CN111559977B - Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines - Google Patents

Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines Download PDF

Info

Publication number
CN111559977B
CN111559977B CN202010501351.6A CN202010501351A CN111559977B CN 111559977 B CN111559977 B CN 111559977B CN 202010501351 A CN202010501351 A CN 202010501351A CN 111559977 B CN111559977 B CN 111559977B
Authority
CN
China
Prior art keywords
reaction
finished
anhydrous tetrahydrofuran
room temperature
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010501351.6A
Other languages
Chinese (zh)
Other versions
CN111559977A (en
Inventor
钱朝南
李长志
陈金东
周红娟
刘倚秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Chaoliliang Biological Technology Co ltd
Original Assignee
Guangzhou Chaoliliang Biological Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Chaoliliang Biological Technology Co ltd filed Critical Guangzhou Chaoliliang Biological Technology Co ltd
Priority to CN202010501351.6A priority Critical patent/CN111559977B/en
Publication of CN111559977A publication Critical patent/CN111559977A/en
Priority to PCT/CN2021/097805 priority patent/WO2021244559A1/en
Application granted granted Critical
Publication of CN111559977B publication Critical patent/CN111559977B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention belongs to the technical field of medicines, and particularly relates to a micromolecule compound and application thereof in preparing an anti-tumor metastasis medicine. The preparation method comprises the steps of preparing an intermediate 1 by taking p-aminophenol and tert-butyldimethylsilyl chloride as starting materials, reacting the intermediate 1 with nicotinoyl chloride hydrochloride to obtain an intermediate 2, reacting the intermediate 2 with tetrabutylammonium fluoride trihydrate to obtain an intermediate 3, reacting the intermediate 3 with o-chlorobenzyl alcohol to obtain a small molecular compound, and the small molecular compound influences the recombination of skeleton protein during tumor cell metastasis and has a remarkable inhibiting effect on tumor cell metastasis.

Description

Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines
Technical Field
The invention belongs to the technical field of medicines, and particularly relates to a micromolecule compound and application thereof in preparing an anti-tumor metastasis medicine.
Background
In addition to infiltrating and growing at the primary site and affecting adjacent organs, malignant tumors can also spread to other parts of the body by means of lymphatic vessels, blood vessels, etc., and this process is called tumor metastasis. In recent years, the prevalence and mortality of malignant tumors have been increasing year by year. Moreover, the malignant tumor is easy to metastasize, so that clinical medication, surgical treatment and the like are very difficult, and more than 90% of malignant tumor patients die of tumor metastasis. At the same time, tumor metastasis can occur in an "early" state where the primary tumor is still small. More and more evidence shows that: in the state where the primary tumor is still microscopic, distant dissemination of tumor cells has already occurred. Therefore, prevention of tumor metastasis becomes a key point for the treatment of malignant tumors.
Currently, over 200 over anticancer drugs have been approved by FDA, and cytotoxic drugs remain the basic and major approaches to anti-tumor, but there is still a lack of drugs in clinical use that can achieve the goal of high efficacy and low toxicity, with less inhibition of tumor metastasis. Cytotoxic drugs often injure normal cells while killing tumor cells, and cannot effectively inhibit tumor cell metastasis, so that clinical common tumor primary lesions are relieved, but a plurality of metastasis lesions appear, and finally the disease condition is worsened. Therefore, for modern tumor treatment, it is very important to provide a drug capable of inhibiting tumor cell metastasis.
Disclosure of Invention
The invention aims to provide a micromolecular compound and application thereof in preparing anti-tumor metastasis medicaments.
In order to achieve the purpose, the invention adopts the following technical scheme:
a kind of small molecule compound, the general formula of the small molecule compound is (I),
Figure RE-GDA0002577949780000021
wherein, R1 is selected from any one of fluorine, bromine and iodine, can be positioned at the ortho, meta and para positions of a benzene ring, and can be mono-substituted or multi-substituted;
r2 is selected from hydrogen atoms or any substituent group, can be positioned at the ortho-position, the meta-position and the para-position of pyridine, and can be mono-substituted or multi-substituted;
and R3, R4, R5 and R6 are respectively selected from a hydrogen atom or an optional substituent.
Further, the small molecule compound comprises
Figure RE-GDA0002577949780000022
The invention provides a preparation method of a small molecule compound, which comprises the following steps:
s1) synthesis of intermediate 1: under the conditions of room temperature and nitrogen protection, p-aminophenol is dissolved in anhydrous tetrahydrofuran, and anhydrous triethylamine is added and stirred; dissolving tert-butyldimethylsilyl chloride in anhydrous tetrahydrofuran, and then dropwise adding the solution into a reaction system; after dripping is finished, reacting for 10-15 h until the p-aminophenol disappears; after the reaction is finished, separating and purifying to obtain an intermediate 1;
s2) synthesis of intermediate 2: dissolving the intermediate 1 in the step S1 in anhydrous tetrahydrofuran, adding anhydrous triethylamine, stirring and cooling to 0 ℃; dissolving nicotinoyl chloride hydrochloride in anhydrous tetrahydrofuran, and then dropwise adding the nicotinoyl chloride hydrochloride into a reaction system; after dripping is finished, keeping the temperature for reaction for 25-35 min, moving to room temperature for continuous reaction until the reaction is complete; after the reaction is finished, separating and purifying to obtain an intermediate 2;
s3) synthesis of intermediate 3: at room temperature, adding the intermediate 2 obtained in the step S2 into anhydrous tetrahydrofuran, stirring, and adding tetrabutylammonium fluoride trihydrate into a reaction system in batches; reacting for 3-5 h until the intermediate 2 and tetrabutylammonium fluoride trihydrate disappear; after the reaction is finished, separating and purifying to obtain an intermediate 3;
s4) synthesis of small molecule compound: under the conditions of room temperature and nitrogen protection, sequentially adding the intermediate 3, o-chlorobenzyl alcohol and triphenylphosphine obtained in the step S3 into anhydrous tetrahydrofuran, stirring and cooling to 0 ℃; slowly dripping diisopropyl azodicarboxylate into the reaction system; after dripping, preserving the heat for 1 hour, moving to room temperature to continue reacting until the raw materials are not reduced any more; and after the reaction is finished, separating and purifying to obtain the micromolecule compound.
Further, the separation and purification steps of step S1, step S2, step S3 or step S4 are: adding water, extracting with ethyl acetate, drying the organic phase with anhydrous magnesium sulfate, concentrating to dryness, and separating and purifying by silica gel column chromatography.
Further, the small molecule compound also comprises the following compounds
Figure RE-GDA0002577949780000031
Figure RE-GDA0002577949780000041
The invention provides an application of a small molecular compound in preparing a medicine for resisting tumor metastasis.
Further, the tumors include breast cancer, lung cancer, stomach cancer, nasopharyngeal cancer, pancreatic cancer, and bladder cancer.
Further, the tumors include nasopharyngeal carcinoma caused by nasopharyngeal carcinoma cells S18 and 5-8F, breast cancer caused by MDA-MB-231, lung cancer caused by non-small cell lung cancer SBC3 and non-small cell lung cancer H1299, gastric cancer caused by MKN45, gastric cancer cell MGC803 and gastric cancer cell MGC803, pancreatic cancer caused by pancreatic cancer cell PANC-1, and bladder cancer caused by bladder cancer cell UM-UC-3, bladder cancer cell J82, bladder cancer cell T24, bladder cancer cell SW780 and bladder cancer cell BIU 87.
A small molecule compound preparation comprises a small molecule compound and pharmaceutically available auxiliary materials.
Further, the excipients include, but are not limited to, fillers, binders, lubricants, dispersants, glidants, wetting agents, disintegrants, flavors, or colors.
Further, the filler includes, but is not limited to, natural-derived high molecular polymers, saccharides, cellulose and its derivatives, starch and its derivatives, cyclodextrin and its derivatives, polymers, inorganic salts, PH adjusters.
Further, naturally derived high molecular weight polymers include, but are not limited to: shellac, peach gum, gum arabic, xanthan gum, locust bean gum, guaiac gum, furcellaran gum, pectin, carrageenan, gelatin, karaya gum, ghatti gum, bletilla gum, sesbania gum, furcellaran gum, tragacanth gum, carrageenan, tara gum, locust bean gum, guar gum, locust bean gum, tara gum, karaya gum, carageenan, alginic acid and its salts, apricot gum, agar, dextran, chitin and its derivatives, zein, casein, and the like.
Further, sugars include, but are not limited to: glucose, fructose, sucrose, brown sugar, white sugar, crystal sugar, starch sugar, maltose, verbascose, lactose, dextrin, erythritol, xylitol, fructose, mannitol, sorbitol, lactitol, galactitol, maltitol, isomalt, palatinol, isomalt, arabitol, isomaltooligosaccharide, soy oligosaccharides, galacto-oligosaccharides, oligomannose, fructo-oligosaccharides, malto-oligosaccharides, xylo-oligosaccharides, gluco-oligosaccharides, lacto-oligosaccharides, fructo-oligosaccharides, branched fructo-oligosaccharides, milk oligosaccharides, trehalose raffinose, panose, glucose-based sucrose, conjugated sugars, lactulose, lacto-oligosaccharides, lactulose, stachyose, isomerolactose, sucrose, cello-oligosaccharides, lacto-sucrose oligosaccharides, hydrogenated starch hydrolysates, Arabinose, xylose, pluronic, etc.
Further, cellulose and its derivatives include, but are not limited to: low-substituted hydroxypropyl cellulose, methyl cellulose, sodium carboxymethyl cellulose, cellulose acetate phthalate, microcrystalline cellulose, ethyl methyl cellulose, croscarmellose sodium, cellulose acetate, and the like.
Further, starches and derivatives thereof include, but are not limited to: modified starch, carboxymethyl starch, hydroxymethyl starch, hydroxy starch propionate, pregelatinized starch, dextrin, etc.
Further, cyclodextrins and their derivatives include, but are not limited to: cyclodextrins, methyl cyclodextrins, hydroxypropyl cyclodextrins, hydroxyethyl cyclodextrins, polymeric cyclodextrins, ethyl cyclodextrins, branched cyclodextrins, and the like.
Further, polymers include, but are not limited to: polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl butyral, styrene-vinylpyridine copolymers, acrylic resins, crosslinked polyacrylic resins (carbomers), crospovidone, povidone, polyvinyl acetate, methyl acrylate copolymers, polylactic acid, polyamino acids, polycarboxyacetic acid, polyethylene glycol, polyethers, ion exchange resins, and the like.
Further, inorganic materials include, but are not limited to: talc, calcium carbonate, magnesium carbonate, calcium sulfate, calcium hydrogen phosphate, calcium phosphate, magnesium oxide, aluminum hydroxide, silica, activated carbon, activated clay, alumina, sodium chloride, titanium dioxide, and the like.
Further, PH adjusting agents include, but are not limited to: sodium bicarbonate, potassium bicarbonate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, citric acid, tartaric acid, succinic acid, fumaric acid, adipic acid, malic acid, etc.
Further, binders include, but are not limited to: distilled water and ethanol.
Further, lubricants include, but are not limited to: magnesium stearate, stearic acid.
Further, dispersants include, but are not limited to: water-soluble dispersants and oily dispersants.
Further, glidants include, but are not limited to: silica or talc.
Further, disintegrants include, but are not limited to: low-substituted hydroxypropyl cellulose, croscarmellose sodium, sodium carboxymethyl starch, and crospovidone.
Further, the dosage form is an oral dosage form.
Further, the oral dosage form is: tablets, hard or soft capsules, lozenges, dripping pills, pellets, aqueous or oily suspensions, emulsions, dispersible powders or granules, oral liquids, syrups or elixirs.
Further, the dosage form is an injection.
Further, the injection is in the form of: sterile aqueous or oily solutions, sterile powders, liposomes, emulsions or microcapsules.
Compared with the prior art, the invention has the following beneficial effects:
(1) the preparation method comprises the steps of preparing an intermediate 1 by taking p-aminophenol and tert-butyldimethylsilyl chloride as starting materials, reacting the intermediate 1 with nicotinoyl chloride hydrochloride to obtain an intermediate 2, reacting the intermediate 2 with tetrabutylammonium fluoride trihydrate to obtain an intermediate 3, and reacting the intermediate 3 with o-chlorobenzyl alcohol to obtain a small molecular compound, wherein the yield is 60%.
(2) The small molecular compound has an IC50 value of 41.18 mu g/mL for breast cancer cells MDA-MB-231, an IC50 value of 32.3 mu g/mL for lung cancer cells H1299, an IC50 value of 21.94 mu g/mL for stomach cancer MGC803, and an IC50 value of 26.92 mu g/mL for nasopharyngeal cancer cells S18. Meanwhile, experiments show that the small molecular compound can remarkably inhibit the migration and invasion of tumor cells represented by breast cancer cells MDA-MB-231, lung cancer cells H1299, stomach cancer MGC803 and nasopharyngeal cancer cells S18, and the small molecular compound is presumed to realize the effect of resisting tumor metastasis by destroying the recombination of tumor cytoskeletal proteins.
Drawings
FIG. 1 is a mass spectrum of a small molecule compound of the present invention.
FIG. 2 shows the growth of different tumor cells by the small molecule compounds of the present invention.
FIG. 3 is a scratch test determination of the small molecule compound of the present invention on breast cancer cells MDA-MB-231.
FIG. 4 shows the effect of the small molecule compounds of the present invention on the inhibition of in vitro invasion of breast cancer cells MDA-MB-231.
FIG. 5 shows the inhibitory effect of the small molecule compounds of the present invention on the invasion of non-small cell lung cancer cell H1299 in vitro.
Fig. 6 shows the inhibitory effect of small molecule compounds of the present invention on MGC803 invasion in vitro in gastric cancer.
FIG. 7 shows the inhibitory effect of small molecule compounds of the present invention on the invasion of nasopharyngeal carcinoma cells S18 in vitro.
In the figure, inhibition rate is inhibition rate, concentration is concentration, invaded cell per filtered is invaded cell, Negative is Negative control, Positive is Positive control, and C09 is small molecule compound.
Detailed Description
The present invention will be described in further detail with reference to the following examples. It should not be understood that the scope of the above-described subject matter of the present invention is limited to the following examples.
Preparation of small molecule compounds
The chemical reaction route is as follows:
Figure RE-GDA0002577949780000081
the method specifically comprises the following steps:
s1) synthesis of intermediate 1: under the condition of room temperature and nitrogen protection, p-aminophenol (1.0g,1.0eq) is dissolved in 20mL of anhydrous tetrahydrofuran, and anhydrous triethylamine (1.9g,2.0eq) is added and stirred; dissolving tert-butyldimethylchlorosilane (1.6g,1.2eq) in 10mL of anhydrous tetrahydrofuran, and then dropwise adding the solution into a reaction system; after dripping, reacting for 12 hours until the p-aminophenol disappears; after completion of the reaction, water was added, extraction was performed 3 times with ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate, concentrated to dryness, and then separated and purified by silica gel column chromatography to obtain intermediate 1(1.7g, Yield 81%);
s2) synthesis of intermediate 2: dissolving intermediate 1(1.7g,1.0eq) of step S1 in 20mL of anhydrous tetrahydrofuran, adding anhydrous triethylamine (2.3g,3.0eq), stirring and cooling to 0 ℃; dissolving nicotinoyl chloride hydrochloride (1.3g,1.0eq) in 10mL of anhydrous tetrahydrofuran, and then dropwise adding the solution into a reaction system; after dripping, keeping the temperature for reaction for 30min, moving to room temperature and continuing the reaction until the reaction is complete; after the reaction was completed, water was added, extraction was performed 3 times with ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate, concentrated to dryness, and then separated and purified by silica gel column chromatography to obtain intermediate 2(1.0g, Yield 70%);
s3) synthesis of intermediate 3: adding the intermediate 2(1.0g,1.0eq) obtained in the step S2 into 15mL of anhydrous tetrahydrofuran at room temperature, stirring, and adding tetrabutylammonium fluoride trihydrate (1.9g,2.0eq) into the reaction system in batches; reacting for 4 hours until the intermediate 2 and tetrabutylammonium fluoride trihydrate disappear; after the reaction was completed, water was added, extraction was performed 3 times with ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate, concentrated to dryness, and then separated and purified by silica gel column chromatography to obtain intermediate 3(0.6g, Yield 90%);
s4) synthesis of small molecule compound: under the conditions of room temperature and nitrogen protection, sequentially adding the intermediate 3(0.6g,1.0eq), o-chlorobenzyl alcohol (0.4g,1.1eq) and triphenylphosphine (1.1g,1.5eq) of the step S3 into 20mL of anhydrous tetrahydrofuran, stirring and cooling to 0 ℃; further, diisopropyl azodicarboxylate (0.85g,1.5eq) was slowly added dropwise to the reaction system; after dripping, preserving the heat for 1 hour, moving to room temperature and continuing to turn back until the raw materials are not reduced any more; after the reaction was completed, water was added, extraction was performed 3 times with ethyl acetate, the organic phase was dried over anhydrous magnesium sulfate, concentrated to dryness, and then separated and purified by silica gel column chromatography to obtain a small molecule compound (0.58g, Yield ═ 60%) having a mass spectrum of fig. 1.
Experiment I, MTT measures the influence of drugs on cell growth
1.1 subjects: breast cancer cells MDA-MB-231; lung cancer cell H1299; gastric cancer MGC803, nasopharyngeal carcinoma cells S18.
1.2 Experimental drugs: and (3) a small molecule compound, namely compound C09.
1.3 Experimental methods: plate paving: cells in log phase were collected, cell suspension concentration was adjusted, 90ul was added to each well, and plating was performed to achieve a cell density of 10000 per well. Adding medicine: 5% CO2Incubate at 37 ℃ until the cell monolayer is confluent at the bottom of the well (96-well flat bottom plate) and add the drug in a concentration gradient. 5% CO2Incubation was carried out at 37 ℃ for 72 hours and observed under an inverted microscope. 20ul of MTT solution (5mg/ml, i.e.0.5% MTT) was added to each well and incubation was continued for 4 h. The culture was terminated and the culture medium in the wells was carefully aspirated. 150ul of dimethyl sulfoxide was added to each well, and the mixture was shaken on a shaker at a low speed for 10min to dissolve the crystals sufficiently. The absorbance of each well was measured at the ELISA OD490nm to calculate the relative viability of the cells. In the experiment, a culture medium without cells is used as a blank control, and 20ul of MTT solution is added into each well to be used as an experiment control group and an experiment group containing samples.
1.4 relative survival rate ═ 100% (experimental OD-blank OD)/(control OD-blank OD) ×
The results show that: as can be seen from FIG. 2, the effect of compound C09 on the growth of breast cancer cells MDA-MB-231, lung cancer cells H1299, gastric cancer MGC803 and nasopharyngeal cancer cells S18 was found, while the IC50 of compound C09 on breast cancer cells MDA-MB-231, lung cancer cells H1299, gastric cancer MGC803 and nasopharyngeal cancer cells S18 was 41.18. mu.g/ml, 32.3. mu.g/ml, 21.94. mu.g/ml and 26.92. mu.g/ml, respectively.
Second, cell scratch test for determining influence of drug on cell migration ability
2.1 subjects: breast cancer cells MDA-MB-231.
2.2 Experimental drugs: and (3) a small molecule compound, namely compound C09.
2.3 Experimental methods: a marker pen is used for fine heads at the back of a 6-hole plate, the fine heads are matched with a ruler, lines are uniformly drawn, the lines penetrate through holes approximately every 0.5-1cm, and generally three lines are drawn and are sequentially named as lines a, b and c. The line b crosses the midpoint, and the other two lines are equally spaced on both sides. Six-well plate, each with 2ml, different cell plate concentration, such as S18, each with 5X 105 cells, each with 2 multiple wells, for about 24h culture. The cell number is preferably 70-80% of the cell number after the cell is adhered to the wall overnight, and the cell number is properly adjusted. Opening the cover of the orifice plate, sucking off the old culture medium, putting a ruler vertical to the b-line frame on the orifice plate, using 200ul of gun head to cling to the ruler to move uniformly to manufacture a cell scribing line, and likewise, scribing two parallel lines at equal intervals on two sides of the line, which are respectively named as a line 1 and a line 2. The cells were washed 3 times with sterile 1 × PBS, and after the scraped cells were removed, serum medium was added and placed in a 37 ℃ 5% CO2 incubator. Samples were taken at 0, 24 hours and photographed.
The results show that: as can be seen from FIG. 3, compound C09 shows significant MDA-MB-231 inhibition of breast cancer cells after 24h of treatment.
Experiment III, Transwell invasion experiment for determining influence of drug on cell invasion capacity
3.1 subjects: breast cancer cells MDA-MB-231; lung cancer cell H1299; gastric cancer MGC803, nasopharyngeal carcinoma cells S18.
3.2 Experimental drugs: and (3) a small molecule compound, namely compound C09.
3.3 Experimental methods: coating of basement Membrane (4 ℃ procedure) Matrigel (10mg/ml to 250. mu.g/ml) was diluted with serum-free cell culture medium DMEM at 4 ℃. When in use, 50. mu.l of Matrigel was added to 1950. mu.l of DMEM in an EP tube. 100 μ l of the diluted gel was slowly added dropwise to the upper chamber of a 24-well transwell and incubated in an incubator for 1 hour. Preparing a cell suspension; digesting the cells, centrifuging after terminating digestion, discarding the culture solution, washing with PBS for 1 time, resuspending in a serum-free culture medium, and adjusting the cell density to a proper concentration. Inoculating cells; 200. mu.l of the cell suspension was added to the upper chamber of a Transwell and 2. mu.l of 10% BSA was added. Immediately below the 24-well plate, 800. mu.l of medium containing 10% FBS was typically added. And culturing for 24h conventionally. Staining cells; the Transwell chamber was removed, the medium in the well was discarded, the cells in the upper chamber were wiped off with a cotton swab and placed in a clean 24-well plate. Wash 1 time with calcium-free 1 × PBS, fix with methanol for 30min, and air dry the chamber in a fume hood. 0.1% crystal violet stain for 20min, gently wipe off the upper non-migrated cells with a cotton swab, wash 1 time with PBS. The results were counted, observed under a 5X microscope, and cells were observed under a 10X microscope at random in five visual fields.
The results show that: as can be seen from FIGS. 4 to 7, compound C09 may affect the generation and development of nasopharyngeal carcinoma cells S18, breast cancer cells MDA-MB-231, non-small cell lung cancer H1299, and gastric cancer MGC803 by affecting their invasive ability.
The foregoing embodiments are merely illustrative of the principles and utilities of the present invention and are not intended to limit the invention. Any person skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Accordingly, it is intended that all equivalent modifications or changes which can be made by those skilled in the art without departing from the spirit and technical spirit of the present invention be covered by the claims of the present invention.

Claims (2)

1. The application of a small molecular compound in preparing anti-tumor metastasis medicaments is characterized in that the small molecular compound is
Figure FDA0003038830470000011
The preparation method of the small molecule compound comprises the following steps:
s1) synthesis of intermediate 1: under the conditions of room temperature and nitrogen protection, p-aminophenol is dissolved in anhydrous tetrahydrofuran, and anhydrous triethylamine is added and stirred; dissolving tert-butyldimethylsilyl chloride in anhydrous tetrahydrofuran, and then dropwise adding the solution into a reaction system; after dripping is finished, reacting for 10-15 h until the p-aminophenol disappears; after the reaction is finished, separating and purifying to obtain an intermediate 1;
s2) synthesis of intermediate 2: dissolving the intermediate 1 in the step S1 in anhydrous tetrahydrofuran, adding anhydrous triethylamine, stirring and cooling to 0 ℃; dissolving nicotinoyl chloride hydrochloride in anhydrous tetrahydrofuran, and then dropwise adding the nicotinoyl chloride hydrochloride into a reaction system; after dripping is finished, keeping the temperature for reaction for 25-35 min, moving to room temperature for continuous reaction until the reaction is complete; after the reaction is finished, separating and purifying to obtain an intermediate 2;
s3) synthesis of intermediate 3: at room temperature, adding the intermediate 2 obtained in the step S2 into anhydrous tetrahydrofuran, stirring, and adding tetrabutylammonium fluoride trihydrate into a reaction system in batches; reacting for 3-5 h until the intermediate 2 and tetrabutylammonium fluoride trihydrate disappear; after the reaction is finished, separating and purifying to obtain an intermediate 3;
s4) synthesis of small molecule compound: under the conditions of room temperature and nitrogen protection, sequentially adding the intermediate 3, o-chlorobenzyl alcohol and triphenylphosphine obtained in the step S3 into anhydrous tetrahydrofuran, stirring and cooling to 0 ℃; slowly dripping diisopropyl azodicarboxylate into the reaction system; after dripping, preserving the heat for 1 hour, moving to room temperature to continue reacting until the raw materials are not reduced any more; after the reaction is finished, separating and purifying to obtain a small molecular compound;
the tumor is gastric cancer and nasopharyngeal carcinoma.
2. The use of claim 1, wherein the separation and purification steps of step S1, step S2, step S3 or step S4 are: adding water, extracting with ethyl acetate, drying the organic phase with anhydrous magnesium sulfate, concentrating to dryness, and separating and purifying by silica gel column chromatography.
CN202010501351.6A 2020-06-04 2020-06-04 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines Active CN111559977B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010501351.6A CN111559977B (en) 2020-06-04 2020-06-04 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines
PCT/CN2021/097805 WO2021244559A1 (en) 2020-06-04 2021-06-02 Small molecular compound and use thereof in preparing anti-tumor metastasis drugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010501351.6A CN111559977B (en) 2020-06-04 2020-06-04 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines

Publications (2)

Publication Number Publication Date
CN111559977A CN111559977A (en) 2020-08-21
CN111559977B true CN111559977B (en) 2021-06-22

Family

ID=72070046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010501351.6A Active CN111559977B (en) 2020-06-04 2020-06-04 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines

Country Status (2)

Country Link
CN (1) CN111559977B (en)
WO (1) WO2021244559A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559977B (en) * 2020-06-04 2021-06-22 广州市朝利良生物科技有限公司 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines
CN113209112B (en) * 2021-02-06 2021-12-24 广州市朝利良生物科技有限公司 Novel coronavirus resistant medicine based on ACE2 and S protein binding target and application thereof
CN113480479B (en) * 2021-08-12 2022-08-02 上海爱博医药科技有限公司 Urea multi-target tyrosine kinase inhibitor and medical application thereof
CN113952295B (en) * 2021-11-10 2022-09-30 广州市朝利良生物科技有限公司 Anti-tumor metastasis medicine and application thereof
CN114044753B (en) * 2021-11-10 2022-08-09 广州市朝利良生物科技有限公司 Small molecular compound with anti-tumor metastasis function and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290883A (en) * 2005-03-17 2006-10-26 Nippon Nohyaku Co Ltd Substituted heterocycle carboxylic anilide derivative, its intermediate and chemical for agriculture and horticulture and method for using the same
WO2010007756A1 (en) * 2008-07-14 2010-01-21 塩野義製薬株式会社 Pyridine derivative having ttk inhibition activity
WO2011026107A1 (en) * 2009-08-31 2011-03-03 University Of Notre Dame Du Lac Phthalanilate compounds and methods of use
CN103097353A (en) * 2010-05-06 2013-05-08 印蔻真治疗公司 Novel immunomodulator and anti inflammatory compounds
CN106674098A (en) * 2016-12-23 2017-05-17 中国医科大学 N-(3-cyano-4-alkoxyphenyl) pyridine carboxamide compound and application thereof
CN107602498A (en) * 2017-07-26 2018-01-19 华南理工大学 A kind of fluorescence probe and preparation method thereof with detected in tyrosinase in application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2397493A1 (en) * 2000-01-27 2001-08-02 Cytovia, Inc. Substituted nicotinamides and analogs as activators of caspases and inducers of apoptosis and the use thereof
CN102766068A (en) * 2012-08-07 2012-11-07 安徽中医学院 Halogenated salicyloyl arylamine compounds as well as preparation method and application thereof
WO2016210289A1 (en) * 2015-06-24 2016-12-29 Duke University Chemical modulators of signaling pathways and therapeutic use
CN111559977B (en) * 2020-06-04 2021-06-22 广州市朝利良生物科技有限公司 Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290883A (en) * 2005-03-17 2006-10-26 Nippon Nohyaku Co Ltd Substituted heterocycle carboxylic anilide derivative, its intermediate and chemical for agriculture and horticulture and method for using the same
WO2010007756A1 (en) * 2008-07-14 2010-01-21 塩野義製薬株式会社 Pyridine derivative having ttk inhibition activity
WO2011026107A1 (en) * 2009-08-31 2011-03-03 University Of Notre Dame Du Lac Phthalanilate compounds and methods of use
CN103097353A (en) * 2010-05-06 2013-05-08 印蔻真治疗公司 Novel immunomodulator and anti inflammatory compounds
CN106674098A (en) * 2016-12-23 2017-05-17 中国医科大学 N-(3-cyano-4-alkoxyphenyl) pyridine carboxamide compound and application thereof
CN107602498A (en) * 2017-07-26 2018-01-19 华南理工大学 A kind of fluorescence probe and preparation method thereof with detected in tyrosinase in application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Convenient Synthetic Approach to 2,4-Disubstituted Quinazolines;Serena Ferrini et al.;《ORGANIC LETTERS》;20060712;第9卷(第1期);第69-72页 *
Solid-Phase Synthesis of Structurally Diverse 1.4- Benzodiazepine Derivatives Using the Stille Coupling Reaction;Matthew J. Plunkett et al.;《J.Am.Chem.Soc.》;19951231;第117卷;第3306-3307页 *
STN检索报告;来源于ChemBridge Corporation等提供的产品目录;《数据库REGISTRY(在线)》;20040608;第1-7页 *
Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma;Qingqing Zhou et al.;《J.Med.Chem.》;20170216;第60卷;第2052-2070页 *
来源于ChemBridge Corporation等提供的产品目录.STN检索报告.《数据库REGISTRY(在线)》.2004,第1-7页. *

Also Published As

Publication number Publication date
CN111559977A (en) 2020-08-21
WO2021244559A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
CN111559977B (en) Micromolecular compound and application thereof in preparation of anti-tumor metastasis medicines
ES2215902T3 (en) DERIVATIVES OF ACIL-FENIL-UREAS, PROCEDURE FOR ITS PREPARATION AND ITS USE AS MEDICATIONS.
JP5752114B2 (en) Thiophene derivative
CN105153122B (en) [(indol-3-yl) pyrimidine -2-base] aminophenyl propyl- 2- alkenylamide derivatives and salt, preparation method, application
WO2019042444A1 (en) Compound for inhibiting and degrading tyrosine protein kinase alk
US10189812B2 (en) Bi-benzyl isoquinoline derivative, preparation method and use thereof in hepatopathy treatment and prevention
CN102510863B (en) Pyrazole derivatives
CN111646933B (en) Application of micromolecular compound in preparation of anti-tumor metastasis medicine
JP2015519389A (en) N-substituted second generation derivatives of the antifungal antibiotic amphotericin B and methods for their preparation and application
ES2772682T3 (en) Imidazooxazine crystal, pharmaceutical composition containing said crystal, and method of producing said crystal
WO2017028798A1 (en) Pyridazinone compound, preparation method, pharmaceutical composition and use thereof
WO2017045583A1 (en) Composition rich in single isomer nuc-1031 and preparation method and use thereof
TW201030003A (en) Hetero cyclic compound
CN111732575B (en) N- (3- (pyrimidine-2-yl) phenyl) benzene sulfonamide derivative, pharmaceutical composition, preparation method and application
BR112016018371B1 (en) Indolone DERIVATIVES SUBSTITUTED WITH PYRROL, COMPOSITION INCLUDING THEM AND USE THEREOF
WO2018019188A1 (en) Polymorph of nucleoside phosphoramidate prodrug and preparation method therefor
WO2009030106A1 (en) 7-(4-oximino-3-amino-1-piperidyl)quinolinecarboxylic acid derivatives and their preparation methods
CN107129514A (en) Erythromycin A ketolide antibiotics derivative, its preparation method and application
TWI449528B (en) 3'-ethynylcytidine derivative
CN106397408A (en) 5-methyl-2(1H) pyridone derivative and preparation method and application thereof
CN110922450B (en) PSMA activated antitumor prodrug CPT-X and preparation method and application thereof
CN113952295B (en) Anti-tumor metastasis medicine and application thereof
CN112939895B (en) Glycyl amine derivative and preparation method and application thereof
CN114044753B (en) Small molecular compound with anti-tumor metastasis function and preparation method thereof
CN115197130B (en) Aryl urea derivative and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant