CN111585649A - 超高速铁路无线光通信方法及装置 - Google Patents

超高速铁路无线光通信方法及装置 Download PDF

Info

Publication number
CN111585649A
CN111585649A CN202010396364.1A CN202010396364A CN111585649A CN 111585649 A CN111585649 A CN 111585649A CN 202010396364 A CN202010396364 A CN 202010396364A CN 111585649 A CN111585649 A CN 111585649A
Authority
CN
China
Prior art keywords
tunnel
train
high speed
ultra
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010396364.1A
Other languages
English (en)
Other versions
CN111585649B (zh
Inventor
杨昉
黄璇
宋健
潘长勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010396364.1A priority Critical patent/CN111585649B/zh
Publication of CN111585649A publication Critical patent/CN111585649A/zh
Application granted granted Critical
Publication of CN111585649B publication Critical patent/CN111585649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种超高速铁路无线光通信方法及装置,其中,该方法包括:利用鲍威尔透镜,实现光密度均匀、直线性好的线光源;下行通信时,真空隧道上相邻的多个隧道发射机通过鲍威尔透镜同时同频发射相同光信号,形成单频网,确保每列列车的车上接收机至少能接收到一个隧道发射机的光信号;上行通信时,超高速列车的列车发射机器通过鲍威尔透镜形成一束或多束光线光源信号,确保任何时刻隧道顶部至少有一个隧道接收机能接收列车发射机的光信号。由此,利用光通信代替射频通信,有效避免了列车超高速移动时产生的多普勒扩展以及频繁的信道切换,从而可以实现车地之间超高速、高可靠、低延时的通信。

Description

超高速铁路无线光通信方法及装置
技术领域
本发明涉及数字信号传输与组网技术领域,特别涉及一种超高速铁路无线光通信方法及装置。
背景技术
随着经济和技术的发展,现代社会对速度的要求越来越高,开始要求以1000公里每小时以上的速度进行超高速地面运输。超高速列车运行在封闭的真空金属管内,这与传统轮轨超高速列车或磁悬浮列车的运行场景有很大不同。在这种环境下,传统射频通信的性能将急剧恶化。
首先,在超高速移动环境下,当目标速度达到每小时数千公里时,信道冲激响应会发生快速变化,呈现出快速衰落的特点。它的时间选择性将增强,产生显著的多普勒频移,导致系统误码率增加等问题。
其次,为了平衡成本和结构坚固性,真空管壁将由多层材料制成。不同的材料会引起无线信号不同程度的衰减。管道内壁由金属材料制成,以确保排空管道的密封性和稳定性。由于无线电波在金属管中的波导现象,金属管中的信道特性与传统超高速铁路开放场景下的信道特性完全不同。另外,在金属管中,电磁信号会面临严重的反射问题,加上超高速影响,会造成极为严重的多普勒扩展。
另外,根据切换时间与速度的反比关系,当超高速列车速度达到数千公里每小时时,超高速列车的网络切换频率将是常规高铁方案的5倍以上。这种频繁的切换将导致明显不可接受的重大性能损失,例如,极其严重的系统延时。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种超高速铁路无线光通信方法,该方法能够满足超高速列车高可靠性和低延时的要求,有效地避免了多普勒扩展,并可以显著减少切换次数,从而降低系统延时,进而可以实现车地之间超高速、高可靠、低延时的通信。
本发明的另一个目的在于提出一种超高速铁路无线光通信装置。
为达到上述目的,本发明一方面实施例提出了一种超高速铁路无线光通信方法,包括:
S1,利用光源和鲍威尔透镜产生光通信信号;
S2,下行通信时,真空隧道上相邻的多个隧道发射机通过所述鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号;
S3,上行通信时,超高速列车的列车发射机通过所述鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
本发明实施例的超高速铁路无线光通信方法,利用光通信代替射频通信,克服了多普勒扩展的影响,减小切换次数,从而降低整个系统的延时,并且通过增加系统的通信冗余度来提高系统的可靠性,进而可以实现车地之间超高速、高可靠、低延时的通信。
另外,根据本发明上述实施例的超高速铁路无线光通信方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,在所述S1中,服务于同一超高速列车的隧道光源波长相同。
进一步地,在本发明的一个实施例中,在所述S1中,服务于每辆超高速列车采用不同波长。
进一步地,在本发明的一个实施例中,所述光源包括LED光源和LD光源。
进一步地,在本发明的一个实施例中,所述光通信信号包括可见光、红外光和紫外光。
进一步地,在本发明的一个实施例中,在所述S2中,下行通信隧道发射机光束范围大于等于相邻隧道发射机之间距离的一半。
进一步地,在本发明的一个实施例中,所述S2中,所述隧道发射机和所述隧道接收机位于隧道顶部位置,或,所述隧道接收机和所述发射机位于隧道两边斜上方位置。
进一步地,在本发明的一个实施例中,所述S3中,上行通信列车发射机光束范围大于等于相邻隧道接收机之间的距离。
进一步地,在本发明的一个实施例中,所述S3中,所述列车发射机位于车头和车尾位置,所述列车接收机位于车头和车尾顶部位置。
为达到上述目的,本发明另一方面实施例提出了一种超高速铁路无线光通信装置,包括:
光源模块,用于利用光源和鲍威尔透镜产生光通信信号;
下行通信模块,用于下行通信时,真空隧道上相邻的多个隧道发射机通过所述鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号;
上行通信模块,用于上行通信时,超高速列车的列车发射机通过所述鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
本发明实施例的超高速铁路无线光通信装置,克服了多普勒扩展的影响,减小切换次数,从而降低整个系统的延时,并且通过增加系统的通信冗余度来提高系统的可靠性,进而可以实现车地之间超高速、高可靠、低延时的通信。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一个实施例的超高速铁路无线光通信方法流程图;
图2为根据本发明一个实施例的利用鲍威尔透镜,实现光密度均匀、直线性好的线光源示意图;
图3为根据本发明一个实施例的下行通信示意图;
图4为根据本发明一个实施例的隧道发射机和隧道接收机结构示意图;
图5为根据本发明一个实施例的上行通信示意图;
图6为根据本发明一个实施例的列车发射机和列车接收机结构示意图;
图7为根据本发明一个实施例的超高速铁路无线光通信装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的超高速铁路无线光通信方法及装置。
首先将参照附图描述根据本发明实施例提出的超高速铁路无线光通信方法。
图1为根据本发明一个实施例的超高速铁路无线光通信方法流程图。
如图1所示,该超高速铁路无线光通信方法包括以下步骤:
步骤S1,利用光源和鲍威尔透镜产生光通信信号。
具体地,如图2所示,利用光源产生光通信信号,下行和上行通信利用鲍威尔透镜,实现光密度均匀、直线性好的线光源。
进一步地,在本发明的一个实施例中,服务于同一超高速列车的隧道光源采用同一个波长。
进一步地,在本发明的一个实施例中,服务于每辆超高速列车采用不同波长。
作为一种可能实现的方式,光源可以为LED光源或LD光源。光通信信号可以为可见光、红外光和紫外光。上述仅作为一种示例,其他能够实现的本发明实施例的仍适用。
步骤S2,下行通信时,真空隧道上相邻的多个隧道发射机通过鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号。
进一步地,在本发明的一个实施例中,如图3所示,下行通信隧道发射机光束范围不小于相邻隧道发射机之间距离的一半。
进一步地,在本发明的一个实施例中,如图4所示,隧道发射机、接收机位于隧道顶部位置,或隧道接收机、发射机位于两边斜上方位置。
步骤S3,上行通信时,超高速列车的列车发射机通过鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
进一步地,在本发明的一个实施例中,如图5所示,上行通信列车发射机光束范围不小于相邻隧道接收机之间的距离。
进一步地,在本发明的一个实施例中,如图6所示,列车发射机位于车头和车尾位置,列车接收机位于车头和车尾顶部位置。
下面通过三个具体实施例对超高速铁路无线光通信方法进行详细描述。
实施例一
在本实施例中,超高速铁路无线光通信方法例如包括以下步骤:
步骤1:利用光源产生光通信信号,下行和上行通信利用鲍威尔透镜,实现光密度均匀、直线性好的线光源,具体包括:
利用LED光源产生可见光通信信号,并利用鲍威尔透镜,实现光密度均匀、直线性好的线光源。服务于同一超高速列车的隧道光源采用同一个波长。服务于每辆超高速列车采用不同波长,如波长为660纳米的红色可见光、波长为640纳米的琥珀色可见光等。
步骤2:下行通信时,真空隧道上相邻多个隧道发射机通过鲍威尔透镜同时同频发射相同信号,形成单频网,确保每列列车的车上接收机至少能接收到一个隧道发射机光信号,具体包括:
隧道发射机、接收机位于隧道顶部位置,相邻的隧道发射机间隔为200米,隧道高度为6米。进一步地,下行通信隧道发射机光束范围不小于相邻隧道发射机之间距离的一半,即不小于100米。
步骤3:上行通信时,超高速列车的列车发射机通过鲍威尔透镜形成一束或多束光线光源信号,确保任何时刻隧道顶部至少有一个隧道接收机能接收列车发射机光信号,具体包括:
列车长度为160米。列车发射机位于车头和车尾位置,列车接收机位于车头和车尾顶部位置。进一步地,上行通信列车发射机光束范围不小于相邻隧道接收机之间的距离,即不小于200米。
实施例二
在本实施例中,超高速铁路无线光通信方法例如包括以下步骤:
步骤1:利用光源产生光通信信号,下行和上行通信利用鲍威尔透镜,实现光密度均匀、直线性好的线光源,具体包括:
利用LD光源产生红外光通信信号,并利用鲍威尔透镜,实现光密度均匀、直线性好的线光源。服务于同一超高速列车的隧道光源采用同一个波长。服务于每辆超高速列车采用不同波长,如波长为1310纳米的红外光、波长为1550纳米的红外光等。
步骤2:下行通信时,真空隧道上相邻多个隧道发射机通过鲍威尔透镜同时同频发射相同信号,形成单频网,确保每列列车的车上接收机至少能接收到一个隧道发射机光信号,具体包括:
隧道接收机、发射机位于两边斜上方位置,相邻的隧道发射机间隔为200米,隧道高度为5米。进一步地,下行通信隧道发射机光束范围不小于相邻隧道发射机之间距离的一半,即不小于100米。
步骤3:上行通信时,超高速列车的列车发射机通过鲍威尔透镜形成一束或多束光线光源信号,确保任何时刻隧道顶部至少有一个隧道接收机能接收列车发射机光信号,具体包括:
列车长度为160米。列车发射机位于车头和车尾位置,列车接收机位于车头和车尾顶部位置。进一步地,上行通信列车发射机光束范围不小于相邻隧道接收机之间的距离,即不小于200米。
实施例三
在本实施例中,超高速铁路无线光通信方法例如包括以下步骤:
步骤1:利用光源产生光通信信号,下行和上行通信利用鲍威尔透镜,实现光密度均匀、直线性好的线光源,具体包括:
利用LED光源产生紫外光通信信号,并利用鲍威尔透镜,实现光密度均匀、直线性好的线光源。进一步地,服务于同一超高速列车的隧道光源采用同一个波长。进一步地,服务于每辆超高速列车采用不同波长,如波长为255纳米的紫外光、波长为255纳米的紫外光等。
步骤2:下行通信时,真空隧道上相邻多个隧道发射机通过鲍威尔透镜同时同频发射相同信号,形成单频网,确保每列列车的车上接收机至少能接收到一个隧道发射机光信号,具体包括:
隧道发射机、接收机位于隧道顶部位置,相邻的隧道发射机间隔为240米,隧道高度为5米。进一步地,下行通信隧道发射机光束范围不小于相邻隧道发射机之间距离的一半,即不小于120米。
步骤3:上行通信时,超高速列车的列车发射机通过鲍威尔透镜形成一束或多束光线光源信号,确保任何时刻隧道顶部至少有一个隧道接收机能接收列车发射机光信号,具体包括:
列车长度为200米。列车发射机位于车头和车尾位置,列车接收机位于车头和车尾顶部位置。进一步地,上行通信列车发射机光束范围不小于相邻隧道接收机之间的距离,即不小于240米。
根据本发明实施例的超高速铁路无线光通信方法,能够满足超高速列车高可靠性和低延时的要求,有效地避免了多普勒扩展,并可以显著减少切换次数,从而降低系统延时,进而可以实现车地之间超高速、高可靠、低延时的通信。
其次参照附图描述根据本发明实施例提出的超高速铁路无线光通信装置。
图7为根据本发明一个实施例的超高速铁路无线光通信装置结构示意图。
如图7所示,该超高速铁路无线光通信装置包括:光源模块100、下行通信模块200和上行通信模块300。
光源模块100,用于利用光源和鲍威尔透镜产生光通信信号。
下行通信模块200,用于下行通信时,真空隧道上相邻的多个隧道发射机通过鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号。
上行通信模块300,用于上行通信时,超高速列车的列车发射机通过鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
需要说明的是,前述对超高速铁路无线光通信方法实施例的解释说明也适用于该实施例的超高速铁路无线光通信装置,此处不再赘述。
根据本发明实施例提出的超高速铁路无线光通信装置,克服了多普勒扩展的影响,减小切换次数,从而降低整个系统的延时,并且通过增加系统的通信冗余度来提高系统的可靠性,进而可以实现车地之间超高速、高可靠、低延时的通信。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种超高速铁路无线光通信方法,其特征在于,包括以下步骤:
S1,利用光源和鲍威尔透镜产生光通信信号;
S2,下行通信时,真空隧道上相邻的多个隧道发射机通过所述鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号;
S3,上行通信时,超高速列车的列车发射机通过所述鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
2.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,在所述S1中,服务于同一超高速列车的隧道光源波长相同。
3.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,在所述S1中,服务于每辆超高速列车采用不同波长。
4.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,
所述光源包括LED光源和LD光源。
5.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,
所述光通信信号包括可见光、红外光和紫外光。
6.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,在所述S2中,下行通信隧道发射机光束范围大于等于相邻隧道发射机之间距离的一半。
7.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,所述S2中,所述隧道发射机和所述隧道接收机位于隧道顶部位置,或,所述隧道接收机和所述发射机位于隧道两边斜上方位置。
8.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,所述S3中,上行通信列车发射机光束范围大于等于相邻隧道接收机之间的距离。
9.根据权利要求1所述的超高速铁路无线光通信方法,其特征在于,所述S3中,所述列车发射机位于车头和车尾位置,所述列车接收机位于车头和车尾顶部位置。
10.一种超高速铁路无线光通信装置,其特征在于,包括:
光源模块,用于利用光源和鲍威尔透镜产生光通信信号;
下行通信模块,用于下行通信时,真空隧道上相邻的多个隧道发射机通过所述鲍威尔透镜同时同频发射相同光信号,形成单频网,以确保每列超高速列车的列车接收机至少接收到一个隧道发射机的光信号;
上行通信模块,用于上行通信时,超高速列车的列车发射机器通过所述鲍威尔透镜形成一束或多束光线光源信号,以确保任意时刻隧道顶部至少存在一个隧道接收机接收到列车发射机的光信号。
CN202010396364.1A 2020-05-12 2020-05-12 超高速铁路无线光通信方法及装置 Active CN111585649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010396364.1A CN111585649B (zh) 2020-05-12 2020-05-12 超高速铁路无线光通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010396364.1A CN111585649B (zh) 2020-05-12 2020-05-12 超高速铁路无线光通信方法及装置

Publications (2)

Publication Number Publication Date
CN111585649A true CN111585649A (zh) 2020-08-25
CN111585649B CN111585649B (zh) 2021-05-04

Family

ID=72116899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010396364.1A Active CN111585649B (zh) 2020-05-12 2020-05-12 超高速铁路无线光通信方法及装置

Country Status (1)

Country Link
CN (1) CN111585649B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346951A (zh) * 2021-06-01 2021-09-03 西南交通大学 一种真空管道高速飞行列车光无线融合方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102379A1 (en) * 1999-06-07 2003-06-05 Metrologic Instruments Inc. LED-based planar light illumination and imaging (PLIIM) engine
CN105071854A (zh) * 2015-08-03 2015-11-18 中国人民解放军理工大学 单光源全双工逆向调制无线光通信装置及方法
CN105966419A (zh) * 2016-07-08 2016-09-28 沈阳铁路局科学技术研究所 一种铁路隧道限界检测车

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102379A1 (en) * 1999-06-07 2003-06-05 Metrologic Instruments Inc. LED-based planar light illumination and imaging (PLIIM) engine
CN105071854A (zh) * 2015-08-03 2015-11-18 中国人民解放军理工大学 单光源全双工逆向调制无线光通信装置及方法
CN105966419A (zh) * 2016-07-08 2016-09-28 沈阳铁路局科学技术研究所 一种铁路隧道限界检测车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346951A (zh) * 2021-06-01 2021-09-03 西南交通大学 一种真空管道高速飞行列车光无线融合方法和系统

Also Published As

Publication number Publication date
CN111585649B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN102387556B (zh) 高速移动环境下基于协作多点传输的车地通信小区切换方法
EP1999865B1 (en) System for extending bi-directional satellite radio communications in tunnels
Talvitie et al. Positioning and location-aware communications for modern railways with 5G new radio
CN111585649B (zh) 超高速铁路无线光通信方法及装置
CN112073091B (zh) 一种高铁场景下智能表面辅助的空间调制天线选择方法
CN116015369B (zh) 一种用于轨道5g mimo通信的双极化漏缆系统
CN101587978A (zh) 一种辐射型漏泄同轴电缆
Yang et al. Propagation measurements with regional train at 60 GHz for virtual coupling application
WO2019076296A1 (zh) 无线通信系统
US2509218A (en) Repeater link system
Gui et al. Single frequency network system coverage and trial testing of high speed railway television system
Al-Mohammed et al. FSO communication system for high-speed trains under varying visibility conditions
CN109672457A (zh) 一种基于时延自适应的调频广播覆盖系统
CN201430205Y (zh) 一种辐射型漏泄同轴电缆
CN108987898B (zh) 一种轨道交通车地通信毫米波天线的设计方法
US8130680B1 (en) Method for timing a pulsed communication system
US7286768B2 (en) Device for optical signal transmission
CN111800678B (zh) 超高速铁路无线光通信网络控制方法及装置
US20220209384A1 (en) Communication system
CN107528610B (zh) 无线信号收发装置及无线信号收发链
CN101309501A (zh) 信号发射方法和基站与中继站
CN117440525A (zh) 一种真空管超高速列车的毫米波通信调度方法
Shuo et al. Wireless communication for heavy haul railway tunnels based on distributed antenna systems
CN202586989U (zh) 一种光纤同步广播系统
JP2005191905A (ja) 移動体通信システム、および移動体通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant