CN111592509A - A method for copper-catalyzed synthesis of aryl (3-sulfonylbenzofuran-2-yl)methanone compounds - Google Patents

A method for copper-catalyzed synthesis of aryl (3-sulfonylbenzofuran-2-yl)methanone compounds Download PDF

Info

Publication number
CN111592509A
CN111592509A CN202010512204.9A CN202010512204A CN111592509A CN 111592509 A CN111592509 A CN 111592509A CN 202010512204 A CN202010512204 A CN 202010512204A CN 111592509 A CN111592509 A CN 111592509A
Authority
CN
China
Prior art keywords
aryl
benzofuran
sulfuryl
arh
ketone compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010512204.9A
Other languages
Chinese (zh)
Other versions
CN111592509B (en
Inventor
吕兰兰
陈新义
刘建全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202010512204.9A priority Critical patent/CN111592509B/en
Publication of CN111592509A publication Critical patent/CN111592509A/en
Application granted granted Critical
Publication of CN111592509B publication Critical patent/CN111592509B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/86Benzo [b] furans; Hydrogenated benzo [b] furans with an oxygen atom directly attached in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention discloses a method for synthesizing an aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis, which comprises the steps of taking a 2- (1-hydroxy-3-arylpropyl-2-alkyne-1-yl) phenol compound shown in a formula (1) and p-toluenesulfonyl methyl isocyano shown in the formula (2) as raw materials and cuprous iodide as a catalyst in an organic solvent system, heating and stirring for reaction, tracking and detecting by TLC until the reaction is complete, and carrying out aftertreatment on a reaction solution to obtain the aryl (3-sulfuryl benzofuran-2-yl) ketone compound shown in the formula (3). The method has the advantages of simple operation, cheap and easily obtained raw materials, mild reaction conditions, environment-friendly reaction system and easy separation and purification of products, is suitable for synthesizing various functionalized aryl (3-sulfuryl benzofuran-2-yl) ketone compounds, is particularly suitable for large-scale industrial production, and can be used for preparing various functionalized aryl (3-sulfuryl benzofuran-2-yl) ketone compoundsThe high-purity aryl (3-sulfuryl benzofuran-2-yl) ketone compound is prepared with high efficiency and high yield, and the synthesis method of the benzofuran and sulfuryl compound is widened.

Description

一种铜催化合成芳基(3-砜基苯并呋喃-2-基)甲酮化合物的 方法A kind of copper-catalyzed synthesis of aryl (3-sulfonylbenzofuran-2-yl)methanone compounds method

技术领域technical field

本发明属于有机合成领域,涉及一种铜催化合成反应,具体涉及一种铜催化合成芳基(3-砜基苯并呋喃-2-基)甲酮化合物的方法。The invention belongs to the field of organic synthesis, and relates to a copper-catalyzed synthesis reaction, in particular to a method for copper-catalyzed synthesis of an aryl (3-sulfonylbenzofuran-2-yl)methanone compound.

背景技术Background technique

苯并呋喃是一类重要的有机小分子骨架,不仅是许多生物活性天然产物、药物以及有机导电材料等的关键结构单元,而且还是多用途的有机合成子,所以发展苯并呋喃的合成方法一直是有机合成化学的重要研究课题之一。在各种天然和合成苯并呋喃衍生物中,它们表现出了良好的抗肿瘤、抗病毒、抗真菌、抗氧化、抗结核、免疫抑制剂等生理活性,例如:Benzbromarone(尿酸排泄药),Amiodarone(抗心律失常药),Obovaten(抗肿瘤活性),Saprisartan(治疗高血压)和Anigopreissin A(抗微生物药)等活性。近年来,一些有效构建苯并呋喃类化合物的策略得到了充分发展(Nat.Chem.2019,11,797;Org.Lett.2019,21,955;Org.Lett.2019,21,8008;Adv.Synth.Catal.2016,358,2984;Angew.Chem.Int.Ed.2013,52,4607;J.Am.Chem.Soc.2009,131,17387etc.)。然而,这些方法大部分是对已发展策略的拓展,并不能从根本上解决苯并呋喃合成上存在的局限,缺乏实用价值。截止目前为止一种最常见合成苯并呋喃的方法是利用碱介导的亲核偶联物,随后由过渡金属催化活化炔烃与2-卤代酚Heck型环化生成目标化合物。这一公开的催化策略还存在着一些缺陷例如:区域选择性差,需要使用强氧化剂和昂贵的配体,以及各种取代基的限制,反应条件苛刻,产物产率低等。因此,这样迫切的要求科学工作者们开发新的简便、高效的方法制备苯并呋喃。Benzofuran is a kind of important organic small molecular framework, not only the key structural unit of many biologically active natural products, drugs and organic conductive materials, but also a multi-purpose organic synthon, so the development of synthetic methods of benzofuran has been It is one of the important research topics in organic synthetic chemistry. Among various natural and synthetic benzofuran derivatives, they have shown good anti-tumor, anti-viral, anti-fungal, antioxidant, anti-tuberculosis, immunosuppressive and other physiological activities, such as: Benzbromarone (uric acid excretion drug), Activities such as Amiodarone (antiarrhythmic), Obovaten (antitumor activity), Saprisartan (treatment of hypertension) and Anigopreissin A (antimicrobial). In recent years, some strategies to efficiently construct benzofurans have been fully developed (Nat.Chem.2019,11,797; Org.Lett.2019,21,955; Org.Lett.2019,21,8008; Adv.Synth.Catal. 2016, 358, 2984; Angew. Chem. Int. Ed. 2013, 52, 4607; J. Am. Chem. Soc. 2009, 131, 17387 etc.). However, most of these methods are extensions of the developed strategies, which cannot fundamentally solve the limitations of benzofuran synthesis and lack practical value. To date, one of the most common methods for synthesizing benzofurans utilizes base-mediated nucleophilic conjugates, followed by transition metal-catalyzed activation of alkynes with 2-halophenols Heck-type cyclization to the target compounds. This disclosed catalytic strategy also suffers from some drawbacks such as poor regioselectivity, the need to use strong oxidants and expensive ligands, and limitations of various substituents, harsh reaction conditions, and low product yields. Therefore, there is an urgent need for scientists to develop new simple and efficient methods to prepare benzofuran.

磺酰(砜)类是另一类普遍的片段,广泛存在于许多具有高生物活性的天然产物以及药物分子当中,在有机合成以及药物化学中极为有用。由于磺酰类化合物在药物化学中的重要地位,研究开发温和条件下基于磺酰类化合物的合成具有重要的意义,能够为含磺酰基团药物及其衍生物的合成打开一个新的通道,为有机合成提供新的手段。同时,利用发展的方法学得到的结构类似的磺酰类化合物可以直接用于一些特定生物靶体的高通量筛选中。这样的小分子化合物库一旦经过有价值的生物模型的筛选,其结果不仅可以为得到活性高,选择性好的先导化合物提供可能性,而且在此过程中得到的构效关系将会为更加准确地揭示生命过程建立更为坚实可靠的数据库。因此,将砜基官能团引入到同时具有特殊生物活性的苯并呋喃骨架中,进而广泛地培养其生物学特性具有重要的意义。然而,经过大量的文献调研发现仅有少量的例子关于它们的合成,且现有的方法普遍存在着预设计的底物分子,收率低,反应条件苛刻,反应步骤繁琐,环境不友好等缺点。近年来,铜催化的有机化学反应成为了当前有机化学研究的热点方向之一,多种铜催化的化学反应已经被报道,比如碳-碳偶联反应、碳-杂原子偶联反应、分子内反应、多组分反应等。随着全球生态环境的急剧恶化,如何实现可持续发展已成为人类面临的重大问题,以从源头上消除污染、节省资源为核心的绿色化学研究已经成为解决日益严峻的生态环境问题的强有力手段。异氰与炔的反应具有环境友好、价格低廉等优点,这些优点使其特别适合作为化学工业生产。Sulfonyl (sulfone)s are another common class of fragments that are widely found in many natural products and drug molecules with high biological activity, and are extremely useful in organic synthesis and medicinal chemistry. Due to the important position of sulfonyl compounds in medicinal chemistry, it is of great significance to research and develop the synthesis of sulfonyl compounds under mild conditions, which can open a new channel for the synthesis of sulfonyl group-containing drugs and their derivatives. Organic synthesis provides new means. At the same time, the structurally similar sulfonyl compounds obtained by the developed methodology can be directly used in the high-throughput screening of some specific biological targets. Once such a small molecule compound library has been screened by valuable biological models, the results will not only provide the possibility to obtain lead compounds with high activity and good selectivity, but also the structure-activity relationship obtained in this process will be more accurate. To reveal the life process to establish a more solid and reliable database. Therefore, it is of great significance to introduce the sulfone functional group into the benzofuran skeleton with special biological activity, and then extensively cultivate its biological properties. However, after a lot of literature research, it is found that there are only a few examples about their synthesis, and the existing methods generally have the disadvantages of pre-designed substrate molecules, low yields, harsh reaction conditions, cumbersome reaction steps, and unfriendly environment. . In recent years, copper-catalyzed organic chemical reactions have become one of the hotspots in current organic chemistry research. A variety of copper-catalyzed chemical reactions have been reported, such as carbon-carbon coupling reactions, carbon-heteroatom coupling reactions, intramolecular reactions, multicomponent reactions, etc. With the rapid deterioration of the global ecological environment, how to achieve sustainable development has become a major problem faced by human beings. Green chemistry research centered on eliminating pollution at the source and saving resources has become a powerful means to solve increasingly serious ecological and environmental problems. . The reaction of isocyanide with alkyne has the advantages of environmental friendliness and low price, and these advantages make it particularly suitable for chemical industrial production.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种铜催化合成芳基(3-砜基苯并呋喃-2-基)甲酮化合物的方法,原料廉价易得,环境友好。The purpose of the present invention is to provide a copper-catalyzed method for synthesizing aryl(3-sulfonylbenzofuran-2-yl)methanone compounds, the raw materials are cheap and easy to obtain, and the environment is friendly.

为实现上述目的,本发明采用的技术方案如下:一种铜催化合成芳基(3-砜基苯并呋喃-2-基)甲酮化合物的方法,在有机溶剂体系中,以式(1)所示的2-(1-羟基-3-芳基丙-2-炔-1-基)苯酚和式(2)所示的对甲苯磺酰基甲基异氰为原料,以碘化亚铜为催化剂,加热搅拌反应,通过TLC跟踪检测至反应完全,反应液后处理后得到式(3)所示的芳基(3-砜基苯并呋喃-2-基)甲酮化合物;其中,2-(1-羟基-3-芳基丙-2-炔-1-基)苯酚、对甲苯磺酰基甲基异氰的投料摩尔比为1.5:1;In order to achieve the above object, the technical scheme adopted in the present invention is as follows: a method for copper-catalyzed synthesis of aryl (3-sulfonylbenzofuran-2-yl)methanone compound, in an organic solvent system, with formula (1) The 2-(1-hydroxy-3-arylprop-2-yn-1-yl) phenol shown and the p-toluenesulfonyl methyl isocyanide shown in formula (2) are used as raw materials, and cuprous iodide is used as the raw material. The catalyst is heated and stirred for reaction, and is detected by TLC tracking until the reaction is complete, and the aryl (3-sulfonylbenzofuran-2-yl)methanone compound shown in formula (3) is obtained after the post-treatment of the reaction solution; wherein, 2- The molar ratio of (1-hydroxy-3-arylprop-2-yn-1-yl)phenol to p-toluenesulfonyl methyl isocyanide is 1.5:1;

Figure BDA0002528730260000021
Figure BDA0002528730260000021

式中,R1为氢、甲氧基、甲基、氟、氯,Ar为苯基、取代苯基、杂芳基、稠芳基,其中取代基为甲基、乙基、甲氧基、乙氧基、氟或氯。In the formula, R 1 is hydrogen, methoxy, methyl, fluorine, chlorine, Ar is phenyl, substituted phenyl, heteroaryl, condensed aryl, wherein the substituents are methyl, ethyl, methoxy, Ethoxy, fluorine or chlorine.

优选的,所述有机溶剂选自乙腈、1,2-二氯乙烷、1,4-二氧六环、N-二甲基甲酰胺、二甲基亚砜、甲苯中的一种。Preferably, the organic solvent is selected from one of acetonitrile, 1,2-dichloroethane, 1,4-dioxane, N-dimethylformamide, dimethylsulfoxide, and toluene.

更优选的,所述有机溶剂选自乙腈。More preferably, the organic solvent is selected from acetonitrile.

优选的,所述碘化亚铜的用量为式(1)所示的2-(1-羟基-3-芳基丙-2-炔-1-基)苯酚的物质的量的10mol%。Preferably, the amount of cuprous iodide used is 10 mol% of the amount of 2-(1-hydroxy-3-arylprop-2-yn-1-yl)phenol represented by formula (1).

优选的,所述反应温度为60-100℃。Preferably, the reaction temperature is 60-100°C.

优选的,所述反应液后处理的方法为:反应结束后,将反应液倾入饱和食盐水中,用二氯甲烷萃取,然后用饱和食盐水反洗有机相,经无水氯化钙干燥、抽滤、减压蒸馏后再经硅胶柱层析分离,所得洗脱液减压蒸馏,干燥,制得式(3)所示的芳基(3-砜基苯并呋喃-2-基)甲酮化合物。Preferably, the post-processing method of the reaction solution is as follows: after the reaction is completed, the reaction solution is poured into saturated brine, extracted with dichloromethane, and then the organic phase is backwashed with saturated brine, dried over anhydrous calcium chloride, Suction filtration, distillation under reduced pressure and then separation by silica gel column chromatography, the obtained eluent is distilled under reduced pressure and dried to obtain aryl(3-sulfonylbenzofuran-2-yl)methane represented by formula (3). ketone compounds.

优选的,所述硅胶柱层析的洗脱液为石油醚:乙酸乙酯=4:1,V/V。Preferably, the eluent of the silica gel column chromatography is petroleum ether:ethyl acetate=4:1, V/V.

与现有技术相比,本发明具有操作简单,原料和试剂易得,条件温和,反应体系绿色环保,产物易分离纯化,适用于合成各种高度官能化的芳基(3-砜基苯并呋喃-2-基)甲酮类化合物,特别适用于大规模的工业生产,可以高效、高收率(75%以上)地制得高纯度的芳基(3-砜基苯并呋喃-2-基)甲酮类化合物。Compared with the prior art, the present invention has the advantages of simple operation, easy availability of raw materials and reagents, mild conditions, green and environmental protection reaction system, easy separation and purification of products, and is suitable for synthesizing various highly functionalized aryl (3-sulfonyl benzoyl) compounds. Furan-2-yl)methanone compounds, especially suitable for large-scale industrial production, can produce high-purity aryl(3-sulfonylbenzofuran-2- base) ketone compounds.

附图说明Description of drawings

图1为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3a的1H-NMR的核磁共振谱;Fig. 1 is the nuclear magnetic resonance spectrum of 1H-NMR of aryl (3-sulfonylbenzofuran-2-yl)methanone derivative 3a;

图2为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3a的13C-NMR的核磁共振谱;Fig. 2 is the nuclear magnetic resonance spectrum of 13C-NMR of aryl (3-sulfonylbenzofuran-2-yl)methanone derivative 3a;

图3为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3b的1H-NMR的核磁共振谱;Fig. 3 is the nuclear magnetic resonance spectrum of 1H-NMR of aryl (3-sulfonylbenzofuran-2-yl)methanone derivative 3b;

图4为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3b的13C-NMR的核磁共振谱;Fig. 4 is the nuclear magnetic resonance spectrum of 13C-NMR of aryl(3-sulfonylbenzofuran-2-yl)methanone derivative 3b;

图5为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3c的1H-NMR的核磁共振谱;Fig. 5 is the nuclear magnetic resonance spectrum of 1H-NMR of aryl (3-sulfonylbenzofuran-2-yl)methanone derivative 3c;

图6为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3c的13C-NMR的核磁共振谱;Fig. 6 is the nuclear magnetic resonance spectrum of 13C-NMR of aryl(3-sulfonylbenzofuran-2-yl)methanone derivative 3c;

图7为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3d的1H-NMR的核磁共振谱;Fig. 7 is the nuclear magnetic resonance spectrum of 1H-NMR of aryl(3-sulfonylbenzofuran-2-yl)methanone derivative 3d;

图8为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3d的13C-NMR的核磁共振谱;Fig. 8 is the nuclear magnetic resonance spectrum of 13C-NMR of aryl(3-sulfonylbenzofuran-2-yl)methanone derivative 3d;

图9为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3e的1H-NMR的核磁共振谱;Fig. 9 is the nuclear magnetic resonance spectrum of 1H-NMR of aryl (3-sulfonylbenzofuran-2-yl)methanone derivative 3e;

图10为芳基(3-砜基苯并呋喃-2-基)甲酮衍生物3e的13C-NMR的核磁共振谱。Fig. 10 is a nuclear magnetic resonance spectrum of 13C-NMR of an aryl(3-sulfonylbenzofuran-2-yl)methanone derivative 3e.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.

实施例1:苯基(3-砜基苯并呋喃-2-基)甲酮衍生物3a的制备Example 1: Preparation of phenyl(3-sulfonylbenzofuran-2-yl)methanone derivative 3a

Figure BDA0002528730260000041
Figure BDA0002528730260000041

向带有磁力搅拌装置的25mL耐压管中加入CH3CN(4mL)、2-(1-羟基-3-芳基丙-2-炔-1-基)苯酚1a(0.224g,1.0mmol)和对甲苯磺酰基甲基异氰TsCH2NC2a(0.293g,1.5mmol),加入碘化亚铜(0.019g,0.1mol)搅拌均匀后,将其放入80℃油浴中继续搅拌。TLC检测底物消失,反应结束。将反应液倾入饱和氯化钠水溶液中(10mL),用二氯甲烷(3×10mL)萃取,合并有机相,然后用水(3×10mL)反洗有机相,经过无水氯化钙干燥、抽虑、减压蒸馏等步骤得到粘稠的固体,最后经过硅胶柱层析(洗脱液为V石油醚:V乙酸乙酯=4:1)得到黄色固体,经过NMR、MS证实为苯基(3-砜基苯并呋喃-2-基)甲酮衍生物3a,其收率为91%。To a 25 mL pressure tube with a magnetic stirring device was added CH 3 CN (4 mL), 2-(1-hydroxy-3-arylprop-2-yn-1-yl)phenol 1a (0.224 g, 1.0 mmol) and p-toluenesulfonyl methyl isocyanide TsCH 2 NC2a (0.293 g, 1.5 mmol), cuprous iodide (0.019 g, 0.1 mol) was added and stirred evenly, then it was placed in an 80° C. oil bath to continue stirring. TLC detected the disappearance of the substrate and the reaction ended. The reaction solution was poured into saturated aqueous sodium chloride solution (10 mL), extracted with dichloromethane (3×10 mL), the organic phases were combined, and then the organic phase was backwashed with water (3×10 mL), dried over anhydrous calcium chloride, Steps such as extraction and distillation under reduced pressure obtain a viscous solid, and finally through silica gel column chromatography (eluent is V petroleum ether : V ethyl acetate =4:1) to obtain a yellow solid, which is confirmed to be phenyl through NMR and MS (3-sulfonylbenzofuran-2-yl)methanone derivative 3a in 91% yield.

谱图解析数据3a:Spectrogram analysis data 3a:

黄色固体,m.p.115-116℃;1H NMR(CDCl3,400MHz):δH 8.22-8.20(m,1H,ArH),8.14-8.12(m,2H,ArH),7.95-7.92(m,2H,ArH),7.69-7.65(m,1H,ArH),7.57-7.46(m,5H,ArH),7.34(d,J=8.0Hz,2H,ArH),2.41(s,3H,CH3)(图1);13C NMR(CDCl3,100MHz):δC184.7,153.7,152.7,144.8,138.1,135.6,134.6,130.3,129.8,128.8,128.2,127.8,125.54,125.45,123.7,122.3,112.4,21.7(图2);HRMS(ESI-TOF,m/z):Calcd for C22H17O4S[M+H]+:377.0842,found 377.0839.Yellow solid, mp 115-116°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.22-8.20 (m, 1H, ArH), 8.14-8.12 (m, 2H, ArH), 7.95-7.92 (m, 2H, ArH), 7.69-7.65(m, 1H, ArH), 7.57-7.46(m, 5H, ArH), 7.34(d, J=8.0Hz, 2H, ArH), 2.41(s, 3H, CH 3 ) (Fig. 1); 13 C NMR (CDCl 3 , 100MHz): δ C 184.7, 153.7, 152.7, 144.8, 138.1, 135.6, 134.6, 130.3, 129.8, 128.8, 128.2, 127.8, 125.54, 125.45, 123.7, 122.3, 112. (Fig. 2); HRMS (ESI-TOF, m/z): Calcd for C 22 H 17 O 4 S[M+H] + : 377.0842, found 377.0839.

实施例2:与实施例1不同的是,有机溶剂选自1,2-二氯乙烷,其收率为83%。Example 2: Different from Example 1, the organic solvent was selected from 1,2-dichloroethane, and its yield was 83%.

实施例3:与实施例1不同的是,有机溶剂选自1,4-二氧六环,其收率为75%。Example 3: Different from Example 1, the organic solvent was selected from 1,4-dioxane, and its yield was 75%.

实施例4:与实施例1不同的是,有机溶剂选自N,N-二甲基甲酰胺,其收率为87%。Example 4: Different from Example 1, the organic solvent was selected from N,N-dimethylformamide, and the yield was 87%.

实施例5:与实施例1不同的是,有机溶剂选自二甲基亚砜,其收率为84%。Example 5: Different from Example 1, the organic solvent was selected from dimethyl sulfoxide, and its yield was 84%.

实施例6:与实施例1不同的是,有机溶剂选自甲苯,其收率为82%。Example 6: Different from Example 1, the organic solvent was selected from toluene, and its yield was 82%.

实施例7:与实施例1不同的是,反应温度为60℃,其收率为77%。Example 7: Different from Example 1, the reaction temperature was 60°C, and the yield was 77%.

实施例8:与实施例1不同的是,反应温度为100℃,其收率为88%。Example 8: Different from Example 1, the reaction temperature was 100°C, and the yield was 88%.

实施例9:Example 9:

用1b代替实施例1中的1a,其他条件同实施例1,其收率为87%。Substitute 1b for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 87%.

Figure BDA0002528730260000051
Figure BDA0002528730260000051

谱图解析数据3b:Spectrogram analysis data 3b:

黄色固体,m.p.112-113℃;1H NMR(CDCl3,400MHz):δH.8.12(d,J=8.0Hz,2H,ArH),7.98-7.93(m,3H,ArH),7.70-7.66(m,1H,ArH),7.55-7.51(m,2H,ArH),7.43-7.38(m,1H,ArH),7.35(d,J=8.0Hz,2H,ArH),7.26-7.21(m,1H,ArH),2.40(s,3H,CH3)(图3);13CNMR(CDCl3,100MHz):δC 184.2,153.5,147.9(d,JF-C=251.9Hz),145.1,141.1(d,JF-C=12.5Hz),137.6,135.2,134.8,130.3,129.8,128.8,128.2,126.8(d,JF-C=2.2Hz),126.3(d,JF-C=5.7Hz),125.1(d,JF-C=2.2Hz),117.7(d,JF-C=4.6Hz),113.8(d,JF-C=15.5Hz),21.6(图4);HRMS(ESI-TOF,m/z):Calcd for C22H16FO4S[M+H]+:395.0748,found 395.0752.Yellow solid, mp 112-113°C; 1 H NMR (CDCl 3 , 400 MHz): δ H .8.12 (d, J=8.0 Hz, 2H, ArH), 7.98-7.93 (m, 3H, ArH), 7.70-7.66 ( m,1H,ArH),7.55-7.51(m,2H,ArH),7.43-7.38(m,1H,ArH),7.35(d,J=8.0Hz,2H,ArH),7.26-7.21(m,1H , ArH), 2.40 (s, 3H, CH 3 ) (Fig. 3); 13 CNMR (CDCl 3 , 100 MHz): δ C 184.2, 153.5, 147.9 (d, J FC =251.9 Hz), 145.1, 141.1 (d, JFC = 12.5Hz), 137.6, 135.2, 134.8, 130.3, 129.8, 128.8, 128.2, 126.8(d, JFC = 2.2Hz), 126.3(d, JFC = 5.7Hz), 125.1(d, JFC = 2.2 Hz), 117.7 (d, J FC = 4.6 Hz), 113.8 (d, J FC = 15.5 Hz), 21.6 (Fig. 4); HRMS (ESI-TOF, m/z): Calcd for C 22 H 16 FO 4 S[M+H] + :395.0748, found 395.0752.

实施例10:Example 10:

用1c代替实施例1中的1a,其他条件同实施例1,其收率为79%。Substitute 1c for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 79%.

Figure BDA0002528730260000052
Figure BDA0002528730260000052

谱图解析数据3c:Spectrogram analysis data 3c:

黄色固体,m.p.102-103℃;1H NMR(CDCl3,400MHz):δH 8.11(d,J=8.0Hz,2H,ArH),8.00(d,J=8.0Hz,1H,ArH),7.96-7.04(m,2H,ArH),7.69-7.64(m,1H,ArH),7.54-7.50(m,2H,ArH),7.38-7.28(m,4H,ArH),2.47(s,3H,CH3),2.39(s,3H,CH3)(图5);13C NMR(CDCl3,100MHz):δC 184.9,152.9,152.4,144.7,138.1,135.6,134.5,130.3,129.7,128.7,128.5,128.1,125.6,125.3,123.1,122.7,119.4,21.6,14.8(图6);HRMS(ESI-TOF,m/z):Calcd for C23H19O4S[M+H]+:391.0999,found 391.0986.Yellow solid, mp 102-103°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.11 (d, J=8.0 Hz, 2H, ArH), 8.00 (d, J=8.0 Hz, 1H, ArH), 7.96- 7.04(m, 2H, ArH), 7.69-7.64(m, 1H, ArH), 7.54-7.50(m, 2H, ArH), 7.38-7.28(m, 4H, ArH), 2.47(s, 3H, CH 3 The _ _ _ 128.1, 125.6, 125.3, 123.1, 122.7, 119.4, 21.6, 14.8 (Fig. 6); HRMS (ESI-TOF, m/z): Calcd for C 23 H 19 O 4 S[M+H] + :391.0999, found 391.0986.

实施例11:Example 11:

用1d代替实施例1中的1a,其他条件同实施例1,其收率为81%。Substitute 1d for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 81%.

Figure BDA0002528730260000061
Figure BDA0002528730260000061

谱图解析数据3d:Spectrogram analysis data 3d:

白色固体,m.p.121-122℃;1H NMR(CDCl3,400MHz):δH 8.11(d,J=8.4Hz,2H,ArH),7.96-7.04(m,2H,ArH),7.74(dd,J=8.0Hz and 0.8Hz,1H,ArH),7.68-7.63(m,1H,ArH),7.53-7.49(m,2H,ArH),7.40-7.32(m,3H,ArH),6.97(dd,J=8.0Hz and 0.8Hz,1H,ArH),3.96(s,3H,OCH3),2.40(s,3H,CH3)(图7);13C NMR(CDCl3,100MHz):δC 184.6,152.9,145.8,144.8,143.4,138.0,135.5,134.5,130.3,129.7,128.7,128.1,126.3,125.4,125.2,113.6,109.2,56.2,21.6(图8);HRMS(ESI-TOF,m/z):Calcd for C23H19O5S[M+H]+:407.0948,found 407.0952.White solid, mp 121-122°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.11 (d, J=8.4 Hz, 2H, ArH), 7.96-7.04 (m, 2H, ArH), 7.74 (dd, J =8.0Hz and 0.8Hz,1H,ArH),7.68-7.63(m,1H,ArH),7.53-7.49(m,2H,ArH),7.40-7.32(m,3H,ArH),6.97(dd,J = 8.0 Hz and 0.8 Hz, 1H, ArH), 3.96 (s, 3H, OCH 3 ), 2.40 (s, 3H, CH 3 ) (Fig. 7); 13 C NMR (CDCl 3 , 100 MHz): δ C 184.6, HRMS (ESI-TOF, m/z) :Calcd for C 23 H 19 O 5 S[M+H] + :407.0948,found 407.0952.

实施例12:Example 12:

用1e代替实施例1中的1a,其他条件同实施例1,其收率为74%。Substitute 1e for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 74%.

Figure BDA0002528730260000062
Figure BDA0002528730260000062

谱图解析数据3e:Spectrogram analysis data 3e:

白色固体,m.p.132-133℃;1H NMR(CDCl3,400MHz):δH 8.15(d,J=8.8Hz,1H,ArH),8.12-8.09(m,2H,ArH),7.93-7.91(m,2H,ArH),7.70-7.66(m,1H,ArH),7.58(d,J=2.0Hz,1H,ArH),7.55-7.51(m,2H,ArH),7.47(dd,J=8.4Hz and 2.0Hz,1H,ArH),7.35(d,J=8.4Hz,2H,ArH),2.41(s,3H,CH3)(图9);13C NMR(CDCl3,100MHz):δC 184.1,153.5,153.0,145.1,137.8,135.3,134.7,134.0,130.2,129.8,128.8,128.2,126.5,125.6,122.9,122.4,112.8,21.7(图10);HRMS(ESI-TOF,m/z):Calcd for C22H16ClO4S[M+H]+:411.0452,found 411.0461.White solid, mp 132-133°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.15 (d, J=8.8 Hz, 1 H, ArH), 8.12-8.09 (m, 2H, ArH), 7.93-7.91 (m ,2H,ArH),7.70-7.66(m,1H,ArH),7.58(d,J=2.0Hz,1H,ArH),7.55-7.51(m,2H,ArH),7.47(dd,J=8.4Hz and 2.0 Hz, 1H, ArH), 7.35 (d, J=8.4 Hz, 2H, ArH), 2.41 (s, 3H, CH 3 ) (Fig. 9); 13 C NMR (CDCl 3 , 100 MHz): δ C 184.1 ,153.5,153.0,145.1,137.8,135.3,134.7,134.0,130.2,129.8,128.8,128.2,126.5,125.6,122.9,122.4,112.8,21.7(Figure 10); HRMS(ESI-TOF,m/z): Calcd for C 22 H 16 ClO 4 S[M+H] + : 411.0452, found 411.0461.

实施例13:Example 13:

用1f代替实施例1中的1a,其他条件同实施例1,其收率为75%。Substitute 1f for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 75%.

Figure BDA0002528730260000071
Figure BDA0002528730260000071

谱图解析数据3f:Spectrogram analysis data 3f:

白色固体,m.p.113-114℃;1H NMR(CDCl3,400MHz):δH 8.22-8.20(m,1H,ArH),8.12(d,J=8.4Hz,2H,ArH),8.01-7.96(m,2H,ArH),7.58-7.46(m,3HV),7.34(d,J=8.0Hz,2H,ArH),7.22-7.17(m,2H,ArH),2.40(s,3H,CH3);13C NMR(CDCl3,100MHz):δC 183.0,166.6(d,JF-C=256.6Hz),153.7,152.3,144.9,138.0,133.0(d,JF-C=9.6Hz),132.0(d,JF-C=2.7Hz),129.7,128.1,127.9,125.6,123.6,122.3(d,JF-C=22.3Hz),116.1,112.3,21.6;HRMS(ESI-TOF,m/z):Calcd for C22H16FO4S[M+H]+:395.0748,found 395.0738.White solid, mp 113-114°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.22-8.20 (m, 1H, ArH), 8.12 (d, J=8.4 Hz, 2H, ArH), 8.01-7.96 (m , 2H, ArH), 7.58-7.46 (m, 3HV), 7.34 (d, J=8.0Hz, 2H, ArH), 7.22-7.17 (m, 2H, ArH), 2.40 (s, 3H, CH 3 ); 13 C NMR (CDCl 3 , 100 MHz): δ C 183.0, 166.6 (d, J FC = 256.6 Hz), 153.7, 152.3, 144.9, 138.0, 133.0 (d, J FC = 9.6 Hz), 132.0 (d, J FC = 9.6 Hz) = 2.7Hz), 129.7, 128.1, 127.9, 125.6, 123.6, 122.3 (d, J FC = 22.3 Hz), 116.1, 112.3, 21.6; HRMS (ESI-TOF, m/z): Calcd for C 22 H 16 FO 4 S[M+H] + :395.0748, found 395.0738.

实施例14:Example 14:

用1g代替实施例1中的1a,其他条件同实施例1,其收率为79%。Substitute 1g for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 79%.

Figure BDA0002528730260000072
Figure BDA0002528730260000072

谱图解析数据3g:Spectrogram analysis data 3g:

白色固体,m.p.137-138℃;1H NMR(CDCl3,400MHz):δH 8.22(dd,J=6.8Hz and1.6Hz,1H,ArH),8.13-8.11(m,2H,ArH),7.91-7.87(m,2H,ArH),7.58-7.46(m,5H,ArH),7.34(d,J=8.0Hz,2H,ArH),2.40(s,3H,CH3);13C NMR(CDCl3,100MHz):δC 183.3,153.7,152.0,144.9,141.1,137.9,133.9,131.5,129.7,129.1,128.1,128.0,125.8,125.6,123.6,122.3,112.3,21.6;HRMS(ESI-TOF,m/z):Calcd for C22H16ClO4S[M+H]+:411.0452,found 411.0451.White solid, mp 137-138°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.22 (dd, J=6.8 Hz and 1.6 Hz, 1H, ArH), 8.13-8.11 (m, 2H, ArH), 7.91- 7.87 (m, 2H, ArH), 7.58-7.46 (m, 5H, ArH), 7.34 (d, J=8.0Hz, 2H, ArH), 2.40 (s, 3H, CH 3 ); 13 C NMR (CDCl 3 ) , 100MHz): δ C 183.3, 153.7, 152.0, 144.9, 141.1, 137.9, 133.9, 131.5, 129.7, 129.1, 128.1, 128.0, 125.8, 125.6, 123.6, 122.3, 112.3, 21.6; HRMS (ESI-TOF z): Calcd for C 22 H 16 ClO 4 S[M+H] + : 411.0452, found 411.0451.

实施例15:Example 15:

用1h代替实施例1中的1a,其他条件同实施例1,其收率为82%。Substitute 1h for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 82%.

Figure BDA0002528730260000081
Figure BDA0002528730260000081

谱图解析数据3h:Spectrogram analysis data 3h:

白色固体,m.p.141-142℃;1H NMR(CDCl3,400MHz):δH 8.19(dd,J=6.4Hz and2.0Hz,1H,ArH),8.12(d,J=8.4Hz,2H,ArH),7.84(d,J=8.4Hz,2H,ArH),7.56-7.44(m,3H,ArH),7.34-7.31(m,4H,ArH),2.46(m,3H,CH3),2.40(s,3H,CH3);13C NMR(CDCl3,100MHz):δC184.3,153.6,153.1,145.9,144.7,138.1,133.1,130.4,129.7,129.5,128.1,127.6,125.4,125.0,123.6,122.1,112.3,21.9,21.6;HRMS(ESI-TOF,m/z):Calcd for C23H19O4S[M+H]+:391.0999,found 391.0982.White solid, mp 141-142°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.19 (dd, J=6.4 Hz and 2.0 Hz, 1H, ArH), 8.12 (d, J=8.4 Hz, 2H, ArH) , 7.84(d, J=8.4Hz, 2H, ArH), 7.56-7.44(m, 3H, ArH), 7.34-7.31(m, 4H, ArH), 2.46(m, 3H, CH 3 ), 2.40(s , 3H, CH 3 ); 13 C NMR (CDCl 3 , 100 MHz): δ C 184.3, 153.6, 153.1, 145.9, 144.7, 138.1, 133.1, 130.4, 129.7, 129.5, 128.1, 127.6, 125.4, 125.0, 123.6, 122.1 , 112.3, 21.9, 21.6; HRMS(ESI-TOF, m/z): Calcd for C 23 H 19 O 4 S[M+H] + : 391.0999, found 391.0982.

实施例16:Example 16:

用1i代替实施例1中的1a,其他条件同实施例1,其收率为81%。Substitute 1i for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 81%.

Figure BDA0002528730260000082
Figure BDA0002528730260000082

谱图解析数据3i:Spectrogram analysis data 3i:

白色固体,m.p.151-152℃;1H NMR(CDCl3,400MHz):δH 8.17(dd,J=6.8Hz and2.8Hz,1H,ArH),8.12(d,J=8.0Hz,2H,ArH),7.93(d,J=8.8Hz,2H,ArH),7.55-7.43(m,3H,ArH),7.33(d,J=8.0Hz,2H,ArH),6.98(d,J=8.8Hz,2H,ArH),3.90(m,3H,OCH3),2.39(s,3H,CH3);13C NMR(CDCl3,100MHz):δC 183.1,164.8,153.6,153.4,144.7,138.1,132.8,129.7,128.6,128.1,127.5,125.4,124.5,123.6,122.0,114.1,112.2,55.6,21.6;HRMS(ESI-TOF,m/z):Calcd for C23H19O5S[M+H]+:407.0948,found 407.0953.White solid, mp 151-152°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.17 (dd, J=6.8 Hz and 2.8 Hz, 1H, ArH), 8.12 (d, J=8.0 Hz, 2H, ArH) ,7.93(d,J=8.8Hz,2H,ArH),7.55-7.43(m,3H,ArH),7.33(d,J=8.0Hz,2H,ArH),6.98(d,J=8.8Hz,2H , ArH), 3.90 (m, 3H, OCH 3 ), 2.39 (s, 3H, CH 3 ); 13 C NMR (CDCl 3 , 100MHz): δ C 183.1, 164.8, 153.6, 153.4, 144.7, 138.1, 132.8, 129.7, 128.6, 128.1, 127.5, 125.4, 124.5, 123.6, 122.0, 114.1, 112.2, 55.6, 21.6; HRMS(ESI-TOF, m/z): Calcd for C 23 H 19 O 5 S[M+H] + :407.0948,found 407.0953.

实施例17:Example 17:

用1j代替实施例1中的1a,其他条件同实施例1,其收率为87%。Substitute 1j for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 87%.

Figure BDA0002528730260000091
Figure BDA0002528730260000091

谱图解析数据3j:Spectrogram analysis data 3j:

白色固体,m.p.144-145℃;1H NMR(CDCl3,400MHz):δH 8.19(dd,J=6.4Hz and2.0Hz,1H,ArH),8.13(d,J=8.4Hz,2H,ArH),7.87-7.85(m,2H,ArH),7.55-7.44(m,3H,ArH),7.35-7.32(m,4H,ArH),2.75(q,J=7.6Hz,2H,CH2),2.40(s,3H,CH3),1.28(t,J=7.6Hz,3H,CH3);13C NMR(CDCl3,100MHz):δC 184.4,153.7,153.2,152.0,144.8,138.2,133.4,130.6,129.8,128.4,128.2,127.7,125.5,125.0,123.7,122.2,112.3,29.2,21.7,15.1;HRMS(ESI-TOF,m/z):Calcd for C24H21O4S[M+H]+:405.1155,found 405.1161.White solid, mp 144-145°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.19 (dd, J=6.4 Hz and 2.0 Hz, 1H, ArH), 8.13 (d, J=8.4 Hz, 2H, ArH) , 7.87-7.85 (m, 2H, ArH), 7.55-7.44 (m, 3H, ArH), 7.35-7.32 (m, 4H, ArH), 2.75 (q, J=7.6Hz, 2H, CH 2 ), 2.40 (s, 3H, CH 3 ), 1.28 (t, J=7.6 Hz, 3H, CH 3 ); 13 C NMR (CDCl 3 , 100 MHz): δ C 184.4, 153.7, 153.2, 152.0, 144.8, 138.2, 133.4, 130.6, 129.8, 128.4, 128.2, 127.7, 125.5, 125.0, 123.7, 122.2, 112.3, 29.2, 21.7, 15.1; HRMS(ESI-TOF, m/z): Calcd for C 24 H 21 O 4 S[M+H ] + :405.1155,found 405.1161.

实施例18:Example 18:

用1k代替实施例1中的1a,其他条件同实施例1,其收率为81%。Substitute 1k for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 81%.

Figure BDA0002528730260000092
Figure BDA0002528730260000092

谱图解析数据3k:Spectrogram analysis data 3k:

白色固体,m.p.145-147℃;1H NMR(CDCl3,400MHz):δH 8.16(dd,J=6.0Hz and1.6Hz,1H,ArH),8.12(d,J=8.4Hz,2H,ArH),7.93-7.89(m,2H,ArH),7.55-7.52(m,1H,ArH),7.50-7.43(m,2H,ArH),7.32(d,J=8.4Hz,2H,ArH),6.98-6.94(m,2H,ArH),4.13(q,J=6.8Hz,2H,CH2),2.39(s,3H,CH3),1.45(t,J=7.2Hz,3H,CH3);13C NMR(CDCl3,100MHz):δC183.2,164.4,153.7,153.6,144.8,138.3,132.9,129.8,128.5,128.2,127.6,125.5,124.5,123.7,122.1,114.6,112.4,64.1,21.7,14.7;HRMS(ESI-TOF,m/z):Calcd forC24H21O5S[M+H]+:421.1104,found 421.1121.White solid, mp 145-147°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.16 (dd, J=6.0 Hz and 1.6 Hz, 1H, ArH), 8.12 (d, J=8.4 Hz, 2H, ArH) ,7.93-7.89(m,2H,ArH),7.55-7.52(m,1H,ArH),7.50-7.43(m,2H,ArH),7.32(d,J=8.4Hz,2H,ArH),6.98- 6.94 (m, 2H, ArH), 4.13 (q, J=6.8 Hz, 2H, CH 2 ), 2.39 (s, 3H, CH 3 ), 1.45 (t, J=7.2 Hz, 3H, CH 3 ); 13 C NMR (CDCl 3 , 100MHz): δ C 183.2, 164.4, 153.7, 153.6, 144.8, 138.3, 132.9, 129.8, 128.5, 128.2, 127.6, 125.5, 124.5, 123.7, 122.1, 114.6, 112.4, 64.1, 212.4, 64.1 ;HRMS(ESI-TOF,m/z):Calcd forC 24 H 21 O 5 S[M+H] + : 421.1104, found 421.1121.

实施例19:Example 19:

用1l代替实施例1中的1a,其他条件同实施例1,其收率为75%。Substitute 11 for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 75%.

Figure BDA0002528730260000101
Figure BDA0002528730260000101

谱图解析数据3l:Spectrogram analysis data 3l:

白色固体,m.p.123-124℃;1H NMR(CDCl3,400MHz):δH 8.25-8.22(m,1H,ArH),8.14-8.12(m,2H,ArH),7.73-7.71(m,1H,ArH),7.68-7.65(m,1H,ArH),7.58-7.47(m,4H,ArH),7.39-7.34(m,3H,ArH),2.41(s,3H,CH3);13C NMR(CDCl3,100MHz):δC 183.2(d,JF-C=2.6Hz),162.6(d,JF-C=247.2Hz),153.7,151.8,144.9,137.9,137.4(d,JF-C=6.8Hz),130.5(d,JF-C=7.6Hz),129.8,128.2,128.1,126.2(d,JF-C=3.1Hz),126.1,125.7,123.6,122.3,121.6(d,JF-C=21.4Hz),116.6(d,JF-C=22.8Hz),112.4,21.7;HRMS(ESI-TOF,m/z):Calcd for C22H16FO4S[M+H]+:395.0748,found 395.0752.White solid, mp 123-124°C; 1 H NMR (CDCl 3 , 400 MHz): δ H 8.25-8.22 (m, 1H, ArH), 8.14-8.12 (m, 2H, ArH), 7.73-7.71 (m, 1H, ArH), 7.68-7.65 (m, 1H, ArH), 7.58-7.47 (m, 4H, ArH), 7.39-7.34 (m, 3H, ArH), 2.41 (s, 3H, CH 3 ); 13 C NMR ( CDCl 3 , 100MHz): δ C 183.2 (d, J FC = 2.6 Hz), 162.6 (d, J FC = 247.2 Hz), 153.7, 151.8, 144.9, 137.9, 137.4 (d, J FC = 6.8 Hz), 130.5 (d, JFC = 7.6Hz), 129.8, 128.2, 128.1, 126.2 (d, JFC = 3.1Hz), 126.1, 125.7, 123.6, 122.3, 121.6 (d, JFC = 21.4Hz), 116.6(d, J FC = 22.8Hz), 112.4, 21.7; HRMS (ESI-TOF, m/z): Calcd for C 22 H 16 FO 4 S[M+H] + : 395.0748, found 395.0752.

实施例20:Example 20:

用1m代替实施例1中的1a,其他条件同实施例1,其收率为85%。Substitute 1m for 1a in Example 1, other conditions are the same as in Example 1, and the yield is 85%.

Figure BDA0002528730260000102
Figure BDA0002528730260000102

谱图解析数据3m:Spectrogram analysis data 3m:

白色固体,m.p.152-153℃;1H-NMR(400MHz,CDCl3)δ8.32(s,1H),8.24-8.22(m,1H),8.10(d,J=8.0Hz 2H),8.06(dd,J=8.4Hz and 2.0Hz,1H),7.95(d,J=8.8Hz,1H),7.91-7.87(m,2H),7.66-7.62(m,1H),7.59-7.47(m,4H),7.30(d,J=8.4Hz,2H),2.38(s,3H);13C-NMR(CDCl3,100MHz)δ184.7,153.8,153.0,144.8,138.1,136.2,133.5,133.0,132.2,129.9,129.7,129.4,128.8,128.1,127.9,127.7,127.0,125.5,125.2,124.4,123.7,122.1,112.4,21.6.;HRMS(ESI-TOF)m/z calculated for C26H19O4S[M+H]+:427.0999found:427.0992.White solid, mp 152-153°C; 1 H-NMR (400 MHz, CDCl 3 ) δ 8.32 (s, 1H), 8.24-8.22 (m, 1H), 8.10 (d, J=8.0 Hz 2H), 8.06 (dd ,J=8.4Hz and 2.0Hz,1H),7.95(d,J=8.8Hz,1H),7.91-7.87(m,2H),7.66-7.62(m,1H),7.59-7.47(m,4H) , 7.30(d, J=8.4Hz, 2H), 2.38(s, 3H); 13 C-NMR (CDCl 3 , 100MHz) δ 184.7, 153.8, 153.0, 144.8, 138.1, 136.2, 133.5, 133.0, 132.2, 129.9, 129.7,129.4,128.8,128.1,127.9,127.7,127.0,125.5,125.2,124.4,123.7,122.1,112.4,21.6.; HRMS(ESI-TOF)m/z calculated for C 26 H 19 O 4 S[M+ H] + :427.0999found:427.0992.

实施例21:Example 21:

用1n代替实施例1中的1a,其他条件同实施例1,其收率为74%。1a in Example 1 was replaced by 1n, and other conditions were the same as in Example 1, and the yield was 74%.

Figure BDA0002528730260000111
Figure BDA0002528730260000111

谱图解析数据3n:Spectrogram analysis data 3n:

白色固体,m.p.125-126℃;1H-NMR(400MHz,CDCl3)δ8.34(d,J=7.6Hz,1H),8.18(d,J=8.0Hz,2H),7.97(d,J=4.0Hz,1H),7.83(d,J=4.4Hz,1H),7.61-7.48(m,3H),7.34(d,J=8.0Hz,2H),7.23-7.20(m,1H),2.40(s,3H);13C-NMR(CDCl3,100MHz)δ174.9,153.4,151.2,144.8,142.1,138.2,136.4,136.2,129.6,128.6,128.3,128.3,126.2,125.6,124.1,122.9,112.3,21.7;HRMS(ESI-TOF)m/z calculated for C20H15O4S2[M+H]+:383.0406 found:383.0411.White solid, mp 125-126°C; 1 H-NMR (400MHz, CDCl 3 ) δ 8.34 (d, J=7.6 Hz, 1H), 8.18 (d, J=8.0 Hz, 2H), 7.97 (d, J= 4.0Hz,1H),7.83(d,J=4.4Hz,1H),7.61-7.48(m,3H),7.34(d,J=8.0Hz,2H),7.23-7.20(m,1H),2.40( s, 3H); 13 C-NMR (CDCl 3 , 100MHz) δ 174.9, 153.4, 151.2, 144.8, 142.1, 138.2, 136.4, 136.2, 129.6, 128.6, 128.3, 128.3, 126.2, 125.6, 124.1, 122.9, 112.3. ;HRMS(ESI-TOF)m/z calculated for C 20 H 15 O 4 S 2 [M+H] + :383.0406 found:383.0411.

Claims (7)

1. a method for synthesizing an aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis is characterized in that 2- (1-hydroxy-3-arylpropyl-2-alkyne-1-yl) phenol shown in a formula (1) and p-toluenesulfonyl methyl isocyano shown in the formula (2) are used as raw materials in an organic solvent system, cuprous iodide is used as a catalyst, heating and stirring are carried out for reaction, TLC tracking detection is carried out until the reaction is complete, and the aryl (3-sulfuryl benzofuran-2-yl) ketone compound shown in the formula (3) is obtained after the reaction liquid is subjected to post-treatment; wherein the feeding molar ratio of the 2- (1-hydroxy-3-arylprop-2-yne-1-yl) phenol to the p-toluenesulfonylmethylisocyan is 1.5: 1;
Figure FDA0002528730250000011
in the formula, R1Is hydrogen, methoxy, methyl, fluorine or chlorine, Ar is phenyl, substituted phenyl,Heteroaryl, fused aryl, wherein the substituents are methyl, ethyl, methoxy, ethoxy, fluoro or chloro.
2. The method for copper-catalyzed synthesis of aryl (3-sulfuryl benzofuran-2-yl) ketone compound according to claim 1, wherein the organic solvent is one selected from acetonitrile, 1, 2-dichloroethane, 1, 4-dioxane, N-dimethylformamide, dimethyl sulfoxide and toluene.
3. The method for copper-catalyzed synthesis of aryl (3-sulfuryl benzofuran-2-yl) ketone compound according to claim 2, wherein the organic solvent is selected from acetonitrile.
4. The method for copper-catalyzed synthesis of aryl (3-sulfuryl benzofuran-2-yl) ketone compound according to claim 1, wherein the amount of cuprous iodide is 10 mol% of the substance of 2- (1-hydroxy-3-arylprop-2-yn-1-yl) phenol represented by formula (1).
5. The method for copper-catalyzed synthesis of aryl (3-sulfuryl benzofuran-2-yl) ketone compound according to claim 1, wherein the reaction temperature is 60-100 ℃.
6. The method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis according to claim 1, wherein the method for post-treating the reaction liquid comprises the following steps: after the reaction is finished, pouring the reaction liquid into saturated saline solution, extracting with dichloromethane, then backwashing an organic phase with the saturated saline solution, drying by anhydrous calcium chloride, filtering, distilling under reduced pressure, then separating by silica gel column chromatography, distilling the obtained eluent under reduced pressure, and drying to obtain the aryl (3-sulfonyl benzofuran-2-yl) ketone compound shown in the formula (3).
7. The method for copper-catalyzed synthesis of aryl (3-sulfuryl benzofuran-2-yl) ketone compound according to claim 6, wherein the eluent of the silica gel column chromatography is petroleum ether: ethyl acetate 4:1, V/V.
CN202010512204.9A 2020-06-08 2020-06-08 Method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis Active CN111592509B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010512204.9A CN111592509B (en) 2020-06-08 2020-06-08 Method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010512204.9A CN111592509B (en) 2020-06-08 2020-06-08 Method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis

Publications (2)

Publication Number Publication Date
CN111592509A true CN111592509A (en) 2020-08-28
CN111592509B CN111592509B (en) 2022-11-22

Family

ID=72184763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010512204.9A Active CN111592509B (en) 2020-06-08 2020-06-08 Method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis

Country Status (1)

Country Link
CN (1) CN111592509B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372219A (en) * 2021-05-17 2021-09-10 三峡大学 Method for preparing ethynylnaphthalene derivative by [4+2] cyclization reaction with water as solvent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391260A (en) * 2011-09-29 2012-03-28 上海交通大学 3-ketone-6-substituted-benzofuran compound as well as preparation method and application thereof
CN106045952A (en) * 2016-07-05 2016-10-26 华南理工大学 Synthesizing method of benzofuranone compound containing sulfonyl
CN106883132A (en) * 2017-01-18 2017-06-23 中山大学 With N, the substitution hydrazides of N bis- is the copper catalysis C N coupling methods of part to one kind
CN108409747A (en) * 2018-02-28 2018-08-17 华南理工大学 A kind of synthetic method of 2- aminoquinolines and dihydrofuran class compound
CN109180653A (en) * 2018-10-16 2019-01-11 江苏师范大学 A kind of copper catalysis prepares benzofuran-azoles method
CN109180520A (en) * 2018-10-16 2019-01-11 江苏师范大学 A kind of method that silver catalyzes and synthesizes functionalization benzo compound of fluorene class
CN109384753A (en) * 2017-08-08 2019-02-26 沈阳药科大学 A kind of synthetic method of 2- phenyl -3- methyl-benzofuran compounds
CN110511197A (en) * 2019-08-09 2019-11-29 华南师范大学 A kind of N-furanone arylsulfonylhydrazone compound and its synthesis method and application

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391260A (en) * 2011-09-29 2012-03-28 上海交通大学 3-ketone-6-substituted-benzofuran compound as well as preparation method and application thereof
CN106045952A (en) * 2016-07-05 2016-10-26 华南理工大学 Synthesizing method of benzofuranone compound containing sulfonyl
CN106883132A (en) * 2017-01-18 2017-06-23 中山大学 With N, the substitution hydrazides of N bis- is the copper catalysis C N coupling methods of part to one kind
CN109384753A (en) * 2017-08-08 2019-02-26 沈阳药科大学 A kind of synthetic method of 2- phenyl -3- methyl-benzofuran compounds
CN108409747A (en) * 2018-02-28 2018-08-17 华南理工大学 A kind of synthetic method of 2- aminoquinolines and dihydrofuran class compound
CN109180653A (en) * 2018-10-16 2019-01-11 江苏师范大学 A kind of copper catalysis prepares benzofuran-azoles method
CN109180520A (en) * 2018-10-16 2019-01-11 江苏师范大学 A kind of method that silver catalyzes and synthesizes functionalization benzo compound of fluorene class
CN110511197A (en) * 2019-08-09 2019-11-29 华南师范大学 A kind of N-furanone arylsulfonylhydrazone compound and its synthesis method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN-XIAO MENG等: "Lewis acid-catalyzed tandem cyclization of in situ generated o-quinone methides and arylsulfonyl hydrazides for a one-pot entry to 3-sulfonylbenzofurans", 《ORGANIC CHEMISTRY FRONTIERS》 *
SHIN KAMIJO等: "Copper- or Phosphine-Catalyzed Reaction of Alkynes with Isocyanides. Regioselective Synthesis of Substituted Pyrroles Controlled by the Catalyst", 《J. AM. CHEM. SOC》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372219A (en) * 2021-05-17 2021-09-10 三峡大学 Method for preparing ethynylnaphthalene derivative by [4+2] cyclization reaction with water as solvent

Also Published As

Publication number Publication date
CN111592509B (en) 2022-11-22

Similar Documents

Publication Publication Date Title
Read et al. Synthesis of phenanthridine derivatives by microwave-mediated cyclization of o-furyl (allylamino) arenes
CN109180653B (en) A kind of method for preparing benzofuran-pyrrole compound by copper catalysis
CN103113308B (en) A method for preparing dihydropyrimidinone derivatives
CN112812084B (en) Synthetic method of benzofuran compound
CN114014805B (en) Preparation method of trifluoromethylated 2,4-quinolinedione compounds
CN111592509B (en) Method for synthesizing aryl (3-sulfuryl benzofuran-2-yl) ketone compound by copper catalysis
CN103435609A (en) Copper-catalyzed synthetic method of imidazo[1,2-a]pyridine-3-formaldehyde compound
CN107540678A (en) A kind of intramolecular intersects dehydrogenation coupling and prepares the cumarin simultaneously method of heteroaryl cyclics and its derivative
CN108892604B (en) A kind of method for preparing halogenated benzo[b]fluorenone series compounds
CN113135852B (en) A kind of preparation method of 4-aminoquinoline compound
CN113444107B (en) Synthetic method and anticancer activity of succinimide spiro-fused sultams compound
CN112574225B (en) Tetrahydrofuran dihydroquinoline compound and preparation method and application thereof
CN110294708B (en) Preparation method of trifluoroethelenylphenanthridine and 3,4-dihydroisoquinoline derivatives
Duan et al. NaH promoted one-pot tandem reactions of 3-(1-alkynyl) chromones to form 2-nitrogen-substituted xanthones
CN113264816A (en) Spiro [ cyclopropane-1, 2' -indene ] -1',3' -diketone derivative and synthetic method thereof
CN112125891A (en) N2Selective tetrahydrofuran/tetrahydrothiophene substituted triazole derivative and synthesis method and application thereof
KR102510279B1 (en) Azulenopyridinone compounds and its preparation method
CN101284779B (en) A kind of preparation method of (E)-4-(beta-bromovinyl)phenol ester
CN113321639B (en) A kind of method for preparing polysubstituted isoquinolinone derivatives
CN114349684B (en) Synthetic method of benzo [ c, d ] indole imine derivative
CN116283761B (en) A 3-alkenyl ketone substituted quinoline-2-one and a green synthesis method thereof
CN108586457A (en) A kind of indoles carbocyclic ring based on α hydrogen migration strategies of nitrogen-atoms goes aromatization synthetic method
CN112824388B (en) Acrylic ketone derivative of norfloxacin and preparation method and application thereof
CN110028435B (en) A kind of method for synthesizing 3-formate-2-pyrroline compounds
CN110467558B (en) A kind of reaction method of nickel-catalyzed synthesis of 3-amino isoindolinone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant