CN111597747A - Multipoint-triggering ternary lithium power battery module thermal runaway simulation and prediction method - Google Patents
Multipoint-triggering ternary lithium power battery module thermal runaway simulation and prediction method Download PDFInfo
- Publication number
- CN111597747A CN111597747A CN202010417278.4A CN202010417278A CN111597747A CN 111597747 A CN111597747 A CN 111597747A CN 202010417278 A CN202010417278 A CN 202010417278A CN 111597747 A CN111597747 A CN 111597747A
- Authority
- CN
- China
- Prior art keywords
- thermal runaway
- battery module
- trigger
- power battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 26
- 238000004088 simulation Methods 0.000 title claims abstract description 23
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims abstract description 3
- 238000012544 monitoring process Methods 0.000 claims description 11
- 230000008676 import Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 claims description 2
- 238000010187 selection method Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims 3
- 230000020169 heat generation Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000013021 overheating Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000011076 safety test Methods 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013277 forecasting method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种多点触发三元锂动力电池模组热失控仿真及预测方法,包括:建立动力电池模组三维模型,在电池模组中选择热失控多点触发位置;将电池模组三维模型导入有限元软件中,依据热滥用模型对电池组建立电池产热模型,施加热失控触发热源Q于所选取的多点触发位置电池,将电池域划分四边形为主自由网格,设置电池间换热方式为对流及传导,热失控仿真,得到电池模组温度、触发点、热源、热失控时间数据;采集不同触发点个数n与热失控触发热源Q引发热失控时间平均值t,由非线性最小二乘法拟合计算时间t与热失控热源Q、触发点个数n关系式,预测电池模组发生热失控时间;计算电池模组整体热失控预测关系式,对模组整体热失控时间进行计算。
The invention discloses a multi-point trigger ternary lithium power battery module thermal runaway simulation and prediction method, comprising: establishing a three-dimensional model of a power battery module, selecting a thermal runaway multi-point trigger position in the battery module; The 3D model is imported into the finite element software, the battery heat generation model is established for the battery pack according to the thermal abuse model, and the thermal runaway trigger heat source Q is applied to the selected multi-point trigger position. The heat transfer methods are convection and conduction, and thermal runaway simulation is used to obtain battery module temperature, trigger point, heat source, and thermal runaway time data; the number of different trigger points n and the thermal runaway trigger heat source Q are collected. The nonlinear least squares method is used to fit the relationship between the calculation time t and the thermal runaway heat source Q and the number of trigger points n to predict the thermal runaway time of the battery module; Runaway time is calculated.
Description
技术领域technical field
本发明涉及电动汽车动力电池技术领域,尤其涉及一种基于多点触发的 三元锂动力电池模组热失控仿真及预测方法。The invention relates to the technical field of electric vehicle power batteries, in particular to a method for simulating and predicting thermal runaway of a ternary lithium power battery module based on multi-point triggering.
背景技术Background technique
动力电池作为电动汽车的核心部件,其安全性对电动汽车的发展具有重 要的影响作用。动力电池在机械滥用、电滥用及热滥用下容易产生热失控状 况,对电动汽车及人员安全造成严重伤害,机械滥用及电滥用产生的大量热 量会导致电池温度过高,造成热滥用,进而产生热失控状况,即热滥用是导 致动力电池产生热失控的根本原因。动力电池模组作为动力电池系统重要组 成部件,对其安全性的研究具有重要意义,因此需要一种对动力电池模组在 不同碰撞工况下产生多点触发,引起模组热失控情况的仿真及预测方法。As the core component of electric vehicles, the safety of power battery plays an important role in the development of electric vehicles. The power battery is prone to thermal runaway under mechanical abuse, electrical abuse and thermal abuse, causing serious harm to the safety of electric vehicles and personnel. Thermal runaway condition, that is, thermal abuse, is the root cause of thermal runaway in power batteries. As an important component of the power battery system, the power battery module is of great significance to the research on its safety. Therefore, a simulation of the multi-point triggering of the power battery module under different collision conditions is required, causing the thermal runaway of the module. and forecasting methods.
目前国内对动力锂电池进行热失控安全测试时,多采取对动力电池单体 进行安全测试的方法,该法虽可对电池进行安全把控,但没有考虑到实际应 用中以模组形式在电动汽车中存在的动力电池模组的安全性,且未考虑到电 动车在实际行驶中遇到各种碰撞工况时产生的多点过热,进而导致动力电池 热失控的状况。At present, when the thermal runaway safety test of power lithium batteries is carried out in China, the method of safety test of power battery cells is mostly adopted. Although this method can safely control the battery, it does not take into account the practical application in the form of modules. The safety of the power battery module existing in the car does not take into account the multi-point overheating generated when the electric vehicle encounters various collision conditions during actual driving, which leads to the thermal runaway of the power battery.
1)、合肥工业大学刘轻轻(2018)发表的论文“加热条件下电池热失控及其 扩展特性研究”中对3×3结构的镍钴锰锂离子动力电池模组采取中心点加热 的方式,探究不同间距及不同换热方式下动力电池模组的热失控规律。文献 中对模组中心位置处电池进行加热致使动力电池模组热失控,虽采用此法可 对电池模组间热失控规律较为直观的察看,但并未考虑实际工况中,电动汽 车发生碰撞等时导致电池模组中多点过热的情况,较为理想。本发明在考虑 不同碰撞工况导致电池模组中不同位置过热的前提下,采用具有高能量密度 的三元锂电池作为研究对象,对动力电池模组整体热失控的规律进行探索研 究,结果更具有实际应用性,且可根据所使用电池材料不同灵活更改参数, 实现对动力电池模组在不同碰撞工况下的整体热失控时间预测。1) In the paper "Research on battery thermal runaway and its expansion characteristics under heating conditions" published by Liu Qingchen (2018) of Hefei University of Technology, the center point heating method is adopted for the 3×3 structure of nickel-cobalt-manganese lithium-ion power battery modules , to explore the thermal runaway law of power battery modules under different distances and different heat exchange methods. In the literature, heating the battery at the center of the module causes the thermal runaway of the power battery module. Although this method can be used to observe the thermal runaway law between the battery modules more intuitively, it does not consider the collision of electric vehicles in actual working conditions. It is ideal for isochronous conditions that cause multiple points of overheating in the battery module. Under the premise of considering the overheating of different positions in the battery module caused by different collision conditions, the present invention adopts the ternary lithium battery with high energy density as the research object, and explores and researches the law of the overall thermal runaway of the power battery module. It has practical applicability, and the parameters can be flexibly changed according to different battery materials used, so as to realize the prediction of the overall thermal runaway time of the power battery module under different collision conditions.
2)、“一种动力锂离子电池热失控早期预警方法”,专利号 CN110911772A。该发明提供一种动力锂离子电池热失控早期预警方法,通过 传感器分别检测温度、烟雾及特征气体,构建了三层动力锂电池热失控预警 机制,改善了现有监测预警形式简单、模式单一的问题,但此预警机制采用 电池系统作为试验对象,对其进行热失控试验并验证该机制准确性,试验成 本高,且针对不同材料及结构的电池需改动传感器位置及类别,通用性不足。本发明所涉及到的热失控预测方法采用仿真为主要手段,可根据不同材料电 池进行灵活设置,成本低,准确度高。2), "An early warning method for thermal runaway of a power lithium-ion battery", patent number CN110911772A. The invention provides an early warning method for thermal runaway of a power lithium-ion battery. The temperature, smoke and characteristic gas are respectively detected by sensors, a three-layer power lithium battery thermal runaway early warning mechanism is constructed, and the existing monitoring and early warning system is simple in form and mode. However, this early warning mechanism uses the battery system as the test object to conduct a thermal runaway test and verify the accuracy of the mechanism. The test cost is high, and the sensor position and type need to be changed for batteries of different materials and structures, and the versatility is insufficient. The thermal runaway prediction method involved in the present invention adopts simulation as the main means, and can be flexibly set according to batteries of different materials, with low cost and high accuracy.
3)、长安大学涂超、黄清声在2018年发表于佳木斯大学学报低36卷第 5期的《NCM三元锂动力电池热失控研究》,该文章基于热滥用模型对NCM 三元锂方形电池单体进行了热失控行为研究。文献对在不同加热炉温下、不 同散热条件下引发三元锂方形动力电池单体热失控时间进行研究,但所考虑 的对象仅限于电池单体,且对电池单体热失控触发方式为环境高温加热,视 电池单体为均匀受热,然而在实际应用中,电池受热位置大多不均匀,且在 电动汽车中单池以成组的方式作为电池系统基本单位,因此,仅对动力电池 单体进行热失控研究,并不能对实际使用中动力电池热失控规律有较好掌握。 本发明对市面上最常见的圆柱形电池组成的NCM三元锂动力电池模组进行 热失控仿真,热失控触发方式采取热源精准加热,更加符合实际应用中,电 池受热不均匀情况,并考虑在不同碰撞工况下电池不同受热位置对模组整体 的热影响,使仿真情况更符合实际应用情况,更具有可信度。3) "Research on Thermal Runaway of NCM Ternary Lithium Power Batteries" published in 2018 by Tu Chao and Huang Qingsheng of Chang'an University in Journal of Jiamusi University, Volume 36,
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明的目的是提供一种基于多点触发的三元锂 动力电池模组热失控仿真及预测方法,通过仿真技术对动力电池模组在不同 碰撞工况下发生多点热失控的状况进行仿真,研究动力电池多点过热导致模 组整体热失控的过程及预测方法,为动力电池热失控阻断方法及安全性设计 提供可靠依据。In order to solve the above-mentioned technical problems, the purpose of the present invention is to provide a simulation and prediction method for thermal runaway of a ternary lithium power battery module based on multi-point triggering. The thermal runaway condition is simulated to study the process and prediction method of the overall thermal runaway of the module caused by the multi-point overheating of the power battery, and provide a reliable basis for the thermal runaway blocking method and safety design of the power battery.
本发明的目的通过以下的技术方案来实现:The object of the present invention is achieved through the following technical solutions:
一种基于多点触发三元锂动力电池模组热失控仿真及预测方法,该方法 包括以下步骤:A method for simulating and predicting thermal runaway of a ternary lithium power battery module based on multi-point triggering, the method comprises the following steps:
S1根据样本电池尺寸、形状及排布结构建立动力电池模组三维模型,并 依据不同碰撞工况在动力电池模组中选择热失控多点触发位置;S1 establishes a three-dimensional model of the power battery module according to the size, shape and arrangement of the sample battery, and selects the thermal runaway multi-point trigger position in the power battery module according to different collision conditions;
S2将动力电池模组三维模型导入到有限元软件中,依据热滥用模型对动 力电池组建立电池产热模型,施加热失控触发热源Q于所选取的多点触发位 置处电池,并将电池域划分以四边形为主自由网格,设置电池间换热方式为 对流及传导,进行热失控仿真,得到电池模组温度、触发点、热源、热失控 时间数据;S2 imports the three-dimensional model of the power battery module into the finite element software, establishes a battery heat production model for the power battery pack based on the thermal abuse model, applies thermal runaway trigger heat source Q to the battery at the selected multi-point trigger position, and converts the battery domain to the battery. Divide a quadrilateral as the main free grid, set the heat transfer mode between the batteries as convection and conduction, conduct thermal runaway simulation, and obtain battery module temperature, trigger point, heat source, and thermal runaway time data;
S3采集不同碰撞工况下,由不同触发点个数n与热失控触发热源Q引发 模组中整体发生热失控时间平均值通过非线性最小二乘法拟合计算得到时 间与热失控热源Q、触发点个数n关系式,对动力电池模组整体发生热失控 的时间进行预测;S3 collects the average value of the overall thermal runaway time in the module caused by the number of different trigger points n and the thermal runaway trigger heat source Q under different collision conditions Calculated time by nonlinear least squares fitting The relationship between the thermal runaway heat source Q and the number of trigger points n is used to predict the overall thermal runaway time of the power battery module;
S4根据不同碰撞工况下计算所得动力电池模组整体热失控预测关系式, 对各碰撞工况下由不同触发位置及热源引发动力电池模组整体热失控时间进 行计算。S4 calculates the overall thermal runaway time of the power battery module caused by different trigger positions and heat sources under each collision condition according to the overall thermal runaway prediction relationship of the power battery module calculated under different collision conditions.
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:One or more embodiments of the present invention may have the following advantages over the prior art:
可对由不同碰撞工况引发多点过热,使动力电池模组产生整体热失控的 情况进行仿真,并对该位置导致动力电池模组产生整体热失控的时间进行预 测,为动力电池热失控阻断方法及安全性设计提供可靠依据。It can simulate the situation of multi-point overheating caused by different collision conditions and cause the overall thermal runaway of the power battery module, and predict the time when the overall thermal runaway of the power battery module is caused by this position, which is the thermal runaway resistance of the power battery. Provide a reliable basis for breaking method and safety design.
附图说明Description of drawings
图1是基于多点触发的三元锂动力电池模组热失控仿真及预测方法工作 流程图;Fig. 1 is the working flow chart of the thermal runaway simulation and prediction method of ternary lithium power battery module based on multi-point triggering;
图2是基于多点触发的三元锂动力电池模组热失控仿真及预测方法程序 框架图;Figure 2 is a program frame diagram of the thermal runaway simulation and prediction method of a ternary lithium power battery module based on multi-point triggering;
图3是基于多点触发的三元锂动力电池模组热失控仿真及预测方法热失 控触发点选取计算示意图;Fig. 3 is the thermal runaway simulation and prediction method based on multi-point triggering of ternary lithium power battery module thermal runaway trigger point selection and calculation schematic diagram;
图4是三元锂动力电池模组三维示意图;4 is a three-dimensional schematic diagram of a ternary lithium power battery module;
图5是n取3,热源Q取1e7(W/m3),t=0(s)和t=12(s)时电池模组三维 温度云图;Figure 5 is a three-dimensional temperature cloud diagram of the battery module when n is 3, heat source Q is 1e 7 (W/m 3 ), t=0(s) and t=12(s);
图6a和6b是n取3,热源Q取1e7(W/m3)时电池模组温度探针图;Figures 6a and 6b are the temperature probe diagrams of the battery module when n is taken as 3 and the heat source Q is taken as 1e 7 (W/m 3 );
图7和图8是使用非线性最小二乘法对数据拟合示意图。Figures 7 and 8 are schematic diagrams of fitting the data using the nonlinear least squares method.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例及附图 对本发明作进一步详细的描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below with reference to the embodiments and accompanying drawings.
如图1和图2所示,为多点触发的动力电池模组热失控仿真方法工作流程, 包括:构建动力电池模组三维模型,选取多点触发位置、以四边形自由网格建 模、施加热源计算电池热场,采集数据、拟合计算得到预测动力电池模组整体 热失控时间关系式。具体包括如下步骤:As shown in Figures 1 and 2, the workflow of the thermal runaway simulation method for a multi-point triggering power battery module includes: building a three-dimensional model of the power battery module, selecting a multi-point triggering position, modeling with a quadrilateral free grid, applying The heat source calculates the battery thermal field, collects data, and fits the calculation to predict the overall thermal runaway time of the power battery module relational. Specifically include the following steps:
步骤10根据样本电池尺寸、形状及排布结构建立动力电池模组三维模 型,并依据不同碰撞工况(追尾、侧方撞击、底部碰撞、边角撞击等)在动力电 池模组中选择热失控多点触发位置,具体方法为:
如图3所示,以动力电池模组边角构建直角坐标系,电池单体中心至x 和y轴距离分别为dl、dh,则根据不同碰撞工况选取热触发点时,触发点个 数n所对应位置处电池应满足: As shown in Figure 3, a rectangular coordinate system is constructed with the corners of the power battery module, and the distances from the center of the battery cell to the x and y axes are dl and dh, respectively. When selecting thermal trigger points according to different collision conditions, the number of trigger points The battery at the position corresponding to n should meet:
如图4所示为本发明中针对样本电池三元锂圆柱形电池构建的动力电池 模组三维模型,图中电池尺寸数值如表1所示。Figure 4 shows the three-dimensional model of the power battery module constructed for the sample battery ternary lithium cylindrical battery in the present invention, and the battery size values in the figure are shown in Table 1.
表1Table 1
以边角撞击工况为例,当动力电池模组受到边角撞击时,其可能引发电 池模组中n个电池发生热失控。当其中有3个电池产生热失控时,根据上述 热失控位置计算方法,3个电池所在位置应分别满足因此, 图4中所示1号电池、2号电池和5号电池为n=3时,所选取多点热触发电 池。Taking the corner impact condition as an example, when the power battery module is impacted by the corner, it may cause thermal runaway of n batteries in the battery module. When there are 3 batteries in thermal runaway, according to the above calculation method of thermal runaway position, the positions of the 3 batteries should meet the requirements of Therefore, when the No. 1 battery, the No. 2 battery and the No. 5 battery shown in FIG. 4 are n=3, the multi-point thermal trigger battery is selected.
步骤20将所建立三维模型导入有限元软件中,依据热滥用模型对动力电 池模组建立电池产热模型,施加热失控触发热源Q于所选取的多点触发位置 处电池,并将电池域划分以四边形为主自由网格,设置电池间换热方式为对 流及传导,进行热失控仿真,得到电池模组温度、触发点、热源、热失控时 间等数据;Step 20: Import the established three-dimensional model into finite element software, establish a battery heat production model for the power battery module according to the thermal abuse model, apply thermal runaway trigger heat source Q to the battery at the selected multi-point trigger position, and divide the battery domain into With quadrilateral as the main free grid, set the heat exchange mode between batteries as convection and conduction, conduct thermal runaway simulation, and obtain battery module temperature, trigger point, heat source, thermal runaway time and other data;
其中,判定动力电池发生热失控的指标为:Among them, the indicators for determining the thermal runaway of the power battery are:
电池单体:监测点温度>T临界温度;Battery cell: monitoring point temperature > T critical temperature ;
电池模组:模组中每个电池温度>T临界温度。Battery module: the temperature of each battery in the module > T critical temperature .
动力锂电池模组中采集电池单体温度位置的选择方法为:The selection method for collecting the temperature position of the battery cell in the power lithium battery module is:
如图5所示,在柱坐标系下,将电池等效为圆柱体,其高度为h,半径 为r,通过蒙特卡洛法在电池表面产生(hi,θi)的随机监测点位置N个,其中 hi∈(0,h),θi∈(0,360°)。设ΔT为监测点温度和电池单体表面温度差异,Δt为监 测点热触发时间和电池单体表面触发时间差值,t0为电池热触发开始时间,tr为电池热失控最高温度对应时间。As shown in Figure 5, in the cylindrical coordinate system, the battery is equivalent to a cylinder with a height of h and a radius of r. The random monitoring point positions of (hi, θ i ) are generated on the surface of the battery by the Monte Carlo method . N, where hi ∈(0,h) and θ i ∈ (0,360°). Let ΔT be the difference between the temperature of the monitoring point and the surface temperature of the battery cell, Δt is the difference between the thermal trigger time of the monitoring point and the surface trigger time of the battery cell, t 0 is the start time of the battery thermal trigger, and t r is the time corresponding to the maximum temperature of the battery thermal runaway .
对∑ΔT(hi,θi)、Δt(hi,θi)两指标进行归一标准化处理:Normalize the two indicators ∑ΔT(h i , θ i ) and Δt( hi , θ i ):
两指标求和,其最小值所对应的i处位置(hi,θi)即为所选电池表面温度 监测点位置:The two indicators are summed, and the position at i corresponding to the minimum value (h i , θ i ) is the position of the selected battery surface temperature monitoring point:
由多点热失控引发模组中其它电池发生热失控时间平均值计算方法如 下:The average time of thermal runaway of other batteries in the module caused by multi-point thermal runaway The calculation method is as follows:
定义由热源引发动力电池模组中第1个电池产生热失控时间为t1,其余 电池产生热失控时间分别为t2,t3…tn。由热失控电池引发动力电池模组整体 产生热失控平均时间为:The thermal runaway time of the first battery in the power battery module caused by the heat source is defined as t 1 , and the thermal runaway time of the other batteries is t 2 , t 3 . . . t n respectively. The average time for the thermal runaway of the power battery module as a whole caused by the thermal runaway battery is:
在边角撞击工况下,取触发点个数n=3(1号、2号、5号电池),设置触 发热源Q=1e7(W/m3),T临界温度=200℃,使用仿真软件对动力电池模组进行热 失控仿真所得电池表面温度云图及各电池温度探针图如图5和图6a、6b所示。 从图中可看出,电池模组在热失控触发电池高温的影响下,吸收热量,温度 升高,从而引发模组整体热失控。Under the condition of corner impact, take the number of trigger points n=3 (No. 1, No. 2, and No. 5 batteries), set the trigger heat source Q=1e 7 (W/m 3 ), T critical temperature =200℃, use Figure 5 and Figures 6a and 6b show the temperature cloud map of the battery surface obtained by the simulation software for thermal runaway simulation of the power battery module and the temperature probe maps of each battery. It can be seen from the figure that under the influence of thermal runaway triggering the high temperature of the battery, the battery module absorbs heat and the temperature rises, thereby causing the overall thermal runaway of the module.
使用上述动力电池模组整体热失控计算时间,对热源Q(W/m3)分别取 0.5e7、0.6e7、0.75e7、0.9e7、1e7、1.25e7,n分别取1-6情况下,引发模组中 其它电池热失控的时间平均值数据进行计算,所得数据如下表2。Using the above-mentioned overall thermal runaway calculation time of the power battery module, take 0.5e 7 , 0.6e 7 , 0.75e 7 , 0.9e 7 , 1e 7 , 1.25e 7 for the heat source Q (W/m 3 ), and n take 1 respectively In -6 cases, the time average of thermal runaway of other batteries in the module The data is calculated, and the obtained data are as follows in Table 2.
表2Table 2
步骤30采集不同碰撞工况下,由不同触发点个数n与热失控触发热源Q 引发模组中整体发生热失控时间平均值通过非线性最小二乘法拟合计算得 到时间与热失控热源Q、触发点个数n关系式,对动力电池模组整体发生热 失控的时间进行预测;
计算时间与热源Q、触发点个数n的关系式方法如下:calculating time The relationship between the heat source Q and the number of trigger points n is as follows:
定义引发动力电池模组中其它电池产生热失控的时间平均值为热失控 预测系统输出,触发点n与热源Q为系统输入,a,b,c,d为参数,则经过x次 试验所得数据(n1,Q1,t1),(n2,Q2,t2)…(nx,Qx,tx)之间经非线性最小二乘 法拟合后具有以下关系:Defines the time average that causes thermal runaway of other batteries in the power battery module is the output of the thermal runaway prediction system, the trigger point n and the heat source Q are the system input, a, b, c, d are the parameters, then the data obtained after x times of experiments (n 1 , Q 1 , t 1 ), (n 2 , Q 2 , t 2 )...(n x , Q x , t x ) have the following relationship after fitting by nonlinear least squares method:
由于f[(nx,Qx),(a,b,c,e))]为非线性函数,因此采用迭代算法进行求解,使 得目标函数为误差平方和最小,即ε最小时,所求参数值为其解,可求得动 力电池模组中热源Q、触发点个数n与预测电池模组整体热失控时间关系:Since f[(n x ,Q x ),(a,b,c,e))] is a nonlinear function, the iterative algorithm is used to solve the problem, so that the objective function is the smallest sum of squared errors, that is, when ε is the smallest, the required The parameter value is its solution, and the heat source Q in the power battery module, the number of trigger points n and the predicted overall thermal runaway time of the battery module can be obtained. relation:
其中a,b,c,d,f,g为系数,通过非线性最小二乘法拟合求得。Among them, a, b, c, d, f, and g are coefficients, which are obtained by nonlinear least squares fitting.
依据上述拟合方法对表2数据进行非线性最小二乘拟合,经如图7和图 8所示拟合,最终求得预测动力锂电池模组整体热失控时间关系:According to the above fitting method, nonlinear least squares fitting is performed on the data in Table 2. After fitting as shown in Figure 7 and Figure 8, the overall thermal runaway time relationship of the predicted power lithium battery module is finally obtained:
步骤40根据不同碰撞工况下计算所得动力电池模组整体热失控预测关 系式,对各碰撞工况下由不同触发位置及热源引发模组整体热失控时间进行 计算。
上述计算所得在边角碰撞工况下,由热失控触发点个数n及热源Q拟合 所得预测动力锂电池模组整体热失控时间关系式,当触发点个数n=7,热源 Q=1e7(W/m3)时,则动力电池模组将在时整体发生热失控。Under the condition of edge and corner collision, the above calculation is obtained by fitting the number of thermal runaway trigger points n and the heat source Q to predict the overall thermal runaway time relationship of the power lithium battery module. When the number of trigger points n=7, the heat source Q= 1e 7 (W/m 3 ), the power battery module will be Thermal runaway occurs as a whole.
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本 发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内 的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的 形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所 附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present invention are as above, the described contents are only the embodiments adopted to facilitate the understanding of the present invention, and are not intended to limit the present invention. Any person skilled in the art to which the present invention belongs, without departing from the spirit and scope disclosed by the present invention, can make any modifications and changes in the form and details of the implementation, but the scope of patent protection of the present invention, The scope as defined by the appended claims shall still prevail.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010417278.4A CN111597747B (en) | 2020-05-18 | 2020-05-18 | Multi-point triggering ternary lithium power battery module thermal runaway simulation and prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010417278.4A CN111597747B (en) | 2020-05-18 | 2020-05-18 | Multi-point triggering ternary lithium power battery module thermal runaway simulation and prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111597747A true CN111597747A (en) | 2020-08-28 |
CN111597747B CN111597747B (en) | 2024-04-16 |
Family
ID=72191330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010417278.4A Active CN111597747B (en) | 2020-05-18 | 2020-05-18 | Multi-point triggering ternary lithium power battery module thermal runaway simulation and prediction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111597747B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112485674A (en) * | 2020-11-20 | 2021-03-12 | 清华大学 | Modeling method for short circuit thermal runaway in forward lithium ion battery |
CN112649101A (en) * | 2020-12-15 | 2021-04-13 | 中国电力科学研究院有限公司 | Battery module early warning method and system and fire detection device |
CN112928360A (en) * | 2021-01-22 | 2021-06-08 | 中国第一汽车股份有限公司 | Power battery heat conduction transmission method, system, terminal and storage medium |
CN113085555A (en) * | 2021-03-24 | 2021-07-09 | 东风汽车集团股份有限公司 | Warning method for battery pack after thermal runaway |
CN116451383A (en) * | 2023-06-13 | 2023-07-18 | 苏州精控能源科技有限公司 | Thermal runaway side-spraying battery and design method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110111269A1 (en) * | 2009-11-11 | 2011-05-12 | Tse David Yuanjei | Flash Cooling System for Increased Battery Safety |
US20120013341A1 (en) * | 2010-07-16 | 2012-01-19 | Tesla Motors, Inc. | Method and Apparatus for Electrically Cycling a Battery Cell to Simulate an Internal Short |
US20140091772A1 (en) * | 2012-09-24 | 2014-04-03 | Robert Del Core | Adaptive thermal management of an electric energy storage method and system apparatus |
CN108647432A (en) * | 2018-05-09 | 2018-10-12 | 西安交通大学 | Battery thermal runaway prediction technique based on thermal resistance network model |
CN109581223A (en) * | 2018-11-29 | 2019-04-05 | 吉林大学 | The DIE Temperature estimation method of Li-ion batteries piles based on Kalman filtering |
CN110968968A (en) * | 2019-12-05 | 2020-04-07 | 西南交通大学 | A thermal runaway simulation method based on acupuncture for internal short-circuit lithium-ion batteries |
-
2020
- 2020-05-18 CN CN202010417278.4A patent/CN111597747B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110111269A1 (en) * | 2009-11-11 | 2011-05-12 | Tse David Yuanjei | Flash Cooling System for Increased Battery Safety |
US20120013341A1 (en) * | 2010-07-16 | 2012-01-19 | Tesla Motors, Inc. | Method and Apparatus for Electrically Cycling a Battery Cell to Simulate an Internal Short |
US20140091772A1 (en) * | 2012-09-24 | 2014-04-03 | Robert Del Core | Adaptive thermal management of an electric energy storage method and system apparatus |
CN108647432A (en) * | 2018-05-09 | 2018-10-12 | 西安交通大学 | Battery thermal runaway prediction technique based on thermal resistance network model |
CN109581223A (en) * | 2018-11-29 | 2019-04-05 | 吉林大学 | The DIE Temperature estimation method of Li-ion batteries piles based on Kalman filtering |
CN110968968A (en) * | 2019-12-05 | 2020-04-07 | 西南交通大学 | A thermal runaway simulation method based on acupuncture for internal short-circuit lithium-ion batteries |
Non-Patent Citations (4)
Title |
---|
AHMED O. SAID ET AL: "Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry", JOURNAL OF POWER SOURCES, vol. 446, 30 November 2019 (2019-11-30), pages 1 - 14, XP085937004, DOI: 10.1016/j.jpowsour.2019.227347 * |
HUANG LI ET AL: "Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition", JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, vol. 61, 30 June 2019 (2019-06-30), pages 122 - 129, XP085794031, DOI: 10.1016/j.jlp.2019.06.012 * |
罗星娜 等: "基于计算流体动力学的锂离子电池热失控多米诺效应研究", 科学技术与工程, vol. 14, no. 33, 30 November 2014 (2014-11-30), pages 327 - 332 * |
谭春华 等: "锂离子电池针刺热失控仿真研究", 电源技术, vol. 42, no. 11, 30 November 2018 (2018-11-30), pages 1604 - 1607 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112485674A (en) * | 2020-11-20 | 2021-03-12 | 清华大学 | Modeling method for short circuit thermal runaway in forward lithium ion battery |
CN112485674B (en) * | 2020-11-20 | 2021-12-10 | 清华大学 | A modeling method for short-circuit thermal runaway in a forward lithium-ion battery |
CN112649101A (en) * | 2020-12-15 | 2021-04-13 | 中国电力科学研究院有限公司 | Battery module early warning method and system and fire detection device |
CN112928360A (en) * | 2021-01-22 | 2021-06-08 | 中国第一汽车股份有限公司 | Power battery heat conduction transmission method, system, terminal and storage medium |
CN113085555A (en) * | 2021-03-24 | 2021-07-09 | 东风汽车集团股份有限公司 | Warning method for battery pack after thermal runaway |
CN113085555B (en) * | 2021-03-24 | 2022-06-03 | 东风汽车集团股份有限公司 | Warning method for battery pack after thermal runaway |
CN116451383A (en) * | 2023-06-13 | 2023-07-18 | 苏州精控能源科技有限公司 | Thermal runaway side-spraying battery and design method thereof |
CN116451383B (en) * | 2023-06-13 | 2023-08-15 | 苏州精控能源科技有限公司 | Thermal runaway side-spraying battery and design method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111597747B (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111597747A (en) | Multipoint-triggering ternary lithium power battery module thermal runaway simulation and prediction method | |
Yang et al. | Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit | |
CN108647432B (en) | Prediction method of battery thermal runaway based on thermal resistance network model | |
CN109614754B (en) | Simulation method of three-dimensional simplified model of lithium ion battery | |
Zhou et al. | Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector | |
Soltani et al. | Three dimensional thermal model development and validation for lithium-ion capacitor module including air-cooling system | |
CN113111579B (en) | Lithium battery equivalent circuit model parameter identification method of adaptive longicorn whisker optimization neural network | |
CN109344429A (en) | A modeling method to improve the temperature applicability and accuracy of the electrochemical-thermal coupled model | |
CN107887669B (en) | A kind of heat dissipation metal power battery pack construction design method and battery pack | |
CN110534823A (en) | A kind of power battery balanced management system and method | |
CN110633496B (en) | A Method for Determining Thermal Stress and Temperature During Discharge of Li-ion Batteries Based on Thermal-Mechanical Coupled Model | |
CN115587512A (en) | ANSYS TwinBuilder-based lithium battery thermoelectric coupling digital twin model construction method | |
CN114692244B (en) | Lithium battery pack thermal abuse safety risk assessment method based on multi-physical field simulation | |
CN104600381B (en) | Optimization method for arrangement structures of lithium ion battery pack monomers | |
CN113794254A (en) | Thermal management strategy configuration method and device, computer equipment and storage medium | |
Kocsis Szürke et al. | Numerical optimization of battery heat management of electric vehicles | |
CN110276120A (en) | An equivalent method for an all-vanadium redox flow battery energy storage system based on electrothermal coupling | |
Cui et al. | Control co-design of lithium-ion batteries for enhanced fast-charging and cycle life performances | |
Liao et al. | A framework of optimal design of thermal management system for lithium-ion battery pack using multi-objectives optimization | |
CN112798971B (en) | Soft-package type lithium ion battery coupling electric thermal model | |
Zhu et al. | Analysis of the structure arrangement on the thermal characteristics of Li‐ion battery pack in thermoelectric generator | |
Huang et al. | An efficient multi-state evaluation approach for lithium-ion pouch cells under dynamic conditions in pressure/current/temperature | |
CN117613467A (en) | Simulation method for layout of PTC heating module of battery cell | |
CN113722926B (en) | Square lithium battery electric heating coupling modeling error source analysis method | |
Harikrishnan et al. | Modeling and performance analysis of a lithium‐ion battery pack with an electric vehicle power‐train for different drive cycles and highway conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |