CN111579571B - 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法 - Google Patents

一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法 Download PDF

Info

Publication number
CN111579571B
CN111579571B CN202010487520.5A CN202010487520A CN111579571B CN 111579571 B CN111579571 B CN 111579571B CN 202010487520 A CN202010487520 A CN 202010487520A CN 111579571 B CN111579571 B CN 111579571B
Authority
CN
China
Prior art keywords
energy
fitting
scale
gamma
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010487520.5A
Other languages
English (en)
Other versions
CN111579571A (zh
Inventor
张迎增
储诚胜
许业文
郭小峰
曾军
向清沛
袁志文
郝樊华
向永春
朱晨
杨圣勤
赵洪涛
张海洋
朱俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
63983 Troops of PLA
Original Assignee
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
63983 Troops of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics, 63983 Troops of PLA filed Critical Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority to CN202010487520.5A priority Critical patent/CN111579571B/zh
Publication of CN111579571A publication Critical patent/CN111579571A/zh
Application granted granted Critical
Publication of CN111579571B publication Critical patent/CN111579571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/221Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis
    • G01N23/222Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis using neutron activation analysis [NAA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/074Investigating materials by wave or particle radiation secondary emission activation analysis
    • G01N2223/0745Investigating materials by wave or particle radiation secondary emission activation analysis neutron-gamma activation analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法。本方法逐步采用标准γ源与中子活化特征物质产生的γ射线进行刻度,采用简单能谱刻度低能段,之后使用低能段刻度结果估算高能段峰位置,同时采用峰形拟合方法确定峰中心,不断扩展能量刻度范围,逐步逼近感兴趣的高能段,最终获得感兴趣高能段对应的道址区间。与传统一次活化多样品获得复杂的γ能谱后专业人员识别手动刻度方法相比,本发明的方法提供了一套自适应的流程与算法,实现自动化刻度,减少对操作人员的需求,大大扩展了中子活化分析的应用场景。

Description

一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法
技术领域
本发明属于核辐射探测领域,具体涉及一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法。
背景技术
中子质询技术是利用中子发生装置发出的中子与待检测物品发生反应,放出瞬发γ射线,一般采用闪烁体γ谱仪记录γ射线能谱,通过对该能谱的分析确定待检测物品的相关信息。由于待检测物品、环境背景等的元素成分复杂,活化产生的γ射线较多,且γ射线与探测器材料发生相互作用沉积能量的机制较多,获得的能谱非常复杂。因此在中子诱发的复杂能谱中寻找感兴趣元素的特征峰,特别是高能独有特征峰至关重要。
对理想的闪烁γ谱仪,光产额为常数,且与入射γ射线能量无关,总的荧光数量正比于γ射线沉积能量,但是由于光传输衰减、光电倍增管匹配、电子学非线性等因素造成高能段探测器能量相应偏离线性较远的现象;同时闪烁体光产额以及电子学参数受温度等因素影响较大,无法一次刻度长期使用。目前使用闪烁谱仪分析中子活化γ能谱高能段时,一般采用实验人员现场刻度方法确定感兴趣能段道址区间,该方法需要操作人员具备辐射测量专业知识与分析经验,成本较高,难以大规模推广应用。
发明内容
本发明旨在提供一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法。
为了实现上述目的,本发明提供如下技术方案:
一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法,其特点是,所述的方法包括以下步骤:
(a)使用137Cs放射源对探测器进行初步刻度;
(b)使用60Co放射源对探测器进行低能段刻度;
(c)使用慢化中子活化水样品,扩大能量刻度范围至中能段;
(d)使用慢化中子活化石墨样品,扩大能量刻度范围至中高能段;
(e)使用慢化中子活化铁块样品,扩大能量刻度范围至高能段;
(f)计算γ能谱中感兴趣高能区的对应道址范围。
进一步,步骤(a)中使用137Cs放射源对探测器进行初步刻度,具体为:
(a1)将137Cs放射源移动至探测器,启动多道进行数据收集,获得γ能谱S1,取回137Cs放射源;
(a2)寻找能谱S1中最高点所在道址C1,以C1为中心选择宽度为2m1+1的数据,m1为道址C1所在峰的半宽度,使用峰形拟合公式对该数据进行拟合,峰形拟合公式如下:
Figure BDA0002519754190000021
获得道址计数N(C)与道址C的函数关系,式中a0、a1、a2、a3以及为拟合参数,得到峰拟合中心道址
Figure BDA0002519754190000022
(a3)根据137Cs 661.7keV特征γ射线,得到能量E(C)与道址C的初步刻度关系为:
E(C)=f1C
式中
Figure BDA0002519754190000023
为道址能量转换因子。
进一步,步骤(b)中使用60Co放射源对探测器进行低能段刻度,具体为:
(b1)将60Co放射源移动至探测器,启动多道进行数据收集,获得γ能谱S2,取回60Co放射源;
(b2)在能谱S2中以
Figure BDA0002519754190000024
以及
Figure BDA0002519754190000025
为中心取宽度分别为2m2+1、2m3+1的数据,其中round表示近似取整,m2与m3分别60Co1173.2keV与1332.5keV特征γ射线峰的半宽度,使用步骤(a2)中的峰形拟合公式分别进行拟合,得到峰拟合中心道址分别为
Figure BDA0002519754190000026
(b3)对数据
Figure BDA0002519754190000027
使用最小二乘法按照能量刻度公式进行拟合,能量刻度公式为
E(C)=b0+b1C+b2C2
得到低能段能量与道址之间刻度参数b1_0、b1_1、b1_2
进一步,骤(c)中使用慢化中子活化水样品,扩大能量刻度范围至中能段,具体步骤为:
(c1)将水样品移动至辐照活化部位,打开中子发生器,待中子源强度稳定时启动多道进行数据收集,获得γ能谱S3,关闭中子发生器,取回水样品;
(c2)根据步骤(b3)中拟合得到的能量刻度公式求解中子活化水产生的2223.3keV特征γ射线对应的取整道址C4,在能谱S3中以C4为中心,取宽度为2m4+1的数据,m4为2223.3keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到2223.3keV峰拟合中心道址
Figure BDA0002519754190000031
(c3)对数据
Figure BDA0002519754190000032
Figure BDA0002519754190000033
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b2_0、b2_1、b2_2
进一步,步骤(d)使用慢化中子活化石墨样品,扩大能量刻度范围至中高能段,具体为:
(d1)将石墨样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S4,关闭中子发生器,取回石墨样品;
(d2)根据步骤(c3)中拟合得到的结果求解中子活化石墨产生的3683keV、4945keV特征γ射线对应的取整道址C5、C6,在能谱S4中以C5、C6为中心,分别取宽度为2m5+1、2m6+1的数据,m5与m6分别为3683keV与4945keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到3683keV、4945keV峰拟合中心道址
Figure BDA0002519754190000034
Figure BDA0002519754190000035
(d3)对数据
Figure BDA0002519754190000036
Figure BDA0002519754190000037
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b3_0、b3_1、b3_2
进一步,步骤(e)中使用慢化中子活化铁块样品,扩大能量刻度范围至高能段,具体为:
(e1)将铁块样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S5,关闭中子发生器,取回铁块样品;
(e2)根据步骤(d3)中拟合得到的结果求解中子活化铁产生的7120keV、7631keV特征γ射线对应的取整道址C7、C8,分别取宽度为2m7+1、2m8+1的数据,m7与m8分别为7120keV与7631keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到7120keV、7631keV峰拟合中心道址
Figure BDA0002519754190000041
(e3)对数据
Figure BDA0002519754190000042
Figure BDA0002519754190000043
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b4_0、b4_1、b4_2
进一步,步骤(f)中计算γ能谱中感兴趣高能区的对应道址范围,具体为:
根据待测物品选定感兴趣高能区[Emin,Emax],根据步骤(e3)中拟合得到的能量刻度公式求出Emin与Emax对应的取整道址Cmin、Cmax,[Cmin,Cmax]即为感兴趣高能区对应的道址区间。
相比于传统方法一次活化多样品获得复杂的γ能谱,解析需要具备辐射测量专业知识的操作人员,难以大规模推广应用,本发明一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法,综合使用标准源与中子活化能谱,由简至繁,通过峰形拟合与逐步逼近可以自适应的获得感兴趣的高能段道址范围,实现自动化刻度,减少对操作人员的需求。
附图说明
图1为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法整体流程与刻度使用范围图;
图2为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法蒙卡模拟获得137Cs刻度探测器能谱S1
图3为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法661.7keV峰形及拟合结果;
图4为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法蒙卡模拟获得60Cs刻度探测器能谱S2
图5为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法1173.2keV峰形及拟合结果;
图6为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法1332.5keV峰形及拟合结果;
图7为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法蒙卡模拟获得慢化中子活化水样品时探测器能谱S3
图8为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法2223.3keV峰形及拟合结果;
图9为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法蒙卡模拟获得慢化中子活化石墨样品时探测器能谱S3
图10为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法3683keV峰形及拟合结果;
图11为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法4945keV峰形及拟合结果;
图12为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法蒙卡模拟获得慢化中子活化铁块样品时探测器能谱S4
图13为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法7120keV峰形及拟合结果;
图14为本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法7631keV峰形及拟合结果。
具体实施方式
结合图1,本发明的一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法具体实施方式如下:
(a)使用137Cs放射源对探测器进行初步刻度;
(b)使用60Co放射源对探测器进行低能段刻度;
(c)使用慢化中子活化水样品,扩大能量刻度范围至中能段;
(d)使用慢化中子活化石墨样品,扩大能量刻度范围至中高能段;
(e)使用慢化中子活化铁块样品,扩大能量刻度范围至高能段;
(f)计算γ能谱中感兴趣高能区的对应道址范围。
本方法针对中子活化分析,所有操作依赖于中子活化分析平台,该平台包括中子发生器及其控制模块、待测样品放置于更换模块、闪烁体探测器及其电子学模块、多道信号采集及计算机处理模块,具体操作之前选定工作参数,并保证在整个方法实施过程中保持不变;
步骤(a)中使用137Cs放射源对探测器进行初步刻度的具体实施方式如下:
(a1)将137Cs放射源移动至探测器,启动多道进行数据收集,获得γ能谱S1,取回137Cs放射源;
(a2)寻找能谱S1中最高点所在道址C1,以C1为中心选择宽度为2m1+1的数据,m1为道址C1所在峰的半宽度,使用峰形拟合公式对该数据进行拟合,峰形拟合公式如下
Figure BDA0002519754190000061
获得道址计数N(C)与道址C的函数关系,式中a0、a1、a2、a3以及为拟合参数,得到峰拟合中心道址
Figure BDA0002519754190000062
(a3)根据137Cs 661.7keV特征γ射线,得到能量E(C)与道址C的初步刻度关系为
E(C)=f1C
式中
Figure BDA0002519754190000063
为道址能量转换因子,该刻度结果适用于0~1000keV内能量线性,可以扩展至2000keV进行估算;
步骤(b)中使用60Co放射源对探测器进行低能段刻度的具体实施方式如下:
(b1)将60Co放射源移动至探测器,启动多道进行数据收集,获得γ能谱S2,取回60Co放射源;
(b2)在能谱S2中以
Figure BDA0002519754190000064
以及
Figure BDA0002519754190000065
为中心取宽度分别为2m2+1、2m3+1的数据,其中round表示近似取整,m2与m3分别60Co1173.2keV与1332.5keV特征γ射线峰的半宽度,使用步骤(a2)中的峰形拟合公式分别进行拟合,得到峰拟合中心道址分别为
Figure BDA0002519754190000066
(b3)对数据
Figure BDA0002519754190000067
使用最小二乘法按照能量刻度公式进行拟合,能量刻度公式为
E(C)=b0+b1C+b2C2
得到低能段能量与道址之间刻度参数b1_0、b1_1、b1_2,该刻度结果适用于0~2000keV内能量线性,可以扩展至3000keV进行估算;
步骤(c)中使用慢化中子活化水样品,扩大能量刻度范围至中能段具体实施方式如下:
(c1)将水样品移动至辐照活化部位,打开中子发生器,待中子源强度稳定时启动多道进行数据收集,获得γ能谱S3,关闭中子发生器,取回水样品;
(c2)根据步骤(b3)中拟合得到的能量刻度公式求解中子活化水产生的2223.keV特征γ射线对应的取整道址C4,在能谱S3中以C4为中心,取宽度为2m4+1的数据,m4为2223.3keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到2223.3keV峰拟合中心道址
Figure BDA0002519754190000071
(c3)对数据
Figure BDA0002519754190000072
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b2_0、b2_1、b2_2,该刻度结果适用于0~3000keV内能量线性,可以扩展至4500keV进行估算;
步骤(d)中使用慢化中子活化石墨样品,扩大能量刻度范围至中高能段具体实施方式如下:
(d1)将石墨样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S4,关闭中子发生器,取回石墨样品;
(d2)根据步骤(c3)中拟合得到的结果求解中子活化石墨产生的3683keV、4945keV特征γ射线对应的取整道址C5、C6,在能谱S4中以C5、C6为中心,分别取宽度为2m5+1、2m6+1的数据,m5与m6分别为3683keV与4945keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到3683keV、4945keV峰拟合中心道址
Figure BDA0002519754190000073
Figure BDA0002519754190000074
(d3)对数据
Figure BDA0002519754190000075
Figure BDA0002519754190000076
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b3_0、b3_1、b3_2,该刻度结果适用于0~5500keV内能量线性,可以扩展至7500keV进行估算;
步骤(e)中使用慢化中子活化铁块样品,扩大能量刻度范围至高能段具体实施方式如下:
(e1)将铁块样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S5,关闭中子发生器,取回铁块样品;
(e2)根据步骤(d3)中拟合得到的结果求解中子活化铁产生的7120keV、7631keV特征γ射线对应的取整道址C7、C8,分别取宽度为2m7+1、2m8+1的数据,m7与m8分别为7120keV与7631keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到7120keV、7631keV峰拟合中心道址
Figure BDA0002519754190000081
(e3)对数据
Figure BDA0002519754190000082
Figure BDA0002519754190000083
使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b4_0、b4_1、b4_2,该刻度结果适用于0~8500keV内能量线性,可以扩展至11000keV进行估算;
步骤(f)中计算γ能谱中感兴趣高能区的对应道址范围具体实施方式如下:
根据待测物品选定感兴趣高能区[Emin,Emax],根据(e3)中拟合得到的能量刻度公式求出Emin与Emax对应的取整道址Cmin、Cmax,[Cmin,Cmax]即为感兴趣高能区对应的道址区间。
下面结合实施例对本发明做进一步详细的描述:
实施例
本实施例采用蒙卡模拟方法获得探测器沉积能谱,采用LaBr3为γ探测器晶体材料,能量分辨率为2.9%@661.7keV,2.1%@1332.5keV,1.6%@2615keV,探测器半高宽与能量的关系为
Figure BDA0002519754190000084
首先采用蒙卡模拟方法获得137Cs放射源刻度时γ能谱S1,如图2所示,最高点所在道址C1=905,以C1位中心选择宽度为121道的数据,使用a2中的峰形拟合公式进行拟合,拟合结果见图3,得到峰拟合中心道址
Figure BDA0002519754190000085
初进而得到能量E(C)与道址的初步刻度结果为
E1(C)=0.732C
采用蒙卡模拟方法获得60Cs放射源刻度时γ能谱S2,如图4所示,根据初步刻度结果计算得到60Co1173.2keV与1332.5keV特征γ射线峰中心分别位于C2=1603以及C3=1820附近,分别以C2、C3为中心道址,取宽度分别为121、121的数据,使用步骤(a2)中的峰形拟合公式分别进行峰形拟合,结果见图5与图6,得到拟合结果
Figure BDA0002519754190000086
Figure BDA0002519754190000087
对数据(903.95,661.7keV)、(1602.35,1173.2keV)、(1819.81,1332.5keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,得到低能段能量与道址之间刻度参数b1_0=-0.0960775,b1_1=0.731961,b1_2=1.71009e-07。
采用蒙卡模拟方法获得慢化中子活化水样品时探测器探测能谱S3,如图7所示;根据更新拟合的能量刻度公式求解中子活化水产生的2223.keV特征γ射线对应的取整道址C4=3035,以C4为中心道址,取宽度为161的数据,使用步骤(a2)中的峰形拟合公式进行峰形拟合,结果见图8,得到拟合结果
Figure BDA0002519754190000091
对数据(903.95,661.7keV)、(1602.35,1173.2keV)、(1819.81,1332.5keV)、(3035.59,2223.3keV)使用使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,得到低能段能量与道址之间刻度参数b2_0=-0.0432667,b2_1=0.731874,b2_2=2.03632e-07。
采用蒙卡模拟方法获得慢化中子活化石墨样品时探测器探测能谱S4,如图9所示;根据更新拟合的能量刻度公式求解中子活化石墨产生的3683keV、4945keV特征γ射线对应的取整道址为C5=5025、C6=6743,以C5、C6为中心道址,取宽度分别为181、201的数据,使用步骤(a2)中的峰形拟合公式进行峰形拟合,结果见图10与图11,得到拟合结果
Figure BDA0002519754190000092
对数据(903.95,661.7keV)、(1602.35,1173.2keV)、(1819.81,1332.5keV)、(3035.59,2223.3keV)、(5031.59,3683keV)、(6752.07,4945keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,得到低能段能量与道址之间刻度参数b3_0=0.511902,b3_1=0.731766,b3_2=6.798e-08。
采用蒙卡模拟方法获得慢化中子活化铁块样品时探测器探测能谱S5,如图12所示;根据更新拟合的能量刻度公式求解中子活化铁产生的7120keV、7631keV特征γ射线对应的取整道址C7=9721、C8=10418,以C7、C8为中心道址,取宽度分别为181、201的数据,使用步骤(a2)中的峰形拟合公式进行峰形拟合,结果见图13与图14,得到拟合结果
Figure BDA0002519754190000093
对数据(903.95,661.7keV)、(1602.35,1173.2keV)、(1819.81,1332.5keV)、(3035.59,2223.3keV)、(5031.59,3683keV)、(6752.07,4945keV)、(9730.17,7120keV)、(10425.3,7631keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,得到低能段能量与道址之间刻度参数b4_0=-0.699195,b4_1=0.732799,b4_2=8.30023e-08。
以探测炸药为例,我们选择N元素作为目标核素,以热中子活化N产生的10.8MeV的γ射线为感兴趣射线,根据能量展宽选择[10MeV,11MeV]作为感兴趣高能区,根据最终更新的能量刻度公式计算得到感兴趣高能区对应导致区间为[13626,14986]。

Claims (1)

1.一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法,其特征在于,所述的方法包括以下步骤:
(a)使用137Cs放射源对探测器进行初步刻度;具体为:
(a1)将137Cs放射源移动至探测器,启动多道进行数据收集,获得γ能谱S1,取回137Cs放射源;
(a2)寻找能谱S1中最高点所在道址C1,以C1为中心选择宽度为2m1+1的数据,m1为道址C1所在峰的半宽度,使用峰形拟合公式对该数据进行拟合,峰形拟合公式如下:
Figure 816888DEST_PATH_IMAGE001
获得道址计数N(C)与道址C的函数关系,式中
Figure 229415DEST_PATH_IMAGE002
Figure 821196DEST_PATH_IMAGE003
Figure 2778DEST_PATH_IMAGE004
Figure 192451DEST_PATH_IMAGE005
以及
Figure 154591DEST_PATH_IMAGE006
为拟合参数,得到峰拟合中心道址
Figure 720702DEST_PATH_IMAGE007
(a3)根据137Cs 661.7keV特征γ射线,得到能量E(C)与道址C的初步刻度关系为:
Figure 22370DEST_PATH_IMAGE008
式中
Figure 445261DEST_PATH_IMAGE009
为道址能量转换因子;
(b)使用60Co放射源对探测器进行低能段刻度;具体为:
(b1) 将60Co放射源移动至探测器,启动多道进行数据收集,获得γ能谱S2,取回60Co放射源;
(b2)在能谱S2中以C2=round(
Figure 832380DEST_PATH_IMAGE010
)以及C3=round(
Figure 202182DEST_PATH_IMAGE011
)为中心取宽度分别为2m2+1、2m3+1的数据,其中round表示近似取整,m2与m3分别60Co1173.2keV与1332.5keV特征γ射线峰的半宽度,使用步骤(a2)中的峰形拟合公式分别进行拟合,得到峰拟合中心道址分别为
Figure 155094DEST_PATH_IMAGE012
Figure 952149DEST_PATH_IMAGE013
(b3) 对数据(
Figure 560985DEST_PATH_IMAGE014
,661.7keV)、(
Figure 298259DEST_PATH_IMAGE015
,1173.2keV)、(
Figure 308940DEST_PATH_IMAGE016
,1332.5keV)使用最小二乘法按照能量刻度公式进行拟合,能量刻度公式为
Figure 276896DEST_PATH_IMAGE017
得到低能段能量与道址之间刻度参数b1_0、b1_1、b1_2
(c)使用慢化中子活化水样品,扩大能量刻度范围至中能段;具体为:
(c1) 将水样品移动至辐照活化部位,打开中子发生器,待中子源强度稳定时启动多道进行数据收集,获得γ能谱S3,关闭中子发生器,取回水样品;
(c2)根据步骤(b3)中拟合得到的能量刻度公式求解中子活化水产生的2223.3keV特征γ射线对应的取整道址C4,在能谱S3中以C4为中心,取宽度为2m4+1的数据,m4为2223.3keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到2223.3keV峰拟合中心道址
Figure 435345DEST_PATH_IMAGE018
(c3)对数据(
Figure 146949DEST_PATH_IMAGE014
,661.7keV)、(
Figure 12137DEST_PATH_IMAGE015
,1173.2keV)、(
Figure 213311DEST_PATH_IMAGE016
,1332.5keV)、(
Figure 796739DEST_PATH_IMAGE019
,2223.3keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b2_0、b2_1、b2_2
(d)使用慢化中子活化石墨样品,扩大能量刻度范围至中高能段;具体为:
(d1)将石墨样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S4,关闭中子发生器,取回石墨样品;
(d2)根据步骤(c3)中拟合得到的结果求解中子活化石墨产生的3683keV、4945keV特征γ射线对应的取整道址C5、C6,在能谱S4中以C5、C6为中心,分别取宽度为2m5+1、2m6+1的数据,m5与m6分别为3683keV与4945keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到3683keV、4945keV峰拟合中心道址
Figure 108772DEST_PATH_IMAGE020
Figure 94045DEST_PATH_IMAGE021
(d3)对数据(
Figure 403804DEST_PATH_IMAGE014
,661.7keV)、(
Figure 38310DEST_PATH_IMAGE015
,1173.2keV)、(
Figure 91717DEST_PATH_IMAGE016
,1332.5keV)、(
Figure 931497DEST_PATH_IMAGE019
,2223.3keV)、(
Figure 474473DEST_PATH_IMAGE022
,3683keV)、(
Figure 766914DEST_PATH_IMAGE023
,4945keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b3_0、b3_1、b3_2
(e)使用慢化中子活化铁块样品,扩大能量刻度范围至高能段;具体为:
(e1)将铁块样品移动至辐照活化部位,打开中子发生器,待中子源强稳定时启动多道进行数据收集,获得γ能谱S5,关闭中子发生器,取回铁块样品;
(e2)根据步骤(d3)中拟合得到的结果求解中子活化铁产生的7120keV、7631keV特征γ射线对应的取整道址C7、C8,分别取宽度为2m7+1、2m8+1的数据,m7与m8分别为7120keV与7631keV特征峰的半宽度,使用步骤(a2)中的峰形拟合公式进行峰形拟合,得到7120keV、7631keV峰拟合中心道址
Figure 624012DEST_PATH_IMAGE024
Figure 380615DEST_PATH_IMAGE025
(e3) 对数据 (
Figure 32177DEST_PATH_IMAGE014
,661.7keV)、(
Figure 77493DEST_PATH_IMAGE015
,1173.2keV)、(
Figure 535019DEST_PATH_IMAGE016
,1332.5keV)、(
Figure 83812DEST_PATH_IMAGE019
,2223.3keV)、(
Figure 735636DEST_PATH_IMAGE022
,3683keV)、(
Figure 2669DEST_PATH_IMAGE023
,4945keV)、(
Figure 201569DEST_PATH_IMAGE026
,7120keV)、(
Figure 667185DEST_PATH_IMAGE027
,7631keV)使用最小二乘法按照步骤(b3)中的能量刻度公式进行拟合,更新能量与道址之间刻度参数为b4_0、b4_1、b4_2
(f)计算γ能谱中感兴趣高能区的对应道址范围;具体为:
根据待测物品选定感兴趣高能区[Emin,Emax],根据步骤(e3)中拟合得到的能量刻度公式求出Emin与Emax对应的取整道址Cmin、Cmax,[Cmin,Cmax]即为感兴趣高能区对应的道址区间。
CN202010487520.5A 2020-06-02 2020-06-02 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法 Active CN111579571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010487520.5A CN111579571B (zh) 2020-06-02 2020-06-02 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010487520.5A CN111579571B (zh) 2020-06-02 2020-06-02 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法

Publications (2)

Publication Number Publication Date
CN111579571A CN111579571A (zh) 2020-08-25
CN111579571B true CN111579571B (zh) 2022-11-25

Family

ID=72125844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010487520.5A Active CN111579571B (zh) 2020-06-02 2020-06-02 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法

Country Status (1)

Country Link
CN (1) CN111579571B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640854B (zh) * 2021-07-30 2024-05-14 中国原子能科学研究院 一种核反冲法气体探测器能量刻度方法
CN114518589B (zh) * 2022-01-28 2024-06-21 西北核技术研究所 基于厚放射源实现气体正比探测器能量刻度的方法
CN114859397B (zh) * 2022-03-17 2022-11-22 合肥金星智控科技股份有限公司 一种中子活化的能谱的处理方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913764A (zh) * 2014-02-24 2014-07-09 东华理工大学 一种基于高斯响应矩阵的NaI(TI)闪烁探测器γ能谱高分辨反演解析过程及方法
CN104198503A (zh) * 2014-08-19 2014-12-10 开封市测控技术有限公司 基于自然伽马射线在线测量煤灰分系统及方法
CN107220215A (zh) * 2017-05-27 2017-09-29 西南科技大学 基于矩估计法的粒子谱拟合函数的初始参数的计算方法
CN108646284A (zh) * 2018-05-15 2018-10-12 张金钊 一种γ能谱组合探测系统及γ能谱测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030165213A1 (en) * 1998-02-18 2003-09-04 Maglich Bogdan C. Method and apparatus for neutron microscopy with stoichiometric imaging
JP2016524722A (ja) * 2013-05-14 2016-08-18 コリアント・アドヴァンスド・テクノロジー・エルエルシー 空乏モードシリコン変調器のための超応答移相器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913764A (zh) * 2014-02-24 2014-07-09 东华理工大学 一种基于高斯响应矩阵的NaI(TI)闪烁探测器γ能谱高分辨反演解析过程及方法
CN104198503A (zh) * 2014-08-19 2014-12-10 开封市测控技术有限公司 基于自然伽马射线在线测量煤灰分系统及方法
CN107220215A (zh) * 2017-05-27 2017-09-29 西南科技大学 基于矩估计法的粒子谱拟合函数的初始参数的计算方法
CN108646284A (zh) * 2018-05-15 2018-10-12 张金钊 一种γ能谱组合探测系统及γ能谱测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS;Adam Goldstein et al.;《The Astrophysical Journal Supplement Series》;20120331;第1-27页 *
高低位置过渡法刻度探测器表面位置效率;章剑华 等;《第十七届全国核电子学与核探测技术学术年会论文集》;20140813;第258-262页 *

Also Published As

Publication number Publication date
CN111579571A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN111579571B (zh) 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法
CN103837558B (zh) 一种基于pgnaa技术的水溶液中多元素成分及含量检测装置及检测方法
CN108645880B (zh) 一种大体积样品的能谱解析方法
Flaska et al. Identification of shielded neutron sources with the liquid scintillator BC-501A using a digital pulse shape discrimination method
CN111045072B (zh) 一种适用于CeBr3探测器的γ能谱迭代解谱方法
He et al. Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network
CN102175704B (zh) 铀同位素丰度分析方法
Britton et al. Preliminary simulations of NaI (Tl) detectors, and coincidence analysis using event stamping
Bertrand et al. Practical advances towards safer analysis of heritage samples and objects
CN107238856B (zh) 一种高通量氘-氚中子发生器中子平均能量的确定方法
Wang et al. A new numerical correction method for gamma spectra based on the system transformation theory of random signals
Wu et al. Standard spectrum measurement and simulation of elemental capture spectroscopy log
CN104504273B (zh) 一种提高γ射线峰探测灵敏度的能谱处理方法
Kuzmin et al. A Monte Carlo Model of the Neutron Detector Based on Lithium-Glass Scintillator
De Stefano et al. Feasibility study of fissile mass detection in 870 L radioactive waste drums using delayed gamma rays from neutron-induced fission
Shue et al. Thermal-neutron intensities in soils irradiated by fast neutrons from point sources
Biganeh et al. Design of a two-dimensional pseudo coincidence Compton suppressor system for neutron activation analysis
Tourang et al. List mode data acquisition technique for Compton suppression and minimum detectable activity (MDA) reduction in standard high-volume air samples
EP3676640B1 (en) Methods and systems for calibration of particle detectors
Maney et al. A versatile and comprehensive analysis code for automated reduction of gamma-ray spectral data
Friedrich et al. On the dose rate dependence of radiofluorescence signals of natural quartz
CN105628715A (zh) 原料钾矿碘化钠晶体测钾仪
Esmaeili-Sani et al. Gamma–gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package
Zhang et al. Gamma spectrum analysis for in situ automatic monitoring of radioactivity in seawater
Olacel et al. Isotopic patterns via neutron irradiation and gamma spectrometry of environmental samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant