CN111575607A - 一种钢筋混凝土用耐火钢筋的制备方法 - Google Patents

一种钢筋混凝土用耐火钢筋的制备方法 Download PDF

Info

Publication number
CN111575607A
CN111575607A CN202010604279.XA CN202010604279A CN111575607A CN 111575607 A CN111575607 A CN 111575607A CN 202010604279 A CN202010604279 A CN 202010604279A CN 111575607 A CN111575607 A CN 111575607A
Authority
CN
China
Prior art keywords
rolling
cooling
temperature
steel bar
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010604279.XA
Other languages
English (en)
Inventor
谷杰
蔡雪贞
徐书成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Lianfeng Steel Institute Co ltd
Original Assignee
Zhangjiagang Lianfeng Steel Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Lianfeng Steel Institute Co ltd filed Critical Zhangjiagang Lianfeng Steel Institute Co ltd
Priority to CN202010604279.XA priority Critical patent/CN111575607A/zh
Publication of CN111575607A publication Critical patent/CN111575607A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明属于炼钢技术领域,涉及一种钢筋混凝土用耐火钢筋的制备方法;首先混合物料、冶炼,全程底吹氩搅拌,并在钢水中加入红土镍矿,浇铸成钢坯,进行热轧;粗轧4~6个道次,控制压下率小于40%;精轧8~10道次,变形量控制为≤45%;然后进行预水冷,冷却表面,使得在表面的奥氏体短时间内发生相变;其余部分快速返红至900℃以上;最后空冷至室温,在空冷过程中首先析出V的析出物,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高;本发明选择添加红土镍矿作为原料,能够提高耐火钢筋的耐火和耐腐蚀性能;同时,能够降低钢筋的成本;因为红土镍矿资源丰富,采矿成本低,并且可以提高红土镍矿利用率。

Description

一种钢筋混凝土用耐火钢筋的制备方法
技术领域
本发明属于炼钢技术领域,具体涉及一种钢筋混凝土用耐火钢筋的制备方法。
背景技术
建筑钢材是建筑材料的三大主要材料之一,可分为钢结构用钢材和钢筋混凝土结构用钢筋两类;在钢材生产和消费总量中,建筑钢筋占有很大比重。随着火灾等自然灾害的频繁发生以及人们对建筑质量要求的不断提高,建筑用钢筋的耐火性能引起了人们广泛的关注。桥梁、房屋火灾的起火温度一般在600℃以内,轻则影响房屋、桥梁结构的耐久性能,重则导致房屋、桥梁的拆除重建;为提高建筑结构的安全性,对钢筋耐火性的需求更高。
在现有技术中,耐火钢筋的制备主要是通过将铬铁合金、价格昂贵的钒氮合金、铌铁、钼铁在转炉炼钢过程中添加到钢水中进行微合金化来提高钢材的强度,但是,这些合金价格高昂、产品成本高;此外,还有文献,如《混凝土用600MPa高性能耐火抗震钢筋及其制备》中,公开了一种耐火抗震钢筋,其方案是采用低温轧制,需要新建高负荷轧制设备,现有工艺装备不能生产该类产品,加大了成本。另外采用低温轧制方法生产的钢筋虽然在钢筋强度上有提高,但低温轧制产生变形不均匀,易导致性能不均匀,塑性降低。
发明内容
本发明的目的在于克服现有技术中存在的技术缺陷,提供一种钢筋混凝土用耐火钢筋的制备方法。
为了实现以上目的,本发明钢筋混凝土用耐火钢筋的制备方法,包括以下步骤:
(1)首先选取红土镍矿,干燥后研磨过筛,得到粉末状颗粒,备用;称取其余各组分原料,混合物料,进行冶炼,全程底吹氩搅拌,过程中先充分搅拌化渣,采用复合脱氧剂进行脱氧合金化;然后在钢水中加入红土镍矿的粉末状颗粒,对钢水进行软吹操作;全保护浇铸,浇铸成钢坯;再通过热压炉进行热轧;
(2)粗轧:粗轧之前开启高压水除磷;粗轧开轧温度900~950℃,加热段1000~1100℃在速度为0.8~1.1m/s的轧制条件下粗轧4~6个道次,控制终轧温度为960~980℃,并控制压下率;
(3)精轧:精轧前配有穿水冷却装置,控制进KOCKS的温度,采用KOCKS三辊减定径机组轧制;精轧开轧温度为920~950℃,精轧的轧制道次为8~10道,所述终轧温度为850-880℃;盘卷冷却,卷取后采用缓慢冷却的方式进行冷却;所述精轧变形量控制为≤45%,
(4)精轧过后的钢筋进行预水冷,冷却表面温度至一定温度,使得在表面的奥氏体短时间内会发生相变;其余部分快速返红至900℃以上,仍保持奥氏体组织;然后空冷至室温,在空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高,最后收集打捆。
优选的,步骤(1)中,所述耐火钢筋的的各化学成分重量百分比如下,红土镍矿:15~25%,C:0.1~0.15%、Si:0.35~0.45%、Mn:1.35~1.4%、Cu:0.5%~1.0%、V:0.03~0.05%、Nb:0.025~0.03%、Cr:0.06~0.08%、Mo:0.30~0.40、Ti:0.001~0.005%、Ni:0.08~0.15%,S≤0.02%、P≤0.03%,余量是Fe和不可避免的杂质。
优选的,步骤(1)中,所述热压炉采用高效步进梁式加热炉,由工业微机和PLC构成控制系统,能根据设定参数实现自动燃烧。
优选的,步骤(1)中,所述红土镍矿的组成成分按质量百分比计,包括水30~35%,铁30~50%,镍0.8~1.0%,铬1.2~1.6%;所述干燥的温度为600~800℃,所述过筛选用筛网的目数为130~150目。
优选的,步骤(1)中,所述软吹时间为10~20min。
优选的,步骤(2)中,所述除磷压力为12~15MPa;所述加热段的加热速率为8.0~10℃/s。
优选的,步骤(2)中,所述压下率控制在40%以下;所述粗轧轧制中前2个道次的压延相比后续道次的压延要小。
优选的,步骤(3)中,所述进KOCKS温度为900~920℃;所述的精轧机组的终轧速度为8~10m/s,控制轧制速度,避免速度过快导致轧件表面质量和结构强度出现问题。
优选的,步骤(3)中,所述精轧最后两道次累计压下率控制在15~20%。
优选的,步骤(3)中,所述缓慢冷却是冷却水对成卷进行3-5min的冷却。
优选的,步骤(4)中,所述冷却表面温度至一定温度为350~400℃。
本发明的优点和技术效果:
(1)本发明选择添加红土镍矿作为原料,能够提高耐火钢筋的耐火性能和耐腐蚀性能;同时,能够降低耐火钢筋的成本,因为红土镍矿资源丰富,采矿成本低,并且可以提高红土镍矿利用率。
(2)本发明通过在耐火钢筋中添加少量微合金元素Nb、Ti和Cr,结合本发明的热轧工艺即可达到耐火强度,符合国家标准;同时在高温下有较高的强度,焊接性能好,具有很强的实用性和应用前景;本发明在耐火钢筋中加入Cu元素,能够保证钢筋的耐腐蚀性能。
(3)本发明通过控制开轧温度、终轧温度、轧制速度、轧制道次和时间及轧后的快速冷却控冷,可充分发挥Nb等微合金强化作用和控冷细晶强化双重作用;同时,本发明的热处理工艺,也适用于其他常规组分冶炼、浇铸的钢坯,因其在精轧之后的空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,提高钢筋的性能。
(4)本发明采用KOCKS轧机,将机架导卫的装配、辊环导卫的更换准备以及轧辊和导卫的调整等均移至线下完成,减少轧线停机时间,提高产线运转率;采用高效步进梁式加热炉,由工业微机和PLC构成控制系统,能根据设定参数实现自动燃烧,具有生产操作灵活、钢坯加热均匀、氧化烧损少和节能等优点。
具体实施方式
以下结合实例对本发明进行详细描述,但本发明不局限于这些实施例。
实施例1:
(1)首先选取红土镍矿,600℃干燥后研磨过130目筛,得到粉末状颗粒,备用;称取除红土镍矿的其余各组分原料,混合物料,进行冶炼,全程底吹氩搅拌,过程中先充分搅拌化渣,采用复合脱氧剂进行脱氧合金化;然后在钢水中加入红土镍矿的粉末状颗粒,对钢水进行软吹操作;全保护浇铸,浇铸成钢坯;再通过高效步进梁式加热炉进行热轧;其中红土镍矿:15%、C:0.15%、Si:0.45%、Mn:1.4%、Cu:0.5%、V:0.05%、Nb:0.035%、Cr:0.07%、Mo:0.40、Ti:0.003%、Ni:0.15%、S≤0.02%、P≤0.03%,余量是Fe和不可避免的杂质;
(2)粗轧:粗轧之前开启高压水除磷;粗轧开轧温度900℃,加热段1000℃在速度为0.8m/s的轧制条件下粗轧4个道次,控制终轧温度为960℃,并控制压下率在40%以下,所述粗轧轧制中前2个道次的压延相比后续道次的压延要小。
(3)精轧:精轧前配有穿水冷却装置,控制进KOCKS的温度为900℃,采用KOCKS三辊减定径机组轧制;精轧开轧温度为950℃,精轧的轧制道次为8道,所述终轧温度为850℃;盘卷冷却,卷取后,使用冷却水对成卷进行3min的冷却;精轧最后两道次累计压下率控制在20%,精轧变形量控制为≤45%,
(4)精轧过后的钢筋进行预水冷,冷却表面温度至400℃,使得在表面的奥氏体短时间内会发生相变;其余部分快速返红至900℃以上,仍保持奥氏体组织;然后空冷至室温,在空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高,最后收集打捆。
实施例2:
(1)首先选取红土镍矿,700℃干燥后研磨过130目筛,得到粉末状颗粒,备用;称取除红土镍矿的其余各组分原料,混合物料,进行冶炼,全程底吹氩搅拌,过程中先充分搅拌化渣,采用复合脱氧剂进行脱氧合金化;然后在钢水中加入红土镍矿的粉末状颗粒,对钢水进行软吹操作;全保护浇铸,浇铸成钢坯;再通过高效步进梁式加热炉进行热轧;其中红土镍矿:20%、C:0.1%、Si:0.35%、Mn:1.4%、Cu:1.0%、V:0.03%、Nb:0.025%、Cr:0.06%、Mo:0.30、Ti:0.001%、Ni:0.08%、S≤0.02%、P≤0.03%,余量是Fe和不可避免的杂质;
(2)粗轧:粗轧之前开启高压水除磷;粗轧开轧温度950℃,加热段1100℃在速度为1.1m/s的轧制条件下粗轧5个道次,控制终轧温度为960℃,并控制压下率在40%以下,所述粗轧轧制中前2个道次的压延相比后续道次的压延要小。
(3)精轧:精轧前配有穿水冷却装置,控制进KOCKS的温度为900℃,采用KOCKS三辊减定径机组轧制;精轧开轧温度为920℃,精轧的轧制道次为8道,所述终轧温度为850℃;盘卷冷却,卷取后,使用冷却水对成卷进行5min的冷却;精轧最后两道次累计压下率控制在15%,精轧变形量控制为≤45%,
(4)精轧过后的钢筋进行预水冷,冷却表面温度至350℃,使得在表面的奥氏体短时间内会发生相变;其余部分快速返红至900℃以上,仍保持奥氏体组织;然后空冷至室温,在空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高,最后收集打捆。
实施例3:
(1)首先选取红土镍矿,800℃干燥后研磨过150目筛,得到粉末状颗粒,备用;称取除红土镍矿的其余各组分原料,混合物料,进行冶炼,全程底吹氩搅拌,过程中先充分搅拌化渣,采用复合脱氧剂进行脱氧合金化;然后在钢水中加入红土镍矿的粉末状颗粒,对钢水进行软吹操作;全保护浇铸,浇铸成钢坯;再通过高效步进梁式加热炉进行热轧;其中红土镍矿:25%,C:0.15%、Si:0.4%、Mn:1.35%、Cu:0.8%、V:0.04%、Nb:0.03%、Cr:0.08%,Mo:0.40、Ti:0.004%、Ni:0.1%,S≤0.02%、P≤0.03%,余量是Fe和不可避免的杂质;
(2)粗轧:粗轧之前开启高压水除磷;粗轧开轧温度900℃,加热段1050℃在速度为1m/s的轧制条件下粗轧6个道次,控制终轧温度为980℃,并控制压下率在40%以下,所述粗轧轧制中前2个道次的压延相比后续道次的压延要小。
(3)精轧:精轧前配有穿水冷却装置,控制进KOCKS的温度为900℃,采用KOCKS三辊减定径机组轧制;精轧开轧温度为950℃,精轧的轧制道次为10道,所述终轧温度为850-880℃;盘卷冷却,卷取后,使用冷却水对成卷进行5min的冷却;精轧最后两道次累计压下率控制在20%,精轧变形量控制为≤45%,
(4)精轧过后的钢筋进行预水冷,冷却表面温度至400℃,使得在表面的奥氏体短时间内会发生相变;其余部分快速返红至900℃以上,仍保持奥氏体组织;然后空冷至室温,在空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高,最后收集打捆。
此外,通过实施例1至实施例3获得的产品在600℃下性能测试,包括屈服强度、抗拉强度、断后伸长率和屈服强度对比,详见表1。
表1为性能测试结果
Figure BDA0002560385310000051
从表1具体实施例1-3中的力学性能数据可看出,本发明所制备的高强度耐火钢筋在室温状态下的抗拉强度达到610MPa及以上,其屈服强度平均在510MPa以上。而其屈服强度在600℃状态下与在20℃状态下的对比值达到0.61以上,显示出其优良的耐火耐高温性能。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (10)

1.一种钢筋混凝土用耐火钢筋的制备方法,其特征在于,包括以下步骤:
(1)首先选取红土镍矿,干燥后研磨过筛,得到粉末状颗粒,备用;称取其余各组分原料,混合物料,进行冶炼,全程底吹氩搅拌,过程中先充分搅拌化渣,采用复合脱氧剂进行脱氧合金化;然后在钢水中加入红土镍矿的粉末状颗粒,对钢水进行软吹操作;全保护浇铸,浇铸成钢坯;再通过热压炉进行热轧;
(2)粗轧:粗轧之前开启高压水除磷;粗轧开轧温度900~950℃,加热段1000~1100℃在速度为0.8~1.1m/s的轧制条件下粗轧4~6个道次,控制终轧温度为960~980℃,并控制压下率;
(3)精轧:精轧前配有穿水冷却装置,控制进KOCKS的温度,采用KOCKS三辊减定径机组轧制;精轧开轧温度为920~950℃,精轧的轧制道次为8~10道,所述终轧温度为850-880℃;盘卷冷却,卷取后采用缓慢冷却的方式进行冷却;所述精轧变形量控制为≤45%,
(4)精轧过后的钢筋进行预水冷,冷却表面温度至一定温度,使得在表面的奥氏体短时间内会发生相变;其余部分快速返红至900℃以上,仍保持奥氏体组织;然后空冷至室温,在空冷过程中,首先析出V的析出物,钉扎住奥氏体晶界,阻止晶粒长大,之后到达相变点,从表层到芯部先后进行了奥氏体向铁素体和珠光体的转变,实现钢筋强性能的提高,最后收集打捆。
2.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(1)中,所述耐火钢筋的的各化学成分重量百分比如下,红土镍矿:15~25%,C:0.1~0.15%、Si:0.35~0.45%、Mn:1.35~1.4%、Cu:0.5%~1.0%、V:0.03~0.05%、Nb:0.025~0.03%、Cr:0.06~0.08%、Mo:0.30~0.40、Ti:0.001~0.005%、Ni:0.08~0.15%、S≤0.02%、P≤0.03%,余量是Fe和不可避免的杂质。
3.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(1)中,所述热压炉采用高效步进梁式加热炉,由工业微机和PLC构成控制系统,能根据设定参数实现自动燃烧。
4.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(1)中,所述红土镍矿的组成成分按质量百分比计,包括水30~35%,铁30~50%,镍0.8~1.0%,铬1.2~1.6%;所述干燥的温度为600~800℃,所述过筛选用筛网的目数为130~150目。
5.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(1)中,所述软吹时间为10~20min。
6.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(2)中,所述除磷压力为12~15MPa;所述加热段的加热速率为8.0~10℃/s。
7.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(2)中,所述压下率控制在40%以下。
8.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(3)中,所述进KOCKS温度为900~920℃;所述的精轧机组的终轧速度为8~10m/s。
9.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,步骤(3)中,所述精轧最后两道次累计压下率控制在15~20%;所述缓慢冷却是冷却水对成卷进行3-5min的冷却。
10.根据权利要求1所述的钢筋混凝土用耐火钢筋的制备方法,其特征在于,所述冷却表面温度至一定温度为350~400℃。
CN202010604279.XA 2020-06-29 2020-06-29 一种钢筋混凝土用耐火钢筋的制备方法 Pending CN111575607A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010604279.XA CN111575607A (zh) 2020-06-29 2020-06-29 一种钢筋混凝土用耐火钢筋的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010604279.XA CN111575607A (zh) 2020-06-29 2020-06-29 一种钢筋混凝土用耐火钢筋的制备方法

Publications (1)

Publication Number Publication Date
CN111575607A true CN111575607A (zh) 2020-08-25

Family

ID=72124024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010604279.XA Pending CN111575607A (zh) 2020-06-29 2020-06-29 一种钢筋混凝土用耐火钢筋的制备方法

Country Status (1)

Country Link
CN (1) CN111575607A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112692053A (zh) * 2020-12-10 2021-04-23 四川德胜集团钒钛有限公司 一种钒钛钢筋的轧钢工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247930A (ja) * 2000-03-06 2001-09-14 Nkk Corp 耐震性および耐火性に優れた圧延形鋼とその製造方法
JP2001279323A (ja) * 2000-03-30 2001-10-10 Nkk Corp 材質均一性に優れた圧延耐火形鋼の製造方法
CN108103405A (zh) * 2017-12-29 2018-06-01 钢研晟华科技股份有限公司 一种高强度耐火抗震钢筋及其低成本制备方法
CN109097682A (zh) * 2018-08-20 2018-12-28 盐城市联鑫钢铁有限公司 一种高强度耐火钢筋及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247930A (ja) * 2000-03-06 2001-09-14 Nkk Corp 耐震性および耐火性に優れた圧延形鋼とその製造方法
JP2001279323A (ja) * 2000-03-30 2001-10-10 Nkk Corp 材質均一性に優れた圧延耐火形鋼の製造方法
CN108103405A (zh) * 2017-12-29 2018-06-01 钢研晟华科技股份有限公司 一种高强度耐火抗震钢筋及其低成本制备方法
CN109097682A (zh) * 2018-08-20 2018-12-28 盐城市联鑫钢铁有限公司 一种高强度耐火钢筋及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112692053A (zh) * 2020-12-10 2021-04-23 四川德胜集团钒钛有限公司 一种钒钛钢筋的轧钢工艺

Similar Documents

Publication Publication Date Title
CN102703813B (zh) 钒钛复合微合金化钢筋及其生产方法
CN111534751A (zh) 一种hrb400e超细晶高强韧直条抗震钢筋及其制备方法
CN113234995B (zh) 一种屈服强度600MPa级超厚热轧H型钢及其生产方法
CN112222572B (zh) 气体保护焊焊丝钢及其生产方法
CN102392187B (zh) 一种含Cr的管线钢X70热轧平板及生产方法
CN105624550A (zh) 核岛设备用大厚度SA738GrB钢板及生产方法
CN109097682B (zh) 一种高强度耐火钢筋及其制备方法
CN113430445A (zh) 一种FeCrNiAlMoNb高熵合金及其制备方法
CN110983190A (zh) 一种645MPa级高强抗震带肋钢筋及其生产方法
CN111570537B (zh) 一种提高钢筋强度及其断裂韧性的热轧工艺
CN101328560A (zh) 一种Ni系无缝钢管及其制造方法
CN109355567A (zh) 一种低成本q390d钢板及其制备方法
CN111172459A (zh) 一种hrb600e钒钛微合金化高强抗震热轧钢筋
CN114480806B (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN101994065A (zh) 一种550MPa级具有优良耐候性的冷轧钢板及其制备方法
CN110791714A (zh) 焊接性能良好的500MPa螺纹钢筋及生产方法
CN111187977B (zh) 一种690MPa级抗震耐蚀耐火中厚板钢及其制造方法
CN114214571A (zh) 一种铁素体不锈钢及其制备方法
CN104018063B (zh) 低合金高强度q420c中厚钢板的生产方法
CN111763886A (zh) 一种400MPa级热轧盘螺及其生产方法
CN111575607A (zh) 一种钢筋混凝土用耐火钢筋的制备方法
CN111500933A (zh) 一种稀土元素微合金化高强钢筋及其生产工艺
CN107868919A (zh) 一种耐盐酸和硫酸腐蚀钢及其制备方法
CN102851599A (zh) 一种螺旋焊管用厚壁低成本x65热轧卷板及其制造方法
CN112453052A (zh) 一种高锰无钒钢筋的新型轧制工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825

RJ01 Rejection of invention patent application after publication