CN111561991B - Near-field acoustic holography method based on edge filling and Fourier transform - Google Patents

Near-field acoustic holography method based on edge filling and Fourier transform Download PDF

Info

Publication number
CN111561991B
CN111561991B CN202010510380.9A CN202010510380A CN111561991B CN 111561991 B CN111561991 B CN 111561991B CN 202010510380 A CN202010510380 A CN 202010510380A CN 111561991 B CN111561991 B CN 111561991B
Authority
CN
China
Prior art keywords
virtual
holographic surface
holographic
sound pressure
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010510380.9A
Other languages
Chinese (zh)
Other versions
CN111561991A (en
Inventor
吕曜辉
汤宁
尚皓楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202010510380.9A priority Critical patent/CN111561991B/en
Publication of CN111561991A publication Critical patent/CN111561991A/en
Application granted granted Critical
Publication of CN111561991B publication Critical patent/CN111561991B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Abstract

The invention discloses a near-field acoustic holography method based on edge filling and Fourier transform, which comprises the following steps: arranging a holographic surface H in a near-field radiation area of a sound source, and measuring sound pressure at each measurement grid point; determining the size of a sound source plane, and setting a virtual holographic surface V at the holographic surface H, wherein the area of the virtual holographic surface V is larger than or equal to that of the sound source plane, and the central point of the virtual holographic surface V is coincident with the holographic surface H; filling virtual measurement points into the virtual holographic surface V, and calculating the sound pressure value of each virtual measurement point; determining reconstruction surface S coordinates (x, y, z)S) And the wave number component kx、ky、kzDetermining a transfer function; and (4) reconstructing a sound field according to the sound pressure data of the virtual holographic surface V and the transfer function, and converting the spatial domain convolution into a wave number domain product form. The invention reduces the influence of the coiling error and the edge Gibbs effect on the premise of not increasing the measurement workload and the measurement cost, and obviously improves the reconstruction result under the small holographic aperture.

Description

Near-field acoustic holography method based on edge filling and Fourier transform
Technical Field
The invention relates to an acoustic processing technology, in particular to a near-field acoustic holography method based on Fourier transform for a small-aperture holographic surface.
Background
Near-field Acoustic Holography (NAH) is an important sound source identification, positioning and sound field visualization technology, and not only can identify and position a noise source, but also can predict the radiation characteristics of the sound source in a sound field.
Among the near-field acoustic holography technologies, the near-field acoustic holography technology based on Fourier transform has the advantages of high calculation speed, simple theory, easy realization and the like, so the near-field acoustic holography technology is most widely applied to practical engineering. However, due to the influence of a winding error and an edge gibbs effect, the reconstruction effect of the near-field acoustic holography technology based on fourier transform is poor under a small holographic aperture, and in order to obtain higher reconstruction accuracy, the size of the holographic aperture is often required to be at least twice of the area of a sound source, which causes many problems in practical engineering application. On one hand, the measuring surface is large, the number of measuring points is very large, and the measuring workload and the measuring cost are greatly increased; on the other hand, the technology is difficult to be applied to large-size structures such as automobiles, airplanes, submarine shells and the like.
Therefore, the research on how to improve the reconstruction precision of the Fourier transform-based near-field acoustic holography under the small-aperture holographic surface has great significance for practical engineering application.
Disclosure of Invention
The invention aims to overcome the defects of the prior art, provides a near-field acoustic holography method based on edge filling and Fourier transform, and improves the reconstruction accuracy under a small holographic aperture.
In order to achieve the purpose, the invention adopts the following technical scheme:
a near-field acoustic holography method based on edge filling and fourier transform, comprising the steps of:
(1) arranging a holographic surface H in a near-field radiation area of a sound source, wherein the holographic surface H is a square matrix in a sound field generated by the sound source, measuring grid points are distributed on the holographic surface H, and the sound pressure at the measuring grid points is measured;
(2) determining the size of a sound source plane, and setting a virtual holographic surface V at the holographic surface H, wherein the area of the virtual holographic surface V is larger than or equal to that of the sound source plane, and the central point of the virtual holographic surface V is coincident with the holographic surface H;
(3) filling virtual measurement points into the virtual holographic surface V, and calculating the sound pressure value of each virtual measurement point;
(4) determining reconstruction surface S coordinates (x, y, z)S) And the wave number component kx、ky、kzDetermining a transfer function according to the reconstruction surface coordinates and the wave number components;
(5) and (4) reconstructing a sound field according to the sound pressure data of the virtual holographic surface V and the transfer function, and converting the spatial domain convolution into a wave number domain product form.
Further, in the step (3), the number of virtual measurement points is filled in the virtual holographic surface V in a manner that the scanning lines scan line by line, and the specific method is as follows: setting a scan parallel to the x-axisA line for scanning the virtual holographic surface by moving a distance d in the positive direction of the y-axis, and when there are four intersections between the scanning line and the boundaries of the virtual holographic surface V and the holographic surface H, x is respectively set from left to right0,x1,x2,x3At x0And x1Supplementing a virtual measuring point at x every distance d2And x3Supplementing a virtual measuring point every distance d; when the scanning line only has an intersection point with the boundary of the virtual holographic surface V, supplementing a virtual measuring point every distance d between the two intersection points; when the boundaries of the scanning line, the holographic surface H and the virtual holographic surface V have no intersection point, no treatment is carried out; where d is the spacing of the holographic surface measurement grid points.
Further, the step (3) obtains the sound pressure value of each virtual measurement point by using the sound pressure value on the holographic surface H through a berger recurrence method.
Further, the step (3) further comprises: and filtering the sound pressure data of the virtual holographic surface V by using Turkey filtering.
Further, the transfer function in the step (4) is a two-dimensional space Fourier transform G of a Green functionD(kx,kyZ) of the form:
Figure BDA0002528028400000021
i is the unit of imaginary number and z is the coordinate of the spatial point on the z-axis.
Further, the reconstruction formula in the step (5) is specifically:
Figure BDA0002528028400000022
in the formula, p (x, y, z)V) Sound pressure value, F, of virtual hologram plane Vx、FyFourier transform of the x, y axes, respectively, zV、zsRespectively, the z-axis coordinates of the virtual holographic surface and the reconstruction surface.
Compared with the prior art, the invention has the following beneficial effects:
the invention provides a near-field acoustic holography method based on edge filling and Fourier transform, which reduces the influence of a winding error and an edge Gibbs effect on the premise of not increasing the measurement workload and the measurement cost, and obviously improves the reconstruction result under a small holographic aperture. Compared with the traditional Fourier transform near-field acoustic holography algorithm, the method provided by the invention greatly reduces the requirements on the holographic aperture, and has higher reconstruction precision and application range.
Drawings
FIG. 1 is a flow chart of a near-field acoustic holography method based on edge filling and Fourier transform according to the present invention;
FIG. 2 is a schematic diagram of the process before and after the virtual measurement point is supplemented;
FIG. 3 is a schematic view of the completion of the supplement of the virtual hologram surface according to the present invention;
FIG. 4 is a time domain and frequency domain diagram of the Turkey window of the present invention;
FIG. 5 is a sound pressure reconstruction contrast diagram of a conventional Fourier transform-based near-field acoustic holography algorithm under a small aperture condition;
FIG. 6 is a sound pressure reconstruction contrast diagram under a small holographic aperture condition according to the method of the present invention.
Detailed Description
The technical scheme of the invention is further explained by combining the attached drawings.
The invention provides a near-field acoustic holography method based on edge filling and Fourier transform, which has good reconstruction precision for a small-aperture holographic surface. Referring to fig. 1, the method generally comprises an edge filling algorithm and a near-field acoustic holography algorithm based on fourier transform, wherein the edge filling algorithm fills virtual measurement points in an original holographic measurement surface, the algorithm adopts a berger recurrence method to obtain sound pressure values of the virtual measurement points, and edges are smoothed through Turkey filtering, so that a new virtual holographic surface is obtained; and (3) performing convolution conversion on the virtual holographic surface sound pressure data and the space domain of the Green function into a wave number domain product form based on a Fourier transform near-field acoustic holography algorithm to reconstruct the sound field. By utilizing the method provided by the invention, the holographic aperture does not need to be increased to reduce errors, the influence of the winding error and the edge Gibbs effect is reduced on the premise of not increasing the measurement workload and the measurement cost, and the reconstruction precision of the Fourier transform-based near-field acoustic holographic algorithm under the small-aperture holographic surface is obviously improved.
A detailed description of the steps of the near-field acoustic holography method based on edge filling and fourier transform is given below in conjunction with a simulation example.
In step 001, the present embodiment performs numerical simulation by taking 5 point sound sources as an example. The simulated point sound source has a radius of 0.01m, a frequency of 1500Hz, a vibration speed of 2.5m/s, and coordinates (-0.5, -0.5,0) (-0.5,0.5,0) (0,0,0) (0.5,0.5,0) (0.5, -0.5,0) in a spatial rectangular coordinate system. The distances between the hologram surface H and the sound source surface are 0.05m, respectively. The numerical aperture of the holographic surface, that is, the holographic aperture, is 0.5m × 0.5m, and the measurement point pitch is 0.05 m.
And step 002, for each individual point sound source, obtaining a sound pressure simulation theoretical value at the holographic surface H and the reconstruction surface S through the following point sound source radiation formula. And then overlapping the sound pressure to obtain a final theoretical value.
Figure BDA0002528028400000031
In the formula (I), the compound is shown in the specification,
Figure BDA0002528028400000032
v0、r0respectively the vibration speed and radius of the point sound source, omega and k respectively the frequency and wave number of the point sound source, i is an imaginary unit, rho0R is the distance from the point source to each point on the holographic or reconstruction surface, which is the density of the air medium. It should be understood that the above steps 001 and 002 are the calculation of the sound pressure in the holographic plane with the simulation example. In the practical application process, a holographic surface H can be arranged in a near-field radiation area of a sound source, the holographic surface H is a square matrix in a sound field generated by the sound source, measuring grid points are distributed on the holographic surface H, and a sensor is used for measuring sound pressure at the measuring grid points.
And step 003, placing a virtual holographic surface V at the position of the holographic surface H, wherein the numerical aperture of the virtual holographic surface is 1.5m multiplied by 1.5 m. In order to obtain a reconstruction value with higher precision, the numerical aperture and the number of measurement points of the reconstruction surface are the same as those of the virtual holographic surface, and the distance between the virtual holographic surface and the sound source surface is 0.03 m. In the example, the area of the sound source surface is 1m multiplied by 1m, the area of the holographic surface is 0.5m multiplied by 0.5m, the area of the sound source surface is obviously larger than that of the holographic surface, and the area of the virtual holographic surface is ensured to be larger than or equal to that of the sound source surface to be detected, so that the effectiveness of the method is verified.
Step 004, supplementing virtual measuring points on the virtual holographic surface V.
The method comprises the following specific steps:
(1) fig. 2 is a schematic diagram of a process of supplementing virtual measurement points, which is a schematic diagram before supplementation and a schematic diagram after one supplementation from left to right, wherein black dots represent original measurement points on the holographic surface H, hollow circles represent supplemented virtual measurement points, and black squares represent intersections of scanning lines with boundaries of the virtual holographic surface V and the holographic surface H. The supplementary method is as follows: a scanning line is arranged parallel to the x-axis, and the virtual holographic surface is scanned by moving a distance d (d is the distance between the measuring points of the holographic surface, and is 0.05m in the embodiment) in the positive direction of the y-axis, which is shown by a dotted line. When the scanning line has four intersections with the boundaries of the virtual holographic surface V and the holographic surface H, x is respectively set from left to right0,x1,x2,x3At x0And x1Supplementing a virtual measurement point for each distance d of the interval. For x2And x3The same process is carried out between the two, and one virtual measuring point is supplemented at every distance d. When the scanning line has an intersection only with the boundary of the virtual hologram plane V, go to (2). When the scanning line has no intersection with the boundaries of the holographic surface H and the virtual holographic surface V, no processing is performed.
(2) When the scanning line has two intersections with the virtual hologram surface V, as shown by x in FIG. 24,x5As shown, two intersection points supplement one virtual measurement point per distance d apart. And finally, replacing the point where the scanning line intersects with the virtual holographic surface with a virtual measuring point. After all the virtual measurement points are set, as shown in fig. 3, the open circles represent the supplementary virtual measurement points, and the black dots represent the original measurement points on the hologram surface H.
And 005, determining the coordinates of the virtual measurement points, and calculating the sound pressure value of each virtual measurement point.
In the method, the sound pressure value of each point on the virtual holographic surface V is reconstructed by utilizing the sound pressure value on the holographic surface H through the principle of the Berger recursion method. To obtain the point measurement values of the entire virtual hologram surface, the virtual measurement values of all rows on the virtual hologram surface are first derived in the positive and negative directions of the x-axis, and then the virtual measurement values of all columns on the virtual hologram surface are derived in the positive and negative directions of the y-axis, the virtual measurement values of the columns including the boundary filling portions that did not exist before. And setting L as the measuring point number of the original holographic surface in the x direction and S as the measuring point number of the virtual holographic surface in the x direction. Assuming that the sound pressure value of a certain line of the original holographic surface is PHrow=[p(rHrow1),p(rHrow2),···,p(rHrowL)]T. The holographic surface is expanded rightwards at first, and the right side sound pressure value is
Figure BDA0002528028400000051
The sound pressure value on the left side is
Figure BDA0002528028400000052
The sound pressure value of a certain row on the right side of the holographic surface is as follows:
Figure BDA0002528028400000053
in the formula, P is the number of the supplementary measuring points in a certain line on the right side of the original holographic surface and is less than or equal to L.
The sound pressure value of the same row on the left side of the holographic surface is as follows:
Figure BDA0002528028400000054
wherein P is the number of measurement points supplemented to a certain line on the left side of the original holographic surface and is less than or equal to L, aiThe method is a P-order autoregressive parameter obtained by fitting of a Berger algorithm, and the solving process is as follows:
is provided with
Figure BDA0002528028400000055
And
Figure BDA0002528028400000056
p-order forward and backward prediction errors, respectively, where,
Figure BDA0002528028400000057
the reflection coefficient formula is:
Figure BDA0002528028400000058
order to
Figure BDA0002528028400000059
Figure BDA00025280284000000510
ap(p)=kp
ρp=(1-|kp|2p-1
The coefficient a can be obtained1(p)=k1,ρ1=(1|k1|2)rp(0)。
By
Figure BDA00025280284000000511
Can obtain the product
Figure BDA00025280284000000512
And
Figure BDA00025280284000000513
and bring it into the reflection coefficientK can be obtained from the formula2And by analogy, all the order autoregressive parameters can be obtained until P is equal to P.
The sound pressure value calculated as described above is used as a virtual point on the virtual hologram surface. The virtual measuring point and the original measuring point on the holographic surface jointly form sound pressure data of the virtual holographic surface.
Step 006, filtering the sound pressure data of the virtual holographic surface V by using the Tukey window, thereby improving the problem that the signal-to-noise ratio of the sound pressure signal at the edge of the holographic surface is low.
As shown in fig. 4, the Tukey window is a superposition of a rectangular window and two cosine windows, and is characterized in that the main side lobe ratio of the sampled signal is high, and the side lobes converge quickly. This is used here because the constant part of the window is placed right above the original aperture, while the cosine part covers the area that fills the border. In this way, the spatial window does not affect the acoustic information and leakage is reduced.
Step 007 of determining spatial wavenumber component kx,kyAnd kzThe method comprises the following specific steps:
(1) k in the simulation example of the present invention according to the Nyquist sampling theoremx,kyThe value ranges are defined as follows:
Figure BDA0002528028400000061
Figure BDA0002528028400000062
Δ x and Δ y are sampling intervals in the x and y directions, respectively, and are determined by dividing the hologram surface size by the number of measurement points.
(2) Wave number component k in z directionzAccording to kx,kyAnd the sound source frequency k.
Figure BDA0002528028400000063
Step 008, respectively reconstructing a sound field through a Fourier transform near-field acoustic holography algorithm according to the sound pressure data of the holographic surface H and the sound pressure data of the virtual holographic surface V, and comparing the reconstruction effects of the sound field and the sound field.
Sound field reconstruction is performed according to the sound pressure data of the holographic surface H by a conventional fourier transform-based near-field acoustic holography algorithm, and the reconstruction result is shown in fig. 5, wherein the theoretical sound pressure of the reconstruction surface is calculated in step 002. The reconstruction formula based on the Fourier transform near-field acoustic holography algorithm is specifically as follows:
Figure BDA0002528028400000064
in the formula, p (x, y, z)H) Sound pressure data, transfer function G, obtained for holographic surface HD(kx,kyZ) is a two-dimensional spatial Fourier transform of the Green function,
Figure BDA0002528028400000065
Fx、Fyfourier transform of the x, y axes respectively. z is a radical ofV、zsRespectively, the z-axis coordinates of the virtual holographic surface and the reconstruction surface.
The reconstruction is carried out by using the method of the invention, the reconstruction result is shown in figure 6, the concrete steps are consistent with the reconstruction according to the holographic surface H, and only the input holographic surface sound pressure value p (x, y, z)H) Replacing the sound pressure value p (x, y, z) of the virtual holographic surface V after Tukey window filteringV) And the corresponding parameters such as the size of the reconstruction surface are changed. The concrete reconstruction formula is as follows:
Figure BDA0002528028400000071
as can be seen from fig. 5 and 6, the sound pressure reconstructed by the method of the present invention is substantially consistent with the theoretical sound pressure of the reconstruction surface, and compared with the conventional near-field acoustic holography technique of fourier transform, the reconstruction accuracy is greatly improved.
The components not specified in this embodiment can be implemented by the prior art.
The invention provides a near-field acoustic holography method based on edge filling and Fourier transform, which can be used in the fields of noise level evaluation, mechanical noise control, equipment fault diagnosis, tone quality design, loudspeaker systems, indoor acoustics and the like. For example, the position of the noise source is determined by reconstructing the sound field distribution of the whole three-dimensional space, which has great significance for effectively carrying out noise source control and noise source sound radiation characteristic research. The method greatly reduces the requirement of the traditional Fourier transform-based near-field acoustic holography algorithm on the holographic aperture, and has higher reconstruction precision and application range.
The above description is only a preferred embodiment of the present invention and there are many ways and ways to implement this solution. It should be noted that, for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be construed as the protection scope of the present invention.

Claims (4)

1. A near-field acoustic holography method based on edge filling and Fourier transform is characterized by comprising the following steps:
(1) arranging a holographic surface H in a near-field radiation area of a sound source, wherein the holographic surface H is a square matrix in a sound field generated by the sound source, measuring grid points are distributed on the holographic surface H, and the sound pressure at the measuring grid points is measured;
(2) determining the size of a sound source plane, and setting a virtual holographic surface V at the holographic surface H, wherein the area of the virtual holographic surface V is larger than or equal to that of the sound source plane, and the central point of the virtual holographic surface V is coincident with the holographic surface H;
(3) filling virtual measurement points into the virtual holographic surface V in a scanning line-by-line scanning mode, and calculating the sound pressure value of each virtual measurement point, wherein the filling of the virtual measurement points into the virtual holographic surface V in the scanning line-by-line scanning mode comprises the following steps: setting a scanning line parallel to the x-axis, scanning the virtual holographic surface by moving a distance d in the positive direction of the y-axis each time, and scanning the boundary between the scanning line and the virtual holographic surface V and the boundary between the scanning line and the holographic surface HWhen there are four intersections, let x from left to right0,x1,x2,x3At x0And x1Supplementing a virtual measuring point at x every distance d2And x3Supplementing a virtual measuring point every distance d; when the scanning line only has an intersection point with the boundary of the virtual holographic surface V, supplementing a virtual measuring point every distance d between the two intersection points; when the boundaries of the scanning line, the holographic surface H and the virtual holographic surface V have no intersection point, no treatment is carried out; wherein d is the distance between the holographic surface measuring grid points; the sound pressure value of each virtual measurement point is obtained by a Berger recurrence method by utilizing the sound pressure value on the holographic surface H;
(4) determining reconstruction surface S coordinates (x, y, z)S) And the wave number component kx、ky、kzDetermining a transfer function according to the reconstruction surface coordinates and the wave number components;
(5) and (4) reconstructing a sound field according to the sound pressure data of the virtual holographic surface V and the transfer function, and converting the spatial domain convolution into a wave number domain product form.
2. A near-field acoustic holography method based on edge filling and fourier transform as claimed in claim 1 wherein said step (3) further comprises: and filtering the sound pressure data of the virtual holographic surface V by using Turkey filtering.
3. The edge-filling and Fourier-transform-based near-field acoustic holography method according to claim 1, wherein the transfer function in step (4) is a two-dimensional spatial Fourier transform G of a Green's functionD(kx,kyZ) of the form:
Figure FDA0002899063350000011
i is the unit of imaginary number and z is the coordinate of the spatial point on the z-axis.
4. The near-field acoustic holography method based on edge filling and Fourier transform of claim 3, wherein the reconstruction formula in step (5) is specifically:
Figure FDA0002899063350000021
in the formula, p (x, y, z)V) Sound pressure value, F, of virtual hologram plane Vx、FyFourier transform of the x, y axes, respectively, zV、zsRespectively, the z-axis coordinates of the virtual holographic surface and the reconstruction surface.
CN202010510380.9A 2020-06-08 2020-06-08 Near-field acoustic holography method based on edge filling and Fourier transform Active CN111561991B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010510380.9A CN111561991B (en) 2020-06-08 2020-06-08 Near-field acoustic holography method based on edge filling and Fourier transform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010510380.9A CN111561991B (en) 2020-06-08 2020-06-08 Near-field acoustic holography method based on edge filling and Fourier transform

Publications (2)

Publication Number Publication Date
CN111561991A CN111561991A (en) 2020-08-21
CN111561991B true CN111561991B (en) 2021-03-30

Family

ID=72072584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010510380.9A Active CN111561991B (en) 2020-06-08 2020-06-08 Near-field acoustic holography method based on edge filling and Fourier transform

Country Status (1)

Country Link
CN (1) CN111561991B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385265A (en) * 1971-05-28 1975-02-26 Thomson Csf Acoustical holography system for acoustic image conversion
US3964052A (en) * 1975-03-28 1976-06-15 Holosonics, Inc. Acoustical imaging system
CN102494755A (en) * 2011-12-06 2012-06-13 合肥工业大学 Unsteady sound field separation method
CN103712684A (en) * 2013-12-25 2014-04-09 广西科技大学 Sound field rebuilding method
CN103822698A (en) * 2013-12-25 2014-05-28 广西科技大学 Sound field reconstruction method based on multi-ball domain wave superposition method
CN103929706A (en) * 2013-01-11 2014-07-16 克里佩尔有限公司 Arrangement and method for measuring the direct sound radiated by acoustical sources
CN110765673A (en) * 2019-12-30 2020-02-07 上海索辰信息科技有限公司 Noise sound field reconstruction method based on equivalent source method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125391A (en) * 2007-09-01 2008-02-20 南昌大学 Composite scanning filling method for quick forming machine
CN101539455B (en) * 2009-04-22 2010-09-01 合肥工业大学 Method for re-establishing moving sound source by adopting moving equivalent source method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385265A (en) * 1971-05-28 1975-02-26 Thomson Csf Acoustical holography system for acoustic image conversion
US3964052A (en) * 1975-03-28 1976-06-15 Holosonics, Inc. Acoustical imaging system
CN102494755A (en) * 2011-12-06 2012-06-13 合肥工业大学 Unsteady sound field separation method
CN103929706A (en) * 2013-01-11 2014-07-16 克里佩尔有限公司 Arrangement and method for measuring the direct sound radiated by acoustical sources
CN103712684A (en) * 2013-12-25 2014-04-09 广西科技大学 Sound field rebuilding method
CN103822698A (en) * 2013-12-25 2014-05-28 广西科技大学 Sound field reconstruction method based on multi-ball domain wave superposition method
CN110765673A (en) * 2019-12-30 2020-02-07 上海索辰信息科技有限公司 Noise sound field reconstruction method based on equivalent source method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈允峰等.《基于新型传感器阵列的声全息测试分析方法研究》.《传感器与微系统》.2017,第36卷(第8期), *
陶文俊.《近场声全息重建精度提高方法研究》.《中国优秀硕士学位论文全文数据库 工程科技II辑》.2019,(第2期), *

Also Published As

Publication number Publication date
CN111561991A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
Li et al. Refraction corrected transmission ultrasound computed tomography for application in breast imaging
EP2297556A1 (en) Method for reconstructing an acoustic field
CN106569191A (en) Method of acquiring target RCS by using high resolution imaging
CN102680071A (en) Noise source identification method adopting vibration speed measurement and partial near-field acoustical holography method
CN113063490B (en) Sound field separation method based on sound pressure and particle vibration velocity double-sided measurement
CN112577592B (en) Finite space plane near-field acoustic holography measurement method based on space Fourier transform
CN111707353B (en) Near-field acoustic holography technology-based revolution surface sound field reconstruction method
CN107566969A (en) A kind of enclosed environment internal low-frequency Reconstruction of Sound Field method
CN109489796A (en) A kind of underwater complex structural radiation noise source fixation and recognition based on unit radiation method and acoustic radiation forecasting procedure
CN111812581B (en) Spherical array sound source direction-of-arrival estimation method based on atomic norms
CN111968224A (en) Ship 3D scanning point cloud data processing method
CN114485917B (en) Sound field reconstruction method based on planar array scanning
CN108012214B (en) Reconstruction of Sound Field method based on the recessed penalty function of broad sense minimax
CN109164416B (en) Sound source positioning method of three-plane five-element microphone array
CN112926231B (en) Near-field acoustic holographic measurement method in limited space based on equivalent source method
CN111561991B (en) Near-field acoustic holography method based on edge filling and Fourier transform
Yang et al. Development and calibration of acoustic video camera system for moving vehicles
CN115825870A (en) Off-grid compression matching field processing sound source positioning method based on group sparsity
CN111505568B (en) Tetrahedral array target orientation estimation method based on differential optimization
CN117233266A (en) Full waveform inversion guided wave tomography method based on cyclic neural network
CN113656961A (en) Continuous compressive sensing scattering center extraction method for metal and coated target GTD model
CN111859704A (en) Non-rigid body target electromagnetic scattering modeling method under distributed multi-view angles
CN110927664B (en) Near-field sound source parameter estimation based on cyclic third-order moment and compressed sensing
CN108957454B (en) Interference phase simulation method of airborne interference synthetic aperture radar
CN111965628A (en) Method for estimating instantaneous wave parameters of vertical water outlet navigation body

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant