CN111583110A - 一种航拍图像的拼接方法 - Google Patents

一种航拍图像的拼接方法 Download PDF

Info

Publication number
CN111583110A
CN111583110A CN202010333869.3A CN202010333869A CN111583110A CN 111583110 A CN111583110 A CN 111583110A CN 202010333869 A CN202010333869 A CN 202010333869A CN 111583110 A CN111583110 A CN 111583110A
Authority
CN
China
Prior art keywords
image
images
points
aerial
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010333869.3A
Other languages
English (en)
Other versions
CN111583110B (zh
Inventor
王一歌
邱芬鹏
曹燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010333869.3A priority Critical patent/CN111583110B/zh
Publication of CN111583110A publication Critical patent/CN111583110A/zh
Application granted granted Critical
Publication of CN111583110B publication Critical patent/CN111583110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种航拍图像的拼接方法,包括对航拍图像进行预处理;使用改进后的具有尺度不变性的ORB算法来进行图像配准,生成相邻图像间的变换矩阵;根据变换矩阵使用加权平均法来修正图像的地理位置坐标;根据地理位置信息来完成航拍图像间的拼接;对拼接好的图像进行融合处理,以消除拼接处的差异。本发明结合位姿信息与改进ORB算法之间各自的优势,能快速、有效地得到低累积误差、具有地理坐标的拼接图像。

Description

一种航拍图像的拼接方法
技术领域
本发明涉及图像处理领域,具体涉及一种航拍图像的拼接方法。
背景技术
目前,常用的航拍图像拼接方法是基于图像特征,基于特征的拼接方法对光照、旋转等变化有很好的鲁棒性,所以一直是图像拼接方法研究的主流方向。基于图像特征的方法是基于对图像内容抽象的描述(点、线、轮廓等),该拼接方法主要是图像配准和图像融合两个步骤,图像配准的过程是根据存在重叠区域的待拼接图像,找出图像之间的变换关系,并且把待拼接的图像都变换到统一的坐标系中;图像融合的目的是为了消除配准后图像可能存在色彩、亮度、拼接线的差异,使得最终得到一幅自然的图像。
常用的特征点提取算法有SIFT、SURF以及ORB特征提取算法等,SIFT(ScaleInvariant Feature Transform)特征提取算法是利用SIFT特征向量来进行特征匹配,该方法对图像旋转、平移、缩放甚至仿射变换等都有很好的不变性,同时对噪声和光线变化都有很强的适应能力,但该算法需要提取的特征点数量多,特征描述子复杂,运算量大,计算时间长;SURF(Speeded-Up Robust Features)算法是在SIFT算法上的一种改进,算法步骤基本类似,但采用的方法不一样,该算法取得的效果性能与SIFT算法差不多,特征描述子的维度降低,计算复杂度也大量减少,计算的效率也大大提高,但特征点检测的精度会比SIFT算法稍低,在图像进行尺度、旋转等变换后的匹配稳健性不及SIFT算法;ORB(Oriented Fastand Rotated Brief)算法是结合快速角点检测算法(FAST)和BRIEF特征描述子并改进的一种算法,该算法使用FAST来提取特征点,极大地提高了特征点提取的速度,基本能达到实时的要求,但是该算法不具备尺度不变性,稳定性差,误匹配率高。
对于航拍图像的拼接方法,还有一种就是基于位姿信息的拼接方法。大部分的无人机都会有导航定位与姿态测量系统(POS,Position and Orientation System),在飞行的过程中会实时获取无人机的位姿信息(位置坐标、姿态等信息)。基于位姿信息的拼接方法主要是利用图像的坐标信息来进行拼接,该方法具有快速拼接、不累积误差、含有坐标信息等优势,但是由于无人机的承重有限,往往搭载的传感器精度不是很高,这就导致利用该方法拼接后得到的图像具有很大的匹配误差,效果较差。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种航拍图像的拼接方法,本发明基于位姿信息和改进的ORB算法对航拍图像进行拼接,
该方法首先改进了ORB算法,接着使用改进ORB算法得到拼接图像间的变换关系,再使用该变换关系来修正图像中心点的地理位置信息,最后使用图像的地理位置信息来进行图像拼接。
本发明采用如下技术方案:
一种航拍图像的拼接方法,包括如下步骤:
S1对航拍图像进行预处理;
S2对预处理后的航拍图像进行图像配准,生成相邻图像间的变换矩阵;
S3修正图像的地理位置坐标;
S4根据地理位置信息完成航拍图像间的拼接
S5对拼接后的图像进行融合处理。
进一步的,所述预处理包括图像几何校正和去噪,先根据无人机的姿态角参数来得到旋转矩阵,再根据旋转矩阵建立从地面直角坐标系到像平面坐标系的一系列坐标变换,进一步得到校正前与校正后的图像变换关系,由此来校正航拍图像,使得校正后的图像都处于同一水平面,接着使用中值滤波算法来对图像进行降噪处理。
进一步的,所述对预处理后的航拍图像进行图像配准,生成相邻图像间的变换矩阵,该步骤使用了改进ORB算法,具体为:
S201使用Hessian检测算子提取图像的特征点;
S202采用rBRIEF特征描述子来描述S201的特征点;
S203对两幅图像之间的特征点进行粗匹配;
S204特征匹配点提纯并得到变换矩阵。
所述S201中使用Hessian检测算子提取图像的特征点,具体是在Hessian矩阵行列式响应图像中提取特征点,首先构造Hessian矩阵,并且使用盒子滤波器来近似代替二阶高斯滤波器,计算Hessian矩阵行列式响应图像,接着使用不同尺寸的盒子滤波器来生成不同的尺度空间,然后使用3*3*3领域非最大值抑制方法来进行特征点的定位,最后通过Harr小波响应来确定特征点的方向。
所述S204中特征匹配点提纯并得到变换矩阵,采用了GMS算法和PROSAC算法来进行匹配点的提纯,并由匹配点得到图像之间的变换矩阵。
所述的步骤S3中修正图像的地理位置坐标,具体为:
以第一张图像为基准,将第二张图像的中心点根据图像之间的变换矩阵投影到第一张图像的像素坐标系上;
计算地面分辨率及经纬度分辨率,通过第一张图像中心点的位置坐标计算得到第二张图像的中心点位置坐标;
通过加权平均方法修正第二张图像的中心点位置坐标;
然后以修正后的第二张图像为基准,重复前三个步骤,修正第三张图像的中心点位置坐标,以此类推,直到航带线多张航拍图像的中心点修正完毕。
所述S4中根据地理位置信息完成航拍图像间的拼接,具体是将各张航拍图像根据地理位置坐标投影到WGS84坐标系,将大地坐标转换成空间直角坐标,在空间直角坐标中按照坐标进行拼接,然后再将拼接好的图像重新投影回到原图像平面坐标系。
所述S5中融合处理采用帽子函数加权平均法,对拼接后图像的重叠区域进行加权平均处理,得到拼接后的图像。
进一步的,采用汉明距离为度量进行特征粗匹配。
进一步的,所述地理位置坐标包括经纬度及高度信息。
进一步的,特征描述子为二进制描述子。
本发明改进ORB算法相对于现有的ORB算法,主要是在特征点检测与特征匹配点提纯这两个步骤的改进。
本发明的有益效果:
(1)本发明针对现有技术中ORB算法不具备尺度不变性,改进ORB算法,使用Hessian检测算子来进行特征点检测,使得算法具有尺度不变性和稳健性,同时在一定程度上保证了原ORB算法的快速性;
(2)本发明在图像特征匹配点精匹配中,结合GMS算法和PROSAC算法来进行匹配点提纯,能更精准的筛选出正确的特征匹配点。
(3)本发明结合坐姿信息与改进ORB算法的优势来进行航拍图像的拼接,获得低累积误差、快速的、具有地理坐标的拼接图像方法。
附图说明
图1是本发明的工作流程图;
图2是本发明使用的ORB算法的工作流程图;
图3是本发明修正图像位置坐标的流程图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1-图3所示,一种航拍图像的拼接方法,主要基于位姿信息与改进ORB算法对航拍图像进行拼接,如图1所示,具体流程如下:
S101:对航拍图像进行预处理,主要包括是图像进行几何校正、去噪和中值滤波。
由于传感器造成的几何畸变会比较大,因此在几何校正中主要是针对传感器的外方位元素(位姿信息)来建立校正模型。几何校正中涉及到的坐标系有地面直角坐标系、机体坐标系、传感器坐标系和像平面坐标系。利用外方位元素的几何校正方法的步骤:首先通过传感器的外方位元素,来建立从地面直角坐标系到像平面坐标系的一系列坐标变换,接着,根据其坐标变换与正直摄影条件下的坐标变换进行结合,得到校正前与校正后的图像变换关系,利用该变换关系将原图像中的像素点进行校正,最后用重采样方法进行插值,得到校正后的图像。在图像坐标系下,校正前后的图像像元的变换关系为
Figure BDA0002465914240000041
其中,f为传感器的焦距;R(γ)、R(α)、R(β)、R(H)分别为基于姿态参数偏航角γ、俯仰角α、滚转角β、高度H的旋转矩阵;(x′,y′)为原始图像中某一像素点的坐标;(x,y)为(x′,y′)校正后的坐标点。
经过每个像素点几何校正后,图像的像素点分布不再均匀,需要对校正后的图像进行插值处理,采用的插值处理方法为双线性内插法,对于每个需要内插的点,使用临近的四个像素点的值,通过距离的不同进行加权平均,得到的值作为内插点的像素值。
S102对预处理后的航拍图像进行图像配准,生成相邻图像间的变换矩阵;
对于无人机某个航带的航拍图像,使用改进的ORB算法来得到相邻图像间的变换矩阵,该算法步骤为:首先用Hessian检测算子提取图像的特征点,并对每个特征点生成二进制特征点描述子rBRIEF(Rotated BRIEF),以采集的第一幅图像为基准,对每相邻的两张图像进行特征点的配准,利用匹配好的特征点生成相邻图像间的变换矩阵,得到相邻图像间的映射变换关系。
S103修正图像的地理位置坐标。
以第一张图像为基准,根据图像之间的变换矩阵计算得到第二张图像的中心点位置坐标,将求得的坐标值与POS系统采集得到的位置坐标来进行融合修正,得到较准确的坐标,以此作为该图像的新的位置坐标值,接着再以此图像为准,修正下一张图像的地理位置坐标值。
S104根据地理位置信息完成航拍图像间的拼接。
分别将各张航拍图像根据地理位置坐标(经纬度、高度信息)投影到WGS84坐标系,将大地坐标(Lon,Lat,H)转换成空间直角坐标(Xs,Ys,Zs),转换关系为:
Figure BDA0002465914240000051
在空间直角坐标中按照坐标进行拼接,然后再将拼接好的图像重新投影回到原图像平面坐标系,其中转换关系为:
Figure BDA0002465914240000052
S105:对拼接好的图像进行融合处理。
图像融合采用帽子函数加权平均法,加权平均法通过对两幅图像中的重叠区域的像素值采取加权平均后作为重叠区域的像素值。假设I(x,y)表示图像在像素点(x,y)出的像素值,则加权平均法的表示公式为:
Figure BDA0002465914240000053
其中,k1和k2分别为图像I1和I2重叠区域上相同位置像素值加权的权值。
对于权值的选取采用帽子函数法,该方法以图像中心为权值的最高点,以同心圆的方式逐渐减低权值,权值函数如下所示:
Figure BDA0002465914240000054
其中widthi和heighti分别为拼接图像中第i个图像的宽度与高度。
为了使最后的权值总和为1,需要对每幅图像求得的权值进行归一化,操作如下:
Figure BDA0002465914240000061
将归一化后得到的权值wi(x,y)作为加权平均融合里面的权重。
进一步地,本实施例使用改进的ORB算法进行图像配准并生成变换矩阵的流程图2所示,
S201使用Hessian检测算子提取图像的特征点。根据Hessian矩阵行列式的响应图像来进行图像特征点的检测,当Hessian矩阵行列式取得局部极值时,所检测到的是比周围更亮或者更暗的像素点,该点可被认为特征点。具体步骤如下:
1)构建Hessian矩阵。对于图像I中的某一个像素点M(x,y),在尺度σ下的Hessian矩阵表示为:
Figure BDA0002465914240000062
其中
Figure BDA0002465914240000063
Figure BDA0002465914240000064
G(x,y,σ)为标准高斯函数,Lxx(M,σ)是G(x,y,σ)对x的二阶偏导在M点处与图像I的卷积,即二阶高斯滤波器,同理Lxy(M,σ)、Lyy(M,σ)。为简化滤波步骤,使用盒子滤波器Dxx、Dxy、Dyy来分别近似替代Lxx、Lxy、Lyy,因此,得到Hessian近似矩阵的行列式为
det(Happrox)=DxxDyy-(ωDxy)2 (10)
其中,ω为加权系数,用于平衡因采用盒子滤波器来近似所带来的误差,一般取0.9。
对于图像中的某一点,可以根据上式来得到近似的Hessian矩阵行列式,遍历图像的所有点,即可以得到在某一个尺度下的特征点检测的响应图像。
2)生成尺度空间。为了获取到稳健的、具有尺度不变性的特征点,需要不同尺度的斑点进行检测。所用的方法为保持图像尺寸不变,采用不同大小的盒子滤波器模板来对图像进行滤波,来生成的不同尺度空间的Hessian近似行列式的响应图像。
以9*9尺寸为初始滤波模板的尺寸,第一组的滤波模板的尺寸以6为增量,分别为9*9、15*15、21*21、27*27,第二组以12为增量,分别为15*15、27*27、39*39、51*51,第三组以24为增量,分别为27*27、51*51、75*75、99*99,第四组以48为增量,分别为51*51、99*99、147*147、195*195。
3)兴趣点定位。在得到不同尺度的近似Hessian矩阵行列式的响应图像后,用3*3*3邻域非最大值抑制方法来进行兴趣点(特征点)的定位。对于响应图像中的每一个像素点,将其与同层相邻(8个像素点)及相邻上下两层不同尺度(9*2个像素点)图像中的共26个像素点进行非最大值抑制,如果该点为3*3*3区域中的极值,则判断为初步的特征点,将该点的位置以及对应的尺度记录记录下来。由于每一组尺度空间中有4层,则在特征点定位时,只在每一组的中间两层进行非最大值抑制,组间不进行比较。初步得到兴趣点后,根据设定Hessian行列式的阈值,去掉小于阈值的特征点,得到更加稳健的特征点。
4)确定特征点方向。根据特征点扇形邻域中的Harr小波响应值最大值所对应的方向作为特征点的方向。
S202采用rBRIEF特征描述子来描述S201的特征点;rBRIEF是基于BRIEF的改进方法,增加了旋转不变性和区分性。对于每一个特征点,BRIEF计算得到的是二进制串的特征描述向量,用于描述该特征点。它是在特征点的邻域(这里尺寸取31*31)内,先进行高斯平滑处理,接着选取n对像素点对,通过比较它们的灰度值大小来生成二进制特征描述符。对于任一个点对,假设为点a与点b,则得到的二进制位为:
Figure BDA0002465914240000071
其中p(a)表示点a的灰度值。则n对生成的二进制描述串为:
fn=∑1≤i≤n2i-1τ(ai,bi) (12)
式中,n取256。由上可以得到每个特征点的n维的二进制描述符。
为了使描述符具有旋转不变性,对得到的二进制描述符的方向设置为特征点的主方向θ,将选取到的n对邻域内点对组成一个矩阵D:
Figure BDA0002465914240000072
使用主方向θ的旋转矩阵Rθ对D矩阵进行旋转变换,得到带有方向信息的修正的矩阵Dθ
Dθ=RθD (14)
其中,旋转矩阵Rθ
Figure BDA0002465914240000081
在新得到的点对集Dθ上进行大小比较,得到rBRIEF特征描述符。
S203特征点粗匹配。分别获得待拼接的两张图像的特征点集后,需要将两张图像的特征点进行匹配。由于特征描述子采用的是二进制描述子,因此以汉明距离为度量来进行特征粗匹配。汉明距离是两个字符串对应位置不同字符的数量,通过异或运算再统计运算结果中1的数量能得到两个二进制字符串之间的汉明距离。
对于参考图像上的某一特征点N1i,找出其与另一幅图像中汉明距离最小的两个特征点,记为N2j与N2k,如果最近邻距离d(N1i,N2j)与次近邻距离d(N1i,N2k)的比值满足下式,则特征点N1i与N2j为匹配的特征点对。
Figure BDA0002465914240000082
其中T为阈值,可以取0.6-0.8。
S204特征匹配点提纯并得到变换矩阵。在经过特征点粗匹配后,粗略得到了特征点匹配对集,但是匹配对集中还会存在一些错误的匹配对,因此需要再次进行精匹配提纯步骤,去掉尽量多的错误的匹配对,在这里,先采用GMS算法来进行初步筛选,接着用PROSAC算法来进行进一步的去除错误的匹配对,并且得到仿射变换矩阵。
GMS(Grid-based Motion Statistics)是一种基于网格运动统计的匹配算法,其核心思想为:假设有一对正确的特征点匹配对,运动的平滑性使得其周围区域也会有较多正确的匹配特征点,通过计算其邻域中匹配特征点的个数来判断该特征匹配点是否正确。
对于图像I1、I2,进行特征匹配点的具体步骤为:
(1)分别对图像I1、I2进行网格化,划分为G=g*g(g=20)网格;
(2)图像I1中的任一网格,在图像I2中寻找与网格i中特征点匹配对个数最多的网格j,i和j为匹配的网格。
(3)统计i与j区域以及邻域中相匹配的特征点匹配对的总数Sij,以及每个网格中的平均特征点匹配对个数ni,计算表达式为
Figure BDA0002465914240000083
Figure BDA0002465914240000084
其中
Figure BDA0002465914240000091
表示在某网格ik和jk中特征点匹配对的数目。
4)如果
Figure BDA0002465914240000092
(α取6)成立,则网格i与网格j为正确匹配的网格,它们中相互匹配的特征点为正确的匹配特征点,将其加入到正确的匹配集中。
5)重复步骤2)到4),遍历图像I1中的每一个网格,得到图像I1、I2的初步筛选匹配点对。
在经过初步的筛选后,特征匹配点集需要进一步的去误匹配。采用PROSAC(progressive sample consensus)算法来进一步将误匹配的外点剔除,其基本原理是先将匹配集排序,选取质量好的特征匹配点来构造变换模型,然后统计符合该模型参数的特征匹配点的数目,不断迭代,直到满足条件,最后找到最好的变换模型参数。
由特征点匹配提纯,得到变换矩阵的算法步骤为:
1)根据最近邻与次近邻的比值来对特征匹配集进行排序,选出比值最小的μn对匹配对。
2)在μn匹配集中随机选取4对匹配对,通过这4对匹配对来求解变换矩阵W,如下式所示:
Figure BDA0002465914240000093
其中,(x1,y1)是图像I1中的特征点坐标,(x2,y2)是图像I2中的特征点坐标。
3)其他的匹配点根据变换矩阵W计算出对应的投影点,并计算这些投影点与其原来对应匹配点之间的误差e,计算公式如下:
Figure BDA0002465914240000094
其中,(x2,y2)是特征点(x1,y1)对应的匹配点坐标,(x2′,y2′)是特征点(x1,y1)通过变换矩阵W得到的投影点坐标。
4)遍历每个特征点,将其投影点与匹配点误差e与误差门限δ,如果e<δ,则该特征点对应的匹配点判定为内点,反之判定为外点。误差门限δ的计算公式为:
δ=v(H+L) (21)
其中,H为图像的宽度,L为图像的长度,v为常数,这里取0.1。
5)统计内点的总数,记为t,并将其与设定的阈值T比较,如果t<T,则重复步骤2)-5),并将迭代次数加1,反之,则进行下一步骤。
6)根据t个内点重新计算投影变换矩阵W,并重新找出新的内点。
7)当迭代次数小于最大迭代次数时,则返回两张图像间的变换矩阵W和对应的内点集,反之,则返回内点数量最多对应的变换矩阵W及内点集。
在经过上述PROSAC算法进行去误匹配后,并得到了图像间变换矩阵。
本发明修正图像的位置坐标流程图如图3所示,
设第一张图像中的中心点M1在图像坐标系中表示为(x1m,y1m),从POS系统采集得到对应的地理坐标为(Lon1m,Lat1m,H),第二张图像中的中心点M2在图像坐标系中表示为(x2m,y2m),POS系统采集得到对应的地理坐标为(Lon2m,Lat2m,H),这里认为图像间的航高H是相同的,因此在修正过程中只对经纬度进行修正,具体步骤为:
S301:第二张图像投影到前一张图像的坐标系上,则第二张图像的中心点(x2m,y2m},通过投影后得到与点M1在同一坐标系下的(x′2m,y′2m),具体变换如下:
Figure BDA0002465914240000101
其中W为变换矩阵。
步骤S302:计算地面分辨率GSD以及经度分辨率λGSD、纬度分辨率
Figure BDA0002465914240000102
计算方式如下:
Figure BDA0002465914240000103
Figure BDA0002465914240000104
Figure BDA0002465914240000105
其中H为航拍POS数据中的航高,P为成像传感器的像元尺寸,f为镜头焦距,RN和RM分别为卯酉圈和子午圈的曲率半径。
S303:通过M1的位置坐标去计算M2点的位置坐标。
Figure BDA0002465914240000106
其中,Lon′2m是M2点通过M1计算得到的经度,Lαt′2m是M2点通过M1计算得到的纬度。
S304:修正第二张图像中的中心点M2的位置坐标,如下所示。
Figure BDA0002465914240000111
其中,ξ是加权系数,(Lon″2m,Lat″2m)是第二张图像经过修正后的位置坐标,用此来替代原来POS系统采集得到的位置坐标。
S305:然后以修正后的第二张图像为基准,重复S301-S304步骤,修正第三张图像的中心点位置坐标,以此类推,直到航带线多张航拍图像的中心点修正完毕。
本发明对航拍图像进行预处理,主要是进行几何校正和中值滤波;使用改进后的具有尺度不变性的ORB算法来得到相邻图像间的变换矩阵;根据变换矩阵使用加权平均法来修正图像的地理位置坐标;根据地理位置信息来完成航拍图像间的拼接;对拼接好的图像进行融合处理,以消除拼接处的差异。本发明针对基于位姿信息的航拍图像拼接方法存在精度不高、基于改进ORB算法的航拍图像拼接方法存在累积误差且不具有地理坐标的问题,结合位姿信息与ORB算法之间各自的优势,能快速、有效地得到低累积误差、具有地理坐标的拼接图像。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种航拍图像的拼接方法,其特征在于,包括如下步骤:
S1对航拍图像进行预处理;
S2对预处理后的航拍图像进行图像配准,生成相邻图像间的变换矩阵;
S3修正图像的地理位置坐标;
S4根据地理位置信息完成航拍图像间的拼接
S5对拼接后的图像进行融合处理。
2.根据权利要求1所述的拼接方法,其特征在于,所述预处理包括图像几何校正和去噪。
3.根据权利要求1所述的拼接方法,其特征在于,S2对预处理后的航拍图像进行图像配准,生成相邻图像间的变换矩阵,该步骤使用改进ORB算法来得到变换矩阵,具体为:
S201使用Hessian检测算子提取图像的特征点;
S202采用rBRIEF特征描述子来描述S201的特征点;
S203对两幅图像之间的特征点进行粗匹配;
S204特征匹配点提纯并得到变换矩阵。
4.根据权利要求3所述的拼接方法,其特征在于,S201中使用Hessian检测算子提取图像的特征点,具体是在Hessian矩阵行列式响应图像中提取特征点:
首先构造Hessian矩阵,并且使用盒子滤波器来近似代替二阶高斯滤波器,计算Hessian矩阵行列式响应图像,接着使用不同尺寸的盒子滤波器来生成不同的尺度空间,然后使用3*3*3领域非最大值抑制方法来进行特征点的定位,最后通过Harr小波响应来确定特征点的方向。
5.根据权利要求3所述的拼接方法,其特征在于,S204特征匹配点提纯并得到变换矩阵,具体是采用GMS算法和PROSAC算法来进行匹配点的提纯,并得到图像之间的变换矩阵。
6.根据权利要求1所述的拼接方法,其特征在于,S3修正图像的地理位置坐标,具体为:
以第一张图像为基准,将第二张图像的中心点根据图像之间的变换矩阵投影到第一张图像的像素坐标系上;
计算地面分辨率及经纬度分辨率,通过第一张图像中心点的位置坐标计算得到第二张图像的中心点位置坐标;
通过加权平均方法修正第二张图像的中心点位置坐标;
然后以修正后的第二张图像为基准,重复前三个步骤,修正第三张图像的中心点位置坐标,以此类推,直到航带线多张航拍图像的中心点修正完毕。
7.根据权利要求1所述的拼接方法,其特征在于,S4根据地理位置信息完成航拍图像间的拼接,具体是将各张航拍图像根据地理位置坐标投影到WGS84坐标系,将大地坐标转换成空间直角坐标,在空间直角坐标中按照坐标进行拼接,然后再将拼接好的图像重新投影回到原图像平面坐标系。
8.根据权利要求1所述的拼接方法,其特征在于,S5中融合处理采用帽子函数加权平均法,对拼接后图像的重叠区域进行加权平均处理,得到拼接后的图像。
9.根据权利要求3所述的拼接方法,其特征在于,采用汉明距离为度量进行特征粗匹配。
10.根据权利要求7所述的拼接方法,其特征在于,所述地理位置坐标包括经纬度及高度信息。
CN202010333869.3A 2020-04-24 2020-04-24 一种航拍图像的拼接方法 Active CN111583110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010333869.3A CN111583110B (zh) 2020-04-24 2020-04-24 一种航拍图像的拼接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010333869.3A CN111583110B (zh) 2020-04-24 2020-04-24 一种航拍图像的拼接方法

Publications (2)

Publication Number Publication Date
CN111583110A true CN111583110A (zh) 2020-08-25
CN111583110B CN111583110B (zh) 2023-05-23

Family

ID=72113683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010333869.3A Active CN111583110B (zh) 2020-04-24 2020-04-24 一种航拍图像的拼接方法

Country Status (1)

Country Link
CN (1) CN111583110B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111915485A (zh) * 2020-07-10 2020-11-10 浙江理工大学 一种特征点稀疏工件图像的快速拼接方法及系统
CN112163995A (zh) * 2020-09-07 2021-01-01 中山大学 一种超大航拍条带图像的拼接生成方法及装置
CN112215304A (zh) * 2020-11-05 2021-01-12 珠海大横琴科技发展有限公司 一种用于地理影像拼接的灰度影像匹配方法及装置
CN112288634A (zh) * 2020-10-29 2021-01-29 江苏理工学院 一种多无人机航拍图像的拼接方法及装置
CN112365406A (zh) * 2021-01-13 2021-02-12 芯视界(北京)科技有限公司 图像处理方法、装置以及可读存储介质
CN112767245A (zh) * 2021-01-04 2021-05-07 航天时代飞鸿技术有限公司 基于多无人机实时视频图像的地图拼接构建的系统及方法
CN113096018A (zh) * 2021-04-20 2021-07-09 广东省智能机器人研究院 一种航拍图像拼接方法和系统
CN113160070A (zh) * 2021-03-02 2021-07-23 中国人民解放军空军航空大学 航空三步进面阵图像几何校正方法
CN113160221A (zh) * 2021-05-14 2021-07-23 深圳市奥昇医疗科技有限责任公司 图像处理方法、装置、计算机设备和存储介质
CN113160052A (zh) * 2021-04-01 2021-07-23 华南理工大学 基于非均匀精度的近海养殖区域图像拼接方法
CN113191946A (zh) * 2021-03-02 2021-07-30 中国人民解放军空军航空大学 航空三步进面阵图像拼接方法
CN113205541A (zh) * 2021-05-31 2021-08-03 交通运输部天津水运工程科学研究所 一种基于视觉边缘检测的实验室空间波浪实时测量方法
CN113269817A (zh) * 2021-06-04 2021-08-17 北京中航世科电子技术有限公司 空间域和频域相结合的实时遥感地图拼接方法及装置
CN114066732A (zh) * 2021-11-21 2022-02-18 特斯联科技集团有限公司 一种多源监视器的可见光图像几何辐射拼接处理方法
CN114200958A (zh) * 2021-11-05 2022-03-18 国能电力技术工程有限公司 一种光伏发电设备自动巡检系统和方法
WO2022141512A1 (zh) * 2020-12-31 2022-07-07 西门子股份公司 一种图像拼接方法、装置和计算机可读介质
CN116188975A (zh) * 2023-01-03 2023-05-30 国网江西省电力有限公司电力科学研究院 一种空地视角融合的电力设备故障识别方法及系统
CN117036666A (zh) * 2023-06-14 2023-11-10 北京自动化控制设备研究所 基于帧间图像拼接的无人机低空定位方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012058902A1 (zh) * 2010-11-02 2012-05-10 中兴通讯股份有限公司 全景图合成方法及装置
CN106940876A (zh) * 2017-02-21 2017-07-11 华东师范大学 一种基于surf的快速无人机航拍图像拼接算法
CN107808362A (zh) * 2017-11-15 2018-03-16 北京工业大学 一种基于无人机pos信息与图像surf特征结合的图像拼接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012058902A1 (zh) * 2010-11-02 2012-05-10 中兴通讯股份有限公司 全景图合成方法及装置
CN106940876A (zh) * 2017-02-21 2017-07-11 华东师范大学 一种基于surf的快速无人机航拍图像拼接算法
CN107808362A (zh) * 2017-11-15 2018-03-16 北京工业大学 一种基于无人机pos信息与图像surf特征结合的图像拼接方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111915485A (zh) * 2020-07-10 2020-11-10 浙江理工大学 一种特征点稀疏工件图像的快速拼接方法及系统
CN112163995A (zh) * 2020-09-07 2021-01-01 中山大学 一种超大航拍条带图像的拼接生成方法及装置
CN112288634A (zh) * 2020-10-29 2021-01-29 江苏理工学院 一种多无人机航拍图像的拼接方法及装置
CN112215304A (zh) * 2020-11-05 2021-01-12 珠海大横琴科技发展有限公司 一种用于地理影像拼接的灰度影像匹配方法及装置
WO2022141512A1 (zh) * 2020-12-31 2022-07-07 西门子股份公司 一种图像拼接方法、装置和计算机可读介质
CN112767245A (zh) * 2021-01-04 2021-05-07 航天时代飞鸿技术有限公司 基于多无人机实时视频图像的地图拼接构建的系统及方法
CN112767245B (zh) * 2021-01-04 2024-03-29 航天时代飞鸿技术有限公司 基于多无人机实时视频图像的地图拼接构建的系统及方法
CN112365406A (zh) * 2021-01-13 2021-02-12 芯视界(北京)科技有限公司 图像处理方法、装置以及可读存储介质
CN113160070A (zh) * 2021-03-02 2021-07-23 中国人民解放军空军航空大学 航空三步进面阵图像几何校正方法
CN113191946A (zh) * 2021-03-02 2021-07-30 中国人民解放军空军航空大学 航空三步进面阵图像拼接方法
CN113191946B (zh) * 2021-03-02 2022-12-27 中国人民解放军空军航空大学 航空三步进面阵图像拼接方法
CN113160070B (zh) * 2021-03-02 2022-07-26 中国人民解放军空军航空大学 航空三步进面阵图像几何校正方法
CN113160052A (zh) * 2021-04-01 2021-07-23 华南理工大学 基于非均匀精度的近海养殖区域图像拼接方法
CN113160052B (zh) * 2021-04-01 2022-10-25 华南理工大学 基于非均匀精度的近海养殖区域图像拼接方法
CN113096018A (zh) * 2021-04-20 2021-07-09 广东省智能机器人研究院 一种航拍图像拼接方法和系统
CN113160221A (zh) * 2021-05-14 2021-07-23 深圳市奥昇医疗科技有限责任公司 图像处理方法、装置、计算机设备和存储介质
CN113205541A (zh) * 2021-05-31 2021-08-03 交通运输部天津水运工程科学研究所 一种基于视觉边缘检测的实验室空间波浪实时测量方法
CN113269817A (zh) * 2021-06-04 2021-08-17 北京中航世科电子技术有限公司 空间域和频域相结合的实时遥感地图拼接方法及装置
CN114200958A (zh) * 2021-11-05 2022-03-18 国能电力技术工程有限公司 一种光伏发电设备自动巡检系统和方法
CN114066732B (zh) * 2021-11-21 2022-05-24 特斯联科技集团有限公司 一种多源监视器的可见光图像几何辐射拼接处理方法
CN114066732A (zh) * 2021-11-21 2022-02-18 特斯联科技集团有限公司 一种多源监视器的可见光图像几何辐射拼接处理方法
CN116188975A (zh) * 2023-01-03 2023-05-30 国网江西省电力有限公司电力科学研究院 一种空地视角融合的电力设备故障识别方法及系统
CN117036666A (zh) * 2023-06-14 2023-11-10 北京自动化控制设备研究所 基于帧间图像拼接的无人机低空定位方法
CN117036666B (zh) * 2023-06-14 2024-05-07 北京自动化控制设备研究所 基于帧间图像拼接的无人机低空定位方法

Also Published As

Publication number Publication date
CN111583110B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN111583110B (zh) 一种航拍图像的拼接方法
CN110211043B (zh) 一种用于全景图像拼接的基于网格优化的配准方法
CN103822616B (zh) 一种图分割与地形起伏约束相结合的遥感影像匹配方法
CN108648240B (zh) 基于点云特征地图配准的无重叠视场相机姿态标定方法
CN111063021B (zh) 一种空间运动目标的三维重建模型建立方法及装置
CN104574347B (zh) 基于多源遥感数据的在轨卫星图像几何定位精度评价方法
CN111784576B (zh) 一种基于改进orb特征算法的图像拼接方法
CN111340701B (zh) 一种基于聚类法筛选匹配点的电路板图像拼接方法
CN114936971A (zh) 一种面向水域的无人机遥感多光谱图像拼接方法及系统
CN110992263B (zh) 一种图像拼接方法及系统
CN111507901B (zh) 基于航带gps及尺度不变约束的航拍图像拼接定位方法
CN112396640B (zh) 图像配准方法、装置、电子设备及存储介质
CN108961286B (zh) 一种顾及建筑物三维及边缘形状特征的无人机影像分割方法
CN109376641B (zh) 一种基于无人机航拍视频的运动车辆检测方法
CN104077760A (zh) 一种航空摄影测量的快速拼接系统及其实现方法
CN108759788B (zh) 无人机影像定位定姿方法及无人机
CN110084743B (zh) 基于多航带起始航迹约束的图像拼接与定位方法
CN110969669A (zh) 基于互信息配准的可见光与红外相机联合标定方法
CN115205118A (zh) 一种水下图像拼接方法、装置、计算机设备及存储介质
CN115526781A (zh) 一种基于图像重叠区域的拼接方法、系统、设备及介质
CN113793266A (zh) 一种多目机器视觉图像拼接方法、系统及存储介质
CN112862683A (zh) 一种基于弹性配准和网格优化的邻接图像拼接方法
CN114897676A (zh) 一种无人机遥感多光谱图像拼接方法、设备及介质
CN113066173B (zh) 三维模型构建方法、装置和电子设备
CN114612412A (zh) 三维点云数据的处理方法及其用途、电子设备、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant