial number; b represents the internal test serial number of the power lithium battery module, then the test sequence set of this group of power lithium battery modules is The testing order of power lithium battery modules in the same workstation must be carried out in sequence. For example, task P11 in the first power lithium battery module must be carried out before task P12 .
设该组动力锂电池模组测试序列集所对应的每项连续测试任务测试时间集为即Tab表示测试进行Pab测试时需要占用电池测试系统的时间;设该组动力锂电池模组测试序列集所对应的每项连续测试任务测试等待时间集为即Wab表示测试完成Pab测试后该动力锂电池模组需要搁置的时间。Suppose the test time set of each continuous test task corresponding to the power lithium battery module test sequence set is That is, Tab represents the time that the battery test system needs to occupy when the test is performed Pab . Suppose the test waiting time set of each continuous test task corresponding to the power lithium battery module test sequence set is That is, Wab indicates the time the power lithium battery module needs to be put aside after the Pab test is completed.
步骤30中,具体步骤包括:In
设任务测试路径集为R={R1,R2,L,Rn}(Rj∈P,1≤j≤n),电池测试系统按照任务测试路径集对该组动力锂电池模组进行测试,每测试完一项测试任务后记录该任务测试开始时间及测试结束时间,设定进行第j项任务测试时测试开始时间Sj和测试结束时间Fj,其所测试的动力锂电池模组序号对应为Pab,则该动力锂电池模组(或该工位)进行该项电池测试所对应测试开始时间Sab和测试结束时间Fab计算公式为:Assume that the task test path set is R = {R 1 ,R 2 ,L,R n }(R j ∈P,1≤j≤n), the battery test system tests the group of power lithium battery modules according to the task test path set, records the test start time and test end time of each test task after each test, sets the test start time S j and test end time F j for the jth task test, and the power lithium battery module serial number tested corresponds to P ab , then the test start time S ab and test end time F ab corresponding to the power lithium battery module (or the workstation) for the battery test are calculated as:
Fab=Sab+Tab F ab = S ab + T ab
由于该组动力锂电池模组仅由一个测试通道进行充放电操作,故当在某个测试工位完成一项电池任务测试时,该工位上测试任务开始时间和结束时间即为整个电池测试系统一个测试通道上该任务测试开始时间和结束时间,即Fj=Fab,Sj=Sab。Since the power lithium battery module is charged and discharged by only one test channel, when a battery task test is completed at a certain test station, the start and end time of the test task at the station is the start and end time of the task test on one test channel of the entire battery test system, that is, F j =F ab , S j =S ab .
测试路径集所对应的总测试时间可表达为将测试路径集最后一个测试任务完成后的测试结束时间,即总测试时间Tt=Fn。The total test time corresponding to the test path set can be expressed as the test end time after the last test task of the test path set is completed, that is, the total test time T t =F n .
进行低温放电容量、高温放电容量等任务测试时,需要使用高低温试验箱对动力锂电池模组进行测试,试验箱温度设置为高温和低温两种状态,设测试路径集中需要采用高温测试的测试任务集为根据上述所记录任务测试开始时间和结束时间可求出高温测试时高低温试验箱总使用时间同理也可求出进行低温测试时高低温试验箱使用时间Tl。When performing low-temperature discharge capacity, high-temperature discharge capacity and other task tests, it is necessary to use a high and low temperature test chamber to test the power lithium battery module. The test chamber temperature is set to high temperature and low temperature. Suppose the test task set that needs to use high temperature test in the test path is According to the above recorded task test start time and end time, the total use time of the high and low temperature test chamber during high temperature test can be calculated Similarly, the use time T l of the high and low temperature test chamber during low temperature testing can also be calculated.
步骤40中,求解最优任务测试路径集具体步骤为:In
①将拆分完成的电池测试任务视作蚂蚁需要遍历的目标,当蚂蚁按一定顺序遍历完各个电池测试任务时,视为完成所有电池任务测试,蚂蚁遍历顺序便为任务测试路径集;① The split battery test tasks are regarded as the targets that the ants need to traverse. When the ants traverse each battery test task in a certain order, all battery task tests are considered completed, and the ant traversal order is the task test path set;
②初始化蚂蚁数量Nt,信息素重要程度因子α,启发函数重要因子β,信息素挥发因子ρ,设τrs为第r项测试任务连接到第s项测试任务的信息素,初始设定各项连接测试任务之间的信息素相等。在测试路径集生成过程中,每个测试任务选择由信息素及启发函数决定,通过选择完成所有测试任务,得到任务测试路径集R1,同时计算测试总时间Tt1以及高低温试验箱总使用时间Th1和Tl1。对Nt只蚂蚁进行测试遍历操作,可得到测试总时间集高低温试验箱总使用时间集 对测试总时间、高低温试验箱总使用时间设定权重并进行累加,得到第一代最优测试路径集R1best,此时全局最优测试路径集Rbest为R1best。根据该最优测试测试路径集可得到最优测试总时间、最优高低温试验箱总使用时间。② Initialize the number of ants Nt , the pheromone importance factor α, the heuristic function importance factor β, the pheromone volatility factor ρ, and set τrs as the pheromone that connects the rth test task to the sth test task. Initially set the pheromone between each connected test task to be equal. In the process of generating the test path set, the selection of each test task is determined by the pheromone and the heuristic function. By selecting and completing all test tasks, the task test path set R1 is obtained, and the total test time Tt1 and the total use time of the high and low temperature test chamber Th1 and Tl1 are calculated at the same time . Perform test traversal operations on Nt ants to obtain the total test time set Total use time of high and low temperature test chamber The total test time and the total use time of the high and low temperature test chamber are weighted and accumulated to obtain the first generation optimal test path set R 1best . At this time, the global optimal test path set R best is R 1best . According to the optimal test path set, the optimal total test time and the optimal total use time of the high and low temperature test chamber can be obtained.
③根据各蚂蚁选择的测试路径,更新测试任务之间的信息素,信息素变化的表达式为其中表示Δτrs(N)表示第N只蚂蚁遍历经过第r项测试任务连接到第s项测试任务释放的信息素,设蚂蚁完成一次测试遍历释放的信息素均为Q0,则Δτrs(N)的表达式为 ③According to the test path selected by each ant, the pheromone between the test tasks is updated. The expression of pheromone change is Where Δτ rs (N) represents the pheromone released by the Nth ant after traversing the rth test task and connecting to the sth test task. Assuming that the pheromone released by the ant after completing a test traversal is Q 0 , the expression of Δτ rs (N) is
④重复②~③,设全局最优测试路径解为Rbest,在各代迭代过程中,比较测试路径集RIbest和RI-1best。其中I为当前迭代代数,将更优的测试路径集替换为Rbest。若在10次连续迭代过程中Rbest未改变,则输出最优测试路径集,同时给出对应测试总时间Ttbest、各测试任务测试开始时间Sbest={S1best,S2best,L,Snbest}和测试结束时间Fbest={F1best,F2best,L,Fnbest}。④ Repeat ② to ③, assuming that the global optimal test path solution is R best , and compare the test path sets R Ibest and R I-1best in each iteration. Where I is the current iteration number, and the better test path set is replaced by R best . If R best does not change during 10 consecutive iterations, the optimal test path set is output, and the corresponding total test time T tbest , the test start time of each test task S best = {S 1best , S 2best , L, S nbest } and the test end time F best = {F 1best , F 2best , L, F nbest } are also given.
步骤50中,根据得到的最优测试路径集的任务测试顺序、测试开始时间及测试结束时间,控制电池测试系统测试通道充放电顺序,依次对各个工位的动力锂电池模组进行各项任务测试。In
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present invention are as above, the contents described are only embodiments adopted for facilitating the understanding of the present invention and are not intended to limit the present invention. Any technician in the technical field to which the present invention belongs can make any modifications and changes in the form and details of the implementation without departing from the spirit and scope disclosed in the present invention, but the patent protection scope of the present invention shall still be subject to the scope defined in the attached claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010426379.8A CN111598465B (en) | 2020-05-19 | 2020-05-19 | Multi-station multi-parameter task scheduling method for testing power lithium battery module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010426379.8A CN111598465B (en) | 2020-05-19 | 2020-05-19 | Multi-station multi-parameter task scheduling method for testing power lithium battery module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111598465A CN111598465A (en) | 2020-08-28 |
CN111598465B true CN111598465B (en) | 2023-03-31 |
Family
ID=72189817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010426379.8A Active CN111598465B (en) | 2020-05-19 | 2020-05-19 | Multi-station multi-parameter task scheduling method for testing power lithium battery module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111598465B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114897321A (en) * | 2022-04-22 | 2022-08-12 | 瑞浦兰钧能源股份有限公司 | Test resource management method, device, equipment and readable storage medium |
CN115327252B (en) * | 2022-06-27 | 2023-08-08 | 上海轩田工业设备有限公司 | High-low temperature microwave performance test scheduling optimization method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218299A (en) * | 2013-05-17 | 2013-07-24 | 网宿科技股份有限公司 | Automatic generating method and system of optimized ant colony algorithm test case |
CN106650074A (en) * | 2016-12-14 | 2017-05-10 | 桂林电子科技大学 | Catastrophic fault test method for digital microfluidic chip based on genetic ant colony fusion algorithm |
CN107290642A (en) * | 2017-07-28 | 2017-10-24 | 华南理工大学 | LED light product-derived electrical characteristic parameter multistation multi-parameter comprehensive concurrent testing method and device |
CN110109822A (en) * | 2019-03-30 | 2019-08-09 | 华南理工大学 | The regression testing method of priorities of test cases sequence is carried out based on ant group algorithm |
-
2020
- 2020-05-19 CN CN202010426379.8A patent/CN111598465B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218299A (en) * | 2013-05-17 | 2013-07-24 | 网宿科技股份有限公司 | Automatic generating method and system of optimized ant colony algorithm test case |
CN106650074A (en) * | 2016-12-14 | 2017-05-10 | 桂林电子科技大学 | Catastrophic fault test method for digital microfluidic chip based on genetic ant colony fusion algorithm |
CN107290642A (en) * | 2017-07-28 | 2017-10-24 | 华南理工大学 | LED light product-derived electrical characteristic parameter multistation multi-parameter comprehensive concurrent testing method and device |
CN110109822A (en) * | 2019-03-30 | 2019-08-09 | 华南理工大学 | The regression testing method of priorities of test cases sequence is carried out based on ant group algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN111598465A (en) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects | |
CN102097808B (en) | A Reliability Evaluation Method for Power Distribution System Containing Distributed Wind Power, Photovoltaic and Energy Storage | |
CN107085187A (en) | Method and device for determining consistency maintenance index of cascade utilization battery energy storage system | |
US11721994B2 (en) | Method and system for optimizing charging and discharging behaviors of a battery energy storage system based on state of health | |
CN111598465B (en) | Multi-station multi-parameter task scheduling method for testing power lithium battery module | |
CN101999199A (en) | System and methods to extend the service life of portable devices | |
WO2023184700A1 (en) | Battery system charging and discharging control method based on dynamic reconfigurable battery network | |
CN108417916B (en) | Determination of battery sorting parameters considering co-evolution of battery inconsistency and aging | |
CN103473446A (en) | Load reduction model for assessing reliability of active power distribution network and implementation method thereof | |
CN110148979A (en) | A kind of DC power supply battery group precisely control and dynamic optimization method online | |
CN108647415A (en) | The reliability estimation method of electric system for high proportion wind-electricity integration | |
CN110061565A (en) | A kind of energy storage charge/discharge capacity control system and method based on wind-driven generator | |
WO2024124784A1 (en) | Stepped charging and discharging method and apparatus for series formation and capacity grading testing device | |
CN113866644A (en) | Method and device for predicting usable time and capacity of battery | |
CN104504524A (en) | Reliability assessment method and load curtailing method applied to active distribution network | |
CN114720879A (en) | Energy storage lithium battery pack aging mode automatic identification method based on BP neural network | |
CN106291366A (en) | A kind of lithium ion battery equivalent cycle Life Calculating Methods | |
CN118336161A (en) | Integrated modular industrial and commercial energy storage system cabinet and expansion method thereof | |
CN116384167B (en) | Energy management method and system for life optimization of fuel cell UAV power system | |
CN107104466A (en) | Wind storing cogeneration system stored energy element optimizing operation method based on bubble sort | |
CN111538937A (en) | Comprehensive evaluation method and system for echelon utilization energy storage power station | |
CN112946507B (en) | Method, system, equipment and storage medium for on-line detection of energy storage battery health status | |
CN110707788A (en) | System and method for quickly equalizing energy storage battery array in distributed energy storage power station | |
Wang et al. | Battery management system design for industrial manufacture | |
CN117120857A (en) | Battery simulation method based on double-branch equivalent circuit model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |