CN111596575A - Condensation water taking control method for evaporator of all-condition air water making machine - Google Patents

Condensation water taking control method for evaporator of all-condition air water making machine Download PDF

Info

Publication number
CN111596575A
CN111596575A CN202010448541.6A CN202010448541A CN111596575A CN 111596575 A CN111596575 A CN 111596575A CN 202010448541 A CN202010448541 A CN 202010448541A CN 111596575 A CN111596575 A CN 111596575A
Authority
CN
China
Prior art keywords
temperature
evaporator
dew point
environment
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010448541.6A
Other languages
Chinese (zh)
Other versions
CN111596575B (en
Inventor
王伟
张连军
魏超
徐垚
毛韦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Swan Refrigeration Technology Co Ltd
Original Assignee
Hefei Swan Refrigeration Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Swan Refrigeration Technology Co Ltd filed Critical Hefei Swan Refrigeration Technology Co Ltd
Priority to CN202010448541.6A priority Critical patent/CN111596575B/en
Publication of CN111596575A publication Critical patent/CN111596575A/en
Application granted granted Critical
Publication of CN111596575B publication Critical patent/CN111596575B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/66Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point

Abstract

The invention discloses a condensation water taking control method for an evaporator of an all-condition air water making machine, which is a special control based on a vapor compression refrigeration principle and is used for collecting the ambient dry bulb temperature T by using a controller1Ambient dew point temperature T1 distillateAnd evaporator fin temperature T2And the lowest ambient dry bulb temperature T preset by the controller1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minEnvironment maximum dew point temperature T1 LumaxFirst lower deviation △ T of evaporator fin temperature1A second lower deviation △ T of evaporator fin temperature2And comparing, and controlling the evaporator to take water by controlling the evaporation fan. The invention obtains different evaporator fin temperature control by detecting the environmental temperature and humidity in real timeThe object is to keep the evaporator in a dew condensation state at all times within a predetermined temperature and humidity range.

Description

Condensation water taking control method for evaporator of all-condition air water making machine
Technical Field
The invention relates to the field of control methods of air water generators, in particular to a condensation water taking control method of an evaporator of an all-working-condition air water generator.
Background
With the increasing living standard and health consciousness of people, an air water generator (also called air water taking) becomes a high-end consumer product at present and is emerging in the market continuously. At present, the mainstream air water generator adopts an evaporation compression type refrigeration principle, namely, a compressor, an evaporator, a condenser, a throttling element and the like are connected through pipelines to form a refrigerant circulation loop, the evaporator is provided with an evaporation fan, the condenser is provided with a condensation fan, air flows in from the air inlet side of the evaporator under the action of the evaporation fan and flows out from the air outlet side of the evaporator after passing through the evaporator, low-temperature and low-pressure liquid refrigerant in the compressor is subjected to gasification phase change in an evaporator pipe, so that the air on the outer surface of the evaporator is cooled and condensed water is formed, and a water source of the air water generator is formed by collecting the condensed water. In the prior art, since an evaporator, a condenser, a compressor, etc. are solidified according to the design of a product system, the adaptability thereof is not excellent enough to face the change of complicated and severe environmental conditions.
For example, the ambient dry bulb temperature range of a common civil air water making machine is 18-43 ℃, and the ambient wet bulb temperature range is 35-95%. Meanwhile, the air water generator is different from an air conditioner in that the air conditioner has an indoor working condition and an outdoor working condition for test evaluation, but the air water generator is tested under the same environmental temperature and humidity condition, for example, some manufacturers determine that the dry bulb temperature is 27 ℃ and the relative humidity is 60% as a rated test working condition. Under the relatively stable working condition, the product design can be better carried out so as to obtain the ideal evaporation temperature and meet the condensation water outlet of the evaporator. However, the surface of the evaporator sometimes does not condense or some places do not condense any more with the change of the environmental temperature and humidity, so that the water outlet effect is poor. When the temperature range of the environment dry bulb is expanded to 5-55 ℃, the temperature range of the environment wet bulb is expanded to 10-95%, and particularly when the humidity is low, the phenomenon that the surface of an evaporator is not condensed is more and more serious, the water yield within the required range cannot be reached, and even high-temperature protection and the like are caused.
The surface temperature of the evaporator fins is a physical phenomenon that condensate water is generated as long as the surface temperature is lower than the dew point temperature of the surrounding air. Of course, if the evaporation temperature is designed to be very low (such as-10 ℃), condensation can be met under all working conditions. However, for vapor compression refrigeration, the design causes low system energy efficiency, and cannot meet the future requirement for energy saving. In the face of different environmental humiture, under the condition that the evaporator can not change the volume or the heat exchange area, a dynamic evaporator fin temperature control method is needed to enable the evaporator to effectively condense moisture.
Disclosure of Invention
The invention aims to provide a condensation water taking control method for an evaporator of a full-working-condition air water generator, which aims to solve the problem that the surface of the evaporator in the air water generator in the prior art is easy to generate non-condensation.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
a condensation water taking control method for an evaporator of an all-condition air water generator is characterized in that the evaporator is a finned heat exchanger with a refrigerating function and comprises the following steps: setting temperature sensors in the air inlet direction of the evaporator to measure the environmental dew point temperature T respectively1 distillateAmbient dry bulb temperature T1The surface of the evaporator fin is provided with a temperature sensor for measuring the temperature T of the evaporator fin2And a controller is arranged, the controller is respectively connected with the compressor and an evaporation fan configured by the evaporator in a control way, and each temperature sensor is respectively connected with the controller in a signal transmission way, the method comprises the following steps:
(1) presetting the lowest dry bulb temperature T of the environment in the controller1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minEnvironment maximum dew point temperature T1 LumaxFirst lower deviation △ T of evaporator fin temperature1A second lower deviation △ T of evaporator fin temperature2Wherein △ T1﹤△T2
(2) The controller respectively collects the environmental dew point temperature T through each temperature sensor1 distillateAmbient dry bulb temperature T1Evaporator fin temperature T2
(3) The temperature T of the ambient dry bulb in the controller1Respectively with the lowest dry bulb temperature T of the environment1minThe highest dry bulb temperature T of the environment1maxComparing and simultaneously comparing the ambient dew point temperature T1 distillateAnd the lowest dew point temperature T of the environment1 dew minComparing, if the condition T is satisfied1min≤T1≤T1maxAnd T1 distillate≥T1 dew minThe controller starts the compressor and the evaporation fan to reduce the temperature of the evaporator fins, so that the surface condensation of the evaporator fins realizes normal water taking;
(4) and in the water taking process in the step (3), the controller controls the ambient dew point temperature T1 distillateAnd the maximum dew point temperature T of the environment1 LumaxComparing, and adjusting the temperature T of the evaporator fins based on the comparison result2The temperature is maintained in a certain range, and the specific process is as follows:
if T1 distillate﹤T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 distillate-△T2≤T2≤T1 distillate-△T1
If T1 distillate≥T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 Lumax-△T2≤T2≤T1 Lumax-△T1
The condensation water taking control method for the evaporator of the all-working-condition air water generator is characterized by comprising the following steps of: t is2Not more than 0 ℃ and T2﹤T1 Lumax-△T2When the surface of the evaporator fin is frosted and the thickness of the frost layer meets the requirement, the evaporator enters a defrosting and water taking mode, the evaporation fan stops working when defrosting and water taking are carried out, meanwhile, one of modes of reverse defrosting of a compressor, hot gas bypass defrosting or electric heating defrosting is adopted, after defrosting and water taking are completed, the compressor, the evaporation fan and the like are in a state before recovery, namely, an intermittent water taking state is entered.
Full operating mode air to water machine evaporimeter condensation accuse of fetching waterThe manufacturing method is characterized in that: in the step (1), the lowest dry bulb temperature T of the environment1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minAnd ambient maximum dew point temperature T1 LumaxIs determined based on design input, where T1 dew minAt the lowest dry bulb temperature T in the working temperature range1minCorresponding dew point temperature limit and maximum dry bulb temperature T1maxThe lower value of the corresponding dew point temperature limit value is selected; maximum dew point temperature T of environment1 LumaxNot only according to the highest dew point temperature which can be met by the environment, but also considering the working capacity of the compressor, when the highest evaporation temperature which can be borne by the compressor corresponds to the highest temperature T of the evaporator fins2max≤T1 LumaxTime, maximum dew point temperature T of the environment1 LumaxAccording to T2maxAnd (4) taking values.
The method for controlling condensation water taking of the evaporator of the all-working-condition air water making machine is characterized in that in the step (1), the temperature of the evaporator fins is a first lower deviation value △ T1A second lower deviation △ T of evaporator fin temperature2Set up according to the condensation effect and the fluctuation range, respectively, and △ T1Taking △ T at 1-3 DEG C2Ratio △ T 11 to 3 ℃ in height.
The condensation water taking control method for the evaporator of the all-working-condition air water generator is characterized by comprising the following steps of: the evaporation fan is a fan capable of carrying out stepless speed regulation, such as an EC fan, a variable frequency fan or a pressure and speed regulation fan. The controller in the step (4) performs stepless regulation on the evaporation fan to enable the temperature T of the evaporator fins2Maintained at a temperature range.
The condensation water taking control method for the evaporator of the all-working-condition air water generator is characterized by comprising the following steps of: the throttling element is an electronic expansion valve or a thermal expansion valve which can be controlled electrically so as to meet the requirement of superheat degree adjustment of the evaporator and ensure that the compressor does not hit liquid.
Compared with the prior art, the invention has the advantages that:
1. according to the invention, different evaporator fin temperature control targets are obtained by detecting the environmental temperature and humidity in real time, the evaporator is kept in a condensation state all the time within a specified temperature and humidity range, and the condensation and water precipitation effects are good.
2. The invention can divide the enthalpy wet state of air into 2 areas, the non-water taking area and the water taking area are only influenced by the lowest dew point temperature of the product, the working range is widened, and the distinction is clear.
3. The invention can be modified and upgraded on the basis of the original water making machine and has stronger popularization.
4. The invention has mature technology, clear flow and easy realization.
Drawings
Fig. 1 is a control schematic of the controller of the present invention.
Fig. 2 is a block flow diagram of the present invention.
Fig. 3 is a diagram of the enthalpy and humidity of the air when the present invention is in operation.
Detailed Description
The invention is further illustrated with reference to the following figures and examples.
A condensation water taking control method for an evaporator of an all-condition air water making machine is disclosed, as shown in figure 1, temperature sensors 1.2 and 1.1 are arranged in the air inlet direction of the evaporator and respectively correspond to and measure the ambient dew point temperature T1 distillateAmbient dry bulb temperature T1The surface of the evaporator 4 fin is provided with a temperature sensor 1.3 for measuring the temperature T of the evaporator fin2And a controller 1 is arranged, the controller 1 is respectively connected with the compressor and an evaporation fan 2 configured by an evaporator 4 in a control way, and the temperature sensors 1.1, 1.2 and 1.3 are respectively connected with the controller in a signal transmission way.
As shown in fig. 2, the method of the present invention comprises the steps of:
(1) presetting the lowest dry bulb temperature T of the environment in the controller1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minEnvironment maximum dew point temperature T1 LumaxFirst lower deviation △ T of evaporator fin temperature1A second lower deviation △ T of evaporator fin temperature2Wherein △ T1﹤△T2
In the present invention, the environment is the lowest level of drynessBall temperature T1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minAnd ambient maximum dew point temperature T1 LumaxIs determined based on design input, where T1 dew minAt the lowest dry bulb temperature T in the working temperature range1minCorresponding dew point temperature limit and maximum dry bulb temperature T1maxThe lower value of the corresponding dew point temperature limit value is selected; maximum dew point temperature T of environment1 LumaxNot only according to the highest dew point temperature which can be met by the environment, but also considering the working capacity of the compressor, when the highest evaporation temperature which can be borne by the compressor corresponds to the highest temperature T of the evaporator fins2max≤T1 LumaxTime, maximum dew point temperature T of the environment1 LumaxAccording to T2maxAnd (4) taking values. E.g. T2max=25℃,T1 LumaxWhen the temperature is 30 ℃, then T1 Lumax=25℃。
In the present invention, the evaporator fin temperature first lower deviation value is △ T1A second lower deviation △ T of evaporator fin temperature2Set up according to the condensation effect and the fluctuation range, respectively, and △ T1Taking △ T at 1-3 DEG C2Ratio △ T 11 to 3 ℃ in height.
(2) The controller respectively collects the environmental dew point temperature T through each temperature sensor1 distillateAmbient dry bulb temperature T1Evaporator fin temperature T2
(3) The temperature T of the ambient dry bulb in the controller1Respectively with the lowest dry bulb temperature T of the environment1minThe highest dry bulb temperature T of the environment1maxComparing and simultaneously comparing the ambient dew point temperature T1 distillateAnd the lowest dew point temperature T of the environment1 dew minComparing, if the condition T is satisfied1min≤T1≤T1maxAnd T1 distillate≥T1 dew minThe controller starts the compressor and the evaporation fan to reduce the temperature of the evaporator fins, so that the surface condensation of the evaporator fins realizes normal water taking;
(4) and in the water taking process in the step (3), the controller controls the ambient dew point temperature T1 distillateAnd the maximum dew point temperature T of the environment1 LumaxMake a comparisonAnd based on the comparison result, adjusting the evaporation fan to make the temperature T of the evaporator fins2The temperature is maintained in a certain range, and the specific process is as follows:
if T1 distillate﹤T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 distillate-△T2≤T2≤T1 distillate-△T1
If T1 distillate≥T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 Lumax-△T2≤T2≤T1 Lumax-△T1
In the invention, the evaporation fan 2 is a fan capable of stepless speed regulation, and the controller 1 steplessly regulates the evaporation fan 2 to ensure that the temperature T of the fins of the evaporator 4 is regulated steplessly2Maintained at a temperature range.
As shown in fig. 1, the refrigeration cycle circuit further includes a throttling element 3, and the throttling element 3 is an electronic expansion valve or a thermal expansion valve capable of being electrically controlled, so as to meet the superheat degree regulation of the evaporator and ensure that the compressor does not liquid impact. Determination of T in controller 12Not more than 0 ℃ and T2﹤T1 Lumax-△T2When the surface of the evaporator fin is frosted and the thickness of the frost layer meets the requirement, the evaporator enters a defrosting and water taking mode, the evaporation fan stops working when defrosting and water taking are carried out, meanwhile, one of modes of reverse defrosting of a compressor, hot gas bypass defrosting or electric heating defrosting is adopted, after defrosting and water taking are completed, the compressor, the evaporation fan and the like are in a state before recovery, namely, an intermittent water taking state is entered.
Specific examples are as follows:
setting an ambient minimum dry bulb temperature T in a controller1min5 deg.C, maximum ambient dry bulb temperature T1max55 deg.C, ambient minimum dew point temperature T1 dew min-7 ℃ maximum dew point temperature T of the environment1 Lumax=25℃,△T1=2℃,△T2=3℃。
When the controller collects the temperature T of the environmental dry bulb1At 5 deg.C, ambient dew point temperature T1 distillate=4℃(relative humidity 86%), at this time T1 distillate﹤T1 LumaxThe controller performs stepless regulation on the evaporation fan to ensure that the temperature T of the evaporator fins2Is maintained in the range of T1 distillate-△T2≤T2≤T1 distillate-△T1I.e. T is not less than 1 DEG C2≤2℃。
When the controller collects the temperature T of the environmental dry bulb1At 5 deg.C, ambient dew point temperature T 1 distillate0 ℃ (relative humidity 33%), at which time T1 distillate﹤T1 LumaxThe controller performs stepless regulation on the evaporation fan to ensure that the temperature T of the evaporator fins2Is maintained in the range of T1 distillate-△T2≤T2≤T1 distillate-△T1T is not less than-3 ℃2Less than or equal to-2 ℃; when frost begins to be generated, the temperature T of the evaporator fins2The regulation is limited to be lower than-3 ℃, the evaporator fin surface frosts more and more, and the frost layer thickness meets the requirement, the defrosting and water taking mode is entered, the evaporation fan stops working when defrosting and water taking are carried out, meanwhile, one of the modes of reverse defrosting of the compressor, hot gas bypass defrosting or electric heating defrosting is adopted, after defrosting and water taking are completed, the compressor, the evaporation fan and the like recover to the previous state, and the intermittent water taking state is entered.
When the controller collects the temperature T of the environmental dry bulb155 deg.C, ambient dew point temperature T1 distillateAt 32 ℃ (30% rh), T is then1 distillate≥T1 LumaxAnd the highest evaporating temperature that the compressor can bear corresponds to the highest temperature T of the evaporator fins2maxWhen the temperature is 25 ℃, then T1 LumaxAt 25 ℃. The controller carries out stepless regulation on the evaporation fan to ensure that the temperature T of the evaporator fins2Is maintained in the range of T1 Lumax-△T2≤T2≤T1 Lumax-△T1T is more than or equal to 22 ℃2≤23℃。
As can be seen from the case, the invention has different evaporator fin temperature control under different ambient temperature and humidity.
Fig. 3 is a schematic diagram showing the location of the present invention on the psychrometric chart. In FIG. 3, the water is divided into a non-water intake area and a water intake area to produce waterThe minimum dew point temperature for the machine design is the boundary. Wherein the lowest dew point temperature T1 dew minAt the lowest dry bulb temperature T in the working temperature range1minCorresponding dew point temperature limit and maximum dry bulb temperature T1maxThe lower of the corresponding dew point temperature limits. If the minimum working temperature is 5 ℃ and the relative humidity limit value is 38.2% (dew point temperature-7 ℃), the maximum working temperature is 55 ℃ and the relative humidity limit value is 10% (dew point temperature 13.81 ℃), then T1 dew min-7 ℃ as borderline value. At this time, the relative humidity can theoretically be expanded to 2.1% at an ambient temperature of 55 ℃. As can be seen from the figure, the water taking area is wider than the environmental area (18-43 ℃) of a common air water making machine, and the water taking area has no blind area.
The above-described embodiments are only preferred embodiments of the present invention, but the present invention is not limited to the above-described embodiments, and any obvious modifications thereof without departing from the principle of the present invention will be apparent to those skilled in the art within the spirit of the present invention and the scope of the appended claims.

Claims (6)

1. A full-working-condition air water generator evaporator condensation water taking control method is characterized by comprising the following steps: setting temperature sensors in the air inlet direction of the evaporator to measure the environmental dew point temperature T respectively1 distillateAmbient dry bulb temperature T1The surface of the evaporator fin is provided with a temperature sensor for measuring the temperature T of the evaporator fin2And a controller is arranged, the controller is respectively connected with the compressor and an evaporation fan configured by the evaporator in a control way, and each temperature sensor is respectively connected with the controller in a signal transmission way, the method comprises the following steps:
(1) presetting the lowest dry bulb temperature T of the environment in the controller1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minEnvironment maximum dew point temperature T1 LumaxFirst lower deviation △ T of evaporator fin temperature1A second lower deviation △ T of evaporator fin temperature2Wherein △ T1﹤△T2
(2) The controller passes throughRespectively collecting environmental dew point temperature T by temperature sensors1 distillateAmbient dry bulb temperature T1Evaporator fin temperature T2
(3) The temperature T of the ambient dry bulb in the controller1Respectively with the lowest dry bulb temperature T of the environment1minThe highest dry bulb temperature T of the environment1maxComparing and simultaneously comparing the ambient dew point temperature T1 distillateAnd the lowest dew point temperature T of the environment1 dew minComparing, if the condition T is satisfied1min≤T1≤T1maxAnd T1 distillate≥T1 dew minThe controller starts the compressor and the evaporation fan to reduce the temperature of the evaporator fins, so that the surface condensation of the evaporator fins realizes normal water taking;
(4) and in the water taking process in the step (3), the controller controls the ambient dew point temperature T1 distillateAnd the maximum dew point temperature T of the environment1 LumaxComparing, and adjusting the temperature T of the evaporator fins based on the comparison result2The temperature is maintained in a certain range, and the specific process is as follows:
if T1 distillate﹤T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 distillate-△T2≤T2≤T1 distillate-△T1
If T1 distillate≥T1 LumaxThe controller adjusts the evaporation fan to make the temperature T of the evaporator fins2Is maintained in the range of T1 Lumax-△T2≤T2≤T1 Lumax-△T1
2. The method for controlling water intake of condensation of the evaporator of the full-working-condition air water generator according to claim 1, characterized by comprising the following steps: judging T in controller2Not more than 0 ℃ and T2﹤T1 Lumax-△T2When the surface of the evaporator fin is frosted and the thickness of the frost layer meets the requirement, the evaporator enters a defrosting and water taking mode, the evaporation fan stops working when defrosting and water taking are carried out, meanwhile, one of the modes of reverse defrosting of a compressor, hot gas bypass defrosting or electric heating defrosting is adopted, after defrosting and water taking are finished,the compressor, the evaporation fan and the like are in the state before recovery, namely, the intermittent water taking state is entered.
3. The method for controlling water intake of condensation of the evaporator of the full-working-condition air water generator according to claim 1, characterized by comprising the following steps: in the step (1), the lowest dry bulb temperature T of the environment1minThe highest dry bulb temperature T of the environment1maxEnvironment minimum dew point temperature T1 dew minAnd ambient maximum dew point temperature T1 LumaxIs determined based on design input, where T1 dew minAt the lowest dry bulb temperature T in the working temperature range1minCorresponding dew point temperature limit and maximum dry bulb temperature T1maxThe lower value of the corresponding dew point temperature limit value is selected; maximum dew point temperature T of environment1 LumaxNot only according to the highest dew point temperature which can be met by the environment, but also considering the working capacity of the compressor, when the highest evaporation temperature which can be borne by the compressor corresponds to the highest temperature T of the evaporator fins2max≤T1 LumaxTime, maximum dew point temperature T of the environment1 LumaxAccording to T2maxAnd (4) taking values.
4. The method for controlling the intake of water from the evaporator of the all-condition air water generator according to claim 1, wherein in the step (1), the temperature of the evaporator fins has a first lower deviation value of △ T1A second lower deviation △ T of evaporator fin temperature2Set up according to the condensation effect and the fluctuation range, respectively, and △ T1Taking △ T at 1-3 DEG C2Ratio △ T11 to 3 ℃ in height.
5. The method for controlling water intake of condensation of the evaporator of the full-working-condition air water generator according to claim 1, characterized by comprising the following steps: the evaporation fan is a fan capable of carrying out stepless speed regulation, and the controller in the step (4) carries out stepless regulation on the evaporation fan to ensure that the temperature T of the evaporator fins is2Maintained at a temperature range.
6. The method for controlling water intake of condensation of the evaporator of the full-working-condition air water generator according to claim 2, characterized in that: the throttling element is an electronic expansion valve or a thermal expansion valve which can be controlled electrically so as to meet the requirement of superheat degree adjustment of the evaporator and ensure that the compressor does not hit liquid.
CN202010448541.6A 2020-05-25 2020-05-25 Condensation water taking control method for evaporator of all-working-condition air water making machine Active CN111596575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010448541.6A CN111596575B (en) 2020-05-25 2020-05-25 Condensation water taking control method for evaporator of all-working-condition air water making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010448541.6A CN111596575B (en) 2020-05-25 2020-05-25 Condensation water taking control method for evaporator of all-working-condition air water making machine

Publications (2)

Publication Number Publication Date
CN111596575A true CN111596575A (en) 2020-08-28
CN111596575B CN111596575B (en) 2022-09-30

Family

ID=72179516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010448541.6A Active CN111596575B (en) 2020-05-25 2020-05-25 Condensation water taking control method for evaporator of all-working-condition air water making machine

Country Status (1)

Country Link
CN (1) CN111596575B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112411675A (en) * 2020-11-17 2021-02-26 珠海格力电器股份有限公司 Moisture collection device, control method and device thereof, and household appliance
CN113932365A (en) * 2021-10-21 2022-01-14 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202430767U (en) * 2011-12-12 2012-09-12 惠州大华科技有限公司 Device for extracting water from air
CN102677739A (en) * 2012-05-14 2012-09-19 上海交通大学 Device capable of obtaining water from air
CN104566784A (en) * 2014-12-11 2015-04-29 广东美的制冷设备有限公司 Control method and device for dehumidifier and dehumidifier
CN104879836A (en) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 Variable frequency dehumidifier control method and device and dehumidifier
WO2015192252A1 (en) * 2014-06-20 2015-12-23 0977915 Bc Ltd Air temperature control unit and process for controlling air temperature and producing purified water
CN108800380A (en) * 2018-02-13 2018-11-13 南京嘉涛科技有限公司 A kind of washing oxidation air purifier from air water-intaking
CN109208694A (en) * 2018-07-20 2019-01-15 西安交通大学 It is a kind of using hydrophobe integrated structure from air water processed method and apparatus
CN110418921A (en) * 2017-03-21 2019-11-05 三菱电机株式会社 Dehumidifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202430767U (en) * 2011-12-12 2012-09-12 惠州大华科技有限公司 Device for extracting water from air
CN102677739A (en) * 2012-05-14 2012-09-19 上海交通大学 Device capable of obtaining water from air
WO2015192252A1 (en) * 2014-06-20 2015-12-23 0977915 Bc Ltd Air temperature control unit and process for controlling air temperature and producing purified water
CN104566784A (en) * 2014-12-11 2015-04-29 广东美的制冷设备有限公司 Control method and device for dehumidifier and dehumidifier
CN104879836A (en) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 Variable frequency dehumidifier control method and device and dehumidifier
CN110418921A (en) * 2017-03-21 2019-11-05 三菱电机株式会社 Dehumidifier
CN108800380A (en) * 2018-02-13 2018-11-13 南京嘉涛科技有限公司 A kind of washing oxidation air purifier from air water-intaking
CN109208694A (en) * 2018-07-20 2019-01-15 西安交通大学 It is a kind of using hydrophobe integrated structure from air water processed method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112411675A (en) * 2020-11-17 2021-02-26 珠海格力电器股份有限公司 Moisture collection device, control method and device thereof, and household appliance
CN113932365A (en) * 2021-10-21 2022-01-14 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof
CN113932365B (en) * 2021-10-21 2023-01-06 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof

Also Published As

Publication number Publication date
CN111596575B (en) 2022-09-30

Similar Documents

Publication Publication Date Title
CN109855281B (en) Air conditioner heat exchange device and air conditioner
CN103216981B (en) Frostless air handling unit and proportion-integration-differential control method thereof
CN109520136B (en) Heat pump water heater control method and heat pump water heater
CN103712309A (en) Air-conditioner refrigerant flow control method
CN111596575B (en) Condensation water taking control method for evaporator of all-working-condition air water making machine
CN107906778A (en) The control system and control method of multi-gang air-conditioner unit air injection enthalpy-increasing jet amount
CN102221261A (en) Flow-changing low-temperature air-compensation air source heat pump water heater and control method thereof
CN100507407C (en) Transcritical vapor compression optimization through maximization of heating capacity
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
CN109099612A (en) Heat-pump apparatus and its control method for electronic expansion valve, device and storage medium
EP1329677A2 (en) Transcritical vapor compression system
CN111623547B (en) Compressor frequency control method of transcritical carbon dioxide heat pump hot water system
CN105115212B (en) A kind of control method of controlled evaporation temperature dehumidifier
CN107687728B (en) Air energy heat pump defrosting control method for judging condensation point
KR100640856B1 (en) Control method for multi-airconditioner
CN112032941A (en) Control method of air conditioner
CN113819570B (en) Multi-connected air conditioning system high pressure calculation method and multi-connected air conditioning system
CN114294833B (en) Control method of heat pump high-energy-efficiency water heating system
CN111720977A (en) Control method of air conditioner
CN111609483A (en) Dehumidification device and dehumidification system
CN114739070B (en) Transcritical carbon dioxide double-stage compression ice making system and control method
CN206755641U (en) A kind of air-cooled single cooler group of technical cooling under pole low temperature environment
CN116222041B (en) Secondary condensation defrosting medium flow control method for refrigeration system
CN216432172U (en) Variable-flow thermostatic expansion valve air conditioning system
CN112212468B (en) Control method of air conditioner

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant