CN111562373B - 支链氨基转移酶1和/或支链氨基转移酶2的应用 - Google Patents

支链氨基转移酶1和/或支链氨基转移酶2的应用 Download PDF

Info

Publication number
CN111562373B
CN111562373B CN202010492772.7A CN202010492772A CN111562373B CN 111562373 B CN111562373 B CN 111562373B CN 202010492772 A CN202010492772 A CN 202010492772A CN 111562373 B CN111562373 B CN 111562373B
Authority
CN
China
Prior art keywords
branched
chain aminotransferase
bcat1
bcat2
myocardial infarction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010492772.7A
Other languages
English (en)
Other versions
CN111562373A (zh
Inventor
李芳�
余伯阳
赖琼
寇俊萍
袁光英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202010492772.7A priority Critical patent/CN111562373B/zh
Publication of CN111562373A publication Critical patent/CN111562373A/zh
Application granted granted Critical
Publication of CN111562373B publication Critical patent/CN111562373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91188Transferases (2.) transferring nitrogenous groups (2.6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/324Coronary artery diseases, e.g. angina pectoris, myocardial infarction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了支链氨基转移酶1和/或支链氨基转移酶2的应用。本发明首次发现了急性心肌缺血模型小鼠心脏组织中支链氨基转移酶1(BCAT1)和支链氨基转移酶2(BCAT2)表达异常降低,并在氧糖剥夺诱导的心肌损伤细胞模型中也出现表达异常降低现象。分别对小鼠进行心脏原位BCAT1和BCAT2蛋白过表达,发现其可有效的缓解心肌缺血损伤。由此证明BCAT1和BCAT2可以作为筛选预防、缓解和/或治疗心肌缺血损伤药物的新型治疗靶标。

Description

支链氨基转移酶1和/或支链氨基转移酶2的应用
技术领域
本发明属于药物领域,涉及支链氨基转移酶1和/或支链氨基转移酶2的应用。
背景技术
急性心肌梗死(AMI)是一种世界范围内非常普遍的疾病,且有很高的死亡率和发病率,以心脏的氧气和血液供应减少为特征。目前心梗的诊断方法主要有高灵敏度的肌钙蛋白检测和心电图检测。高灵敏度的肌钙蛋白检测对于心梗的灵敏性更高但是特异性有所下降,因此心电图检测仍是心梗诊断的主要手段。临床治疗急性心肌梗死的方法分别包括了药物治疗,冠状动脉支架植入手术治疗,以及冠状动脉搭桥手术治疗,同时结合心脏康复治疗。而目前常用治疗药物主要包括阿司匹林、氯吡格雷(替格瑞洛)、辛伐他汀、美托洛尔等。尽管建立的急性心梗的临床诊断标准和治疗方法已被用于诊断和治愈患者,但急性心肌梗死仍然是全球范围内导致死亡和残疾的主要原因。因此,寻找更有效的靶点是早期治疗的关键所在。
支链氨基酸(BCAAs)代谢为非必需氨基酸的合成提供了必要的途径,而BCAA分解代谢途径异常常导致神经功能障碍。BCAA分解代谢的第一步是在胞浆中支链氨基转移酶1(BCAT1)或线粒体支链氨基转移酶2(BCAT2)同工酶的催化下将α-氨基酸转化为α-酮戊二酸,同时产生谷氨酸和相应的支链α-酮酸。转氨作用之后,支链α-酮酸在三羧酸循环中分解并随后氧化,为线粒体ATP合成提供大分子前体和能量。然而,BCAT1和BCAT2在急性心肌梗塞中的相关性研究未见报道。
发明内容
本发明的目的是针对现有技术的上述不足,提供支链氨基转移酶1和/或支链氨基转移酶2的应用。
本发明的另一目的是提供一种心肌梗塞损伤的药物。
本发明的又一目的是提供一种心肌梗塞损伤的诊断试剂。
本发明的目的可通过以下技术方案实现:
支链氨基转移酶1和/或支链氨基转移酶2作为靶点在制备预防、缓解和/或治疗急性心肌梗塞损伤的药物中的应用。
支链氨基转移酶1和/或支链氨基转移酶2作为靶点在筛选预防、缓解和/或治疗急性心肌梗塞损伤的药物中的应用。
一种预防、缓解和/或治疗急性心肌梗塞损伤的药物,所述的药物包含支链氨基转移酶1和/或支链氨基转移酶2,或者能够促进支链氨基转移酶1和/或支链氨基转移酶2表达的药物。
支链氨基转移酶1和/或支链氨基转移酶2作为靶点在制备急性心肌梗塞损伤的诊断试剂中的应用。
检测支链氨基转移酶1和/或支链氨基转移酶2的试剂在制备急性心肌梗塞损伤的诊断试剂中的应用。
一种急性心肌梗塞损伤的诊断试剂,包含检测支链氨基转移酶1和/或支链氨基转移酶2的试剂。
有益效果:
本发明首次发现了急性心肌梗塞模型小鼠心脏组织中支链氨基转移酶1(BCAT1)和支链氨基转移酶2(BCAT2)表达异常降低,并在氧糖剥夺诱导的心肌损伤细胞模型中也出现表达异常降低现象。分别对小鼠进行心脏原位BCAT1和BCAT2蛋白过表达,发现其可有效的缓解心肌梗塞损伤。由此证明BCAT1和BCAT2可以作为筛选预防、缓解和/或治疗心肌梗塞损伤药物的新型治疗靶标,也可作为急性心肌梗塞损伤药物的辅助诊断指标。
附图说明
图1为ODG诱导的H9c2心肌细胞损伤模型的BCAT1和BCAT2的免疫印迹分析(n=3);
图2为冠状动脉结扎24h后假手术组和AMI模型组小鼠心脏组织BCAT1和BCAT2的免疫印迹分析(n=3-4);
图3为冠状动脉结扎24h后假手术组和AMI模型组小鼠心脏组织BCAT1和BCAT2的免疫组化分析(n=3)。
图4为通过心肌内注射AAV-BCAT1(携带BCAT1基因的腺相关病毒)和AAV-BCAT2(携带BCAT2基因的腺相关病毒)以特异性心脏过表达BCAT1和BCAT2后小鼠心肌梗死区TTC染色和心肌梗死面积图示(n=5);
图5为ELISA法测定心脏特异性过表达BCAT1和BCAT2小鼠血清CK和LDH活性(n=6);
图6为心脏特异性过表达BCAT1和BCAT2小鼠心脏组织HE和Masson染色结果(n=3)(放大倍数200×,所有图中的线段表示为50μm);
图7为ELISA法测定心脏特异性过表达BCAT1和BCAT2小鼠血清CRP,cTn-I和TNF-α含量(n=6);
图8为心脏特异性性过表达BCAT1和BCAT2小鼠的超声心动图以及LVEF、LVFS、SV的统计结果(n=6);
图9为心脏特异性过表达BCAT1和BCAT2小鼠心脏组织的电子显微镜图像结果(n=3);
图10为免疫印迹分析心脏特异性过表达BCAT1和BCAT2的小鼠中BCAT1、BCAT2、mTOR和p-mTOR蛋白的表达(n=3)。
具体实施方式
以下实施例涉及的实验方法如下:
1.1动物和急性心梗模型
C57BL/6J(22-25g)小鼠购自扬州大学实验动物中心,并在标准饲养处喂养,自由饮水和摄食。所有实验程序均按照美国国立卫生研究院实验室动物的护理和使用指南进行,并得到中国药科大学动物伦理委员会的批准。急性心梗模型的建立如前所述,简言之,戊巴比妥钠腹腔注射(50mg/kg)进行麻醉,用6-0线在左冠状动脉前降支3-4mm处打结以造成心肌缺血。心肌缺血模型的成功通过心电图中ST段的升高确认。假手术组小鼠采取同样的手术,但不结扎左冠状动脉前降支。
1.2 TTC染色
结扎24小时后,迅速取出心脏,于-70℃冷冻,垂直于心脏长轴将心室组织切成5片。将心脏切片和1%TTC溶液在24孔培养板中室温孵育15分钟,然后拍照。用计算机平面测量法测量梗死面积。梗死面积大小以梗死部分占左心室总面积的百分比表示。
1.3超声心动图测量
结扎24小时后,使用由30兆赫兹换能器和Vevo 2100成像组成的超声心动图系统对心功能进行无创评估。用含2.5%异氟烷的氧气麻醉小鼠,完全麻醉后,使其背躺于加热的成像平台上,测定各组小鼠左室射血分数(EF)、左室缩短分数(FS)、每搏输出量(SV)作为心功能评价指标。
1.4组织病理检查
收集血液样本,取出心脏后用10%多聚甲醛的缓冲溶液进行固定。然后石蜡包埋,切成5μm厚的切片,分别采用苏木精-伊红染色和马松三色染色。用光学显微镜观察组织病理学变化。
1.5免疫组化
收集各组小鼠心脏并通过免疫组化分析BCAT1、BCAT2的表达情况。心脏组织用4%多聚甲醛固定,然后石蜡包埋,切成4μm的切片。用PBS脱蜡和再水化,3%过氧化氢孵育以阻断内源性过氧化物酶活性。切片取出后置于37℃封闭液封闭1小时,4℃下孵育一抗(BCAT1、BCAT2稀释比例分别为1:200、1:100、1:100)过夜。PBS洗涤后,用HRP标记的二抗(1:200)在片37℃下孵育1小时。接着用DAB孵育,苏木精复染,分段脱水后封片,于400X显微镜下观察。
1.6 BCAT1/2重组病毒的构建和转染
由吉满生物生物科技公司提供载有BCAT1和BCAT2的腺病毒和空白载体。用30号针头的注射器将病毒及空白载体直接注射到四周龄小鼠的左心室游离壁,注射两个位点,每个位点注射10μl。病毒转染两周后,进行了假手术和急性心梗造模。
1.7酶联免疫吸附试验
摘眼球法取血,血样在3500rpm下离心10min,取上清液,获得血清样本并保存在-70℃。用ELISA试剂盒(双抗体夹心酶联免疫吸附法)测定血清中肌酸激酶(CK)、乳酸脱氢酶(LDH)、C-反应蛋白(CRP)、肿瘤坏死因子α(TNF-α)和肌钙蛋白I(cTn-I)的含量,具体操作步骤参照试剂盒使用说明书。
1.8透射电镜
心脏样本切片用2.5%戊二醛固定,然后在含0.3%单宁酸的0.1M二甲胂酸钠缓冲液中于4℃下浸泡4小时。随后,在含1%四氧化锇的0.1M二甲胂酸钠缓冲液中后固定1小时,运用系列丙酮在室温下脱水,环氧树脂包埋。超薄切片用醋酸铀酰和柠檬酸铅进行染色,在LEO 906电子显微镜下进行观察。为了观察破碎的肌节,在5000X和1700X的放大倍数下,每组随机拍摄以获取数码电子显微图片。
1.9细胞培养
大鼠H9c2心肌细胞由中国科学院上海细胞生物学研究所提供。H9c2细胞在含10%FBS,100U/ml青霉素和100μg/mL链霉素的DMEM中进行培养,保持37℃,通入含5%二氧化碳的湿空气。每2天更换一次培养基,细胞密度在80%-90%时进行传代培养或实验。
1.10体外OGD损伤模型
采用氧葡萄糖剥夺(OGD)的方法模拟体外缺血损伤。在加湿的N2/CO2孵育箱中,用不含葡萄糖的DMEM进行培养,并通入94%N2,5%CO2和1%O2以制造低氧环境,温度维持在37℃。
1.11蛋白质印迹分析
用预冷的含1mM PMSF的RIPA缓冲液裂解细胞。为了测定梗塞区域边缘心脏组织的蛋白表达,将组织在RIPA缓冲液中匀浆。在4℃下以12000rpm转速离心10分钟获得蛋白质,并通过BCA法测定其浓度。将等量蛋白(35μg)加入到12.5%SDS-PAGE上,并通过电印迹转移至PVDF膜。用含3%BSA的TBS/T进行封闭,并用相应一抗(稀释比例均为1:1000)在4℃下孵育过夜。用过氧化物酶偶联的二抗以1:8000的比例稀释后进行孵育,然后用ECL试剂检测抗原-抗体复合物,通过ChemiDocTMMP System观察蛋白表达,并使用Image LabTM软件进行分析。
实施例1急性心梗显著降低BCAT1和BCAT2的表达
构建小鼠OGD诱导的心肌损伤细胞模型和急性心肌梗塞模型,通过蛋白质印迹分析两种动物模型和对照组中BCAT1和BCAT2的表达差异。
如图1所示,由OGD诱导的心肌损伤细胞模型中BCAT1和BCAT2的表达均显著降低,并且在急性心肌梗塞模型小鼠中BCAT1和BCAT2的表达也显著降低(图2-3)。
实施例2 BCAT1和BCAT2的过表可减轻急性心梗引起的心肌损伤
为了探究BCAT1和BCAT2在急性心梗中在所发挥的作用,采取心肌注射携带BCAT1和BCAT2基因的腺相关病毒的方法制造BCAT1和BCAT2的过表达。转染4周后,通过免疫组化的方法观察到50%的转染率,然后进行假手术和急性心梗造模。结果表明BCAT1和BCAT2的过表达显著减少了梗死大小(图4),降低了CK和LDH的活性(图5),并改善了转染病毒小鼠的组织病理学特征(图6)。但是对于BCAT1和BCAT2的过表对假手术组小鼠没有显著地作用。此外,BCAT1和BCAT2过表后对于OXE-R的表达没有影响。在急性心梗造模后,过表使血清中CRP,cTn-I和TNF-α的含量显著地下降(图7)。同时,超声心动图结果显示过表小鼠的LVEF、LVFS和SV均有改善(图8),表明BCAT1和BCAT2过表可改善心功能。在细胞结构层面,过表小鼠的细胞水肿有所减轻,并伴有线粒体基质维持和轻微的心肌超微结构损伤(图9)。以上结果均表明BCAT1和BCAT2可显著缓解急性心梗引起的心肌损伤。最后,我们发现,在急性心梗造成的心肌损伤中,BCAT1的过表可激活mTOR的磷酸化,而BCAT2却对mTOR的磷酸化没有显著作用(图10)。

Claims (4)

1.支链氨基转移酶1和/或支链氨基转移酶2作为靶点在制备预防、缓解和/或治疗急性心肌梗塞损伤的药物中的应用。
2.支链氨基转移酶1和/或支链氨基转移酶2作为靶点在筛选预防、缓解和/或治疗急性心肌梗塞损伤的药物中的应用。
3.支链氨基转移酶1和/或支链氨基转移酶2作为靶点在制备急性心肌梗塞损伤的诊断试剂中的应用。
4.检测支链氨基转移酶1和/或支链氨基转移酶2的试剂在制备急性心肌梗塞损伤的诊断试剂中的应用。
CN202010492772.7A 2020-06-03 2020-06-03 支链氨基转移酶1和/或支链氨基转移酶2的应用 Active CN111562373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010492772.7A CN111562373B (zh) 2020-06-03 2020-06-03 支链氨基转移酶1和/或支链氨基转移酶2的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010492772.7A CN111562373B (zh) 2020-06-03 2020-06-03 支链氨基转移酶1和/或支链氨基转移酶2的应用

Publications (2)

Publication Number Publication Date
CN111562373A CN111562373A (zh) 2020-08-21
CN111562373B true CN111562373B (zh) 2022-05-10

Family

ID=72070144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010492772.7A Active CN111562373B (zh) 2020-06-03 2020-06-03 支链氨基转移酶1和/或支链氨基转移酶2的应用

Country Status (1)

Country Link
CN (1) CN111562373B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084187A2 (en) * 2005-08-26 2007-07-26 Gene Logic, Inc. Molecular cardiotoxicology modeling
CN108187051A (zh) * 2018-01-30 2018-06-22 中国药科大学 α-L-岩藻糖苷酶及抑制剂用于制备防治心肌缺血损伤的药物的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120192298A1 (en) * 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
US20130323761A1 (en) * 2010-11-09 2013-12-05 The Regents Of The University Of California Biomarkers and therapeutic targets for treating cardiomyopathies and congestive heart failure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084187A2 (en) * 2005-08-26 2007-07-26 Gene Logic, Inc. Molecular cardiotoxicology modeling
CN108187051A (zh) * 2018-01-30 2018-06-22 中国药科大学 α-L-岩藻糖苷酶及抑制剂用于制备防治心肌缺血损伤的药物的用途

Also Published As

Publication number Publication date
CN111562373A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
Battiprolu et al. Diabetic cardiomyopathy: mechanisms and therapeutic targets
Reddy et al. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice
US20170312253A1 (en) Methods of preventing and treating cerebral amyloid angiopathy (caa) with an edaravone medicament
Wu et al. The protective effect of high mobility group protein HMGA2 in pressure overload-induced cardiac remodeling
Chang et al. Inhibition of macrophage inflammatory protein-1β improves endothelial progenitor cell function and ischemia-induced angiogenesis in diabetes
Li et al. YiQiFuMai powder injection ameliorates chronic heart failure through cross-talk between adipose tissue and cardiomyocytes via up-regulation of circulating adipokine omentin
Zhou et al. Structural and functional changes in gap junctional intercellular communication in a rat model of overactive bladder syndrome induced by partial bladder outlet obstruction
US20240016769A1 (en) Method for preparing compound or biological drug enhancing CNPase activity for treating heart diseases
US20240139129A1 (en) Novel method and agent for treating, diagnosing and detecting diabetes and complications
Zhang et al. Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSC-EXO) regulate autophagy through AMPK-ULK1 signaling pathway to ameliorate diabetic cardiomyopathy
Chen et al. Trimetazidine reduces cardiac fibrosis in rats by inhibiting NOX2-mediated endothelial-to-mesenchymal transition
CN111562373B (zh) 支链氨基转移酶1和/或支链氨基转移酶2的应用
Zhu et al. Acidic polysaccharides from Buddleja officinalis inhibit angiogenesis via the Nrf2/ARE pathway to attenuate diabetic retinopathy
Meng et al. Islet amyloid polypeptide triggers α-synuclein pathology in Parkinson’s disease
Zhu et al. Doxycycline ameliorates aggregation of collagen and atrial natriuretic peptide in murine post-infarction heart
WO2012006585A2 (en) Use of interleukin-15 to treat cardiovascular diseases
Jiang et al. Protections of transcription factor BACH2 and natural product myricetin against pathological cardiac hypertrophy and dysfunction
Rolf et al. Maladaptive hypertrophy after acute myocardial infarction positive effect of bone marrow-derived stem cell therapy on regional remodeling measured by cardiac MRI
Kim et al. Intramyocardial adipose-derived stem cell transplantation increases pericardial fat with recovery of myocardial function after acute myocardial infarction
Rutledge et al. Liraglutide protects against diastolic dysfunction and improves ventricular protein translation
Qian et al. Myeloid differential protein-2 inhibition improves diabetic cardiomyopathy via p38MAPK inhibition and AMPK pathway activation
Lin et al. Isosorbide dinitrate inhibits mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of angiotensin II type 1 receptor
CN113171460A (zh) 一种agc1抑制剂在制备治疗慢性心力衰竭药物中的应用
CN110974980A (zh) Cav3基因在治疗糖尿病心肌病方面的应用
CN116617368B (zh) Elabela在抗血管内皮细胞衰老中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant