CN111556469A - Computing system and computing method for artificial intelligence edge - Google Patents

Computing system and computing method for artificial intelligence edge Download PDF

Info

Publication number
CN111556469A
CN111556469A CN202010268728.8A CN202010268728A CN111556469A CN 111556469 A CN111556469 A CN 111556469A CN 202010268728 A CN202010268728 A CN 202010268728A CN 111556469 A CN111556469 A CN 111556469A
Authority
CN
China
Prior art keywords
data
unit
edge
collection
computing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010268728.8A
Other languages
Chinese (zh)
Inventor
陈瑞
冷迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Power Supply Bureau Co Ltd
Original Assignee
Shenzhen Power Supply Bureau Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Power Supply Bureau Co Ltd filed Critical Shenzhen Power Supply Bureau Co Ltd
Priority to CN202010268728.8A priority Critical patent/CN111556469A/en
Publication of CN111556469A publication Critical patent/CN111556469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/32Monitoring with visual or acoustical indication of the functioning of the machine
    • G06F11/324Display of status information
    • G06F11/327Alarm or error message display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本发明涉及一种人工智能边缘的计算系统,其包括有至少一个物联网设备、边缘采集计算设备和移动边缘服务器;其中,所述物联网设备用于收集环境信息,并将所述环境信息转换成所述待处理数据;所述边缘采集计算设备用于获取接入所述边缘采集计算设备的多个物联网设备采集的监控特征数据,以预测所述指定区域是否发生异常;所述移动边缘服务器用于数据采集和数据整理,其中,所述移动边缘服务器包括显示单元、存储单元、无线网络接口单元、判断模块以及报警指令生成单元。本发明还公开了相应的方法。实施本发明,可以提高数据处理效率,减轻计算的压力和降低数据延时,并能提高边缘的计算的安全性。

Figure 202010268728

The present invention relates to an artificial intelligence edge computing system, which includes at least one Internet of Things device, an edge collection computing device and a mobile edge server; wherein, the Internet of Things device is used to collect environmental information and convert the environmental information into the data to be processed; the edge collection computing device is used to obtain monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, so as to predict whether an abnormality occurs in the designated area; the mobile edge The server is used for data collection and data sorting, wherein the mobile edge server includes a display unit, a storage unit, a wireless network interface unit, a judgment module and an alarm instruction generation unit. The invention also discloses a corresponding method. By implementing the present invention, the data processing efficiency can be improved, the calculation pressure can be reduced, the data delay can be reduced, and the edge computing security can be improved.

Figure 202010268728

Description

一种人工智能边缘的计算系统和计算方法An artificial intelligence edge computing system and computing method

技术领域technical field

本发明涉及边缘计算的数据处理领域,具体涉及一种人工智能边缘的计算系统和计算方法。The invention relates to the data processing field of edge computing, in particular to an artificial intelligence edge computing system and computing method.

背景技术Background technique

物联网中的前端数据采集点(即边缘设备),最初仅具有数据采集、传递的功能,由于目前传感器集成度高,边缘设备获取的数据量增大,客户所在的边界侧对计算结果的需求速度也在不断提升,这就促使了边缘计算理论的诞生。The front-end data collection point (ie edge device) in the Internet of Things initially only has the function of data collection and transmission. Due to the current high integration of sensors, the amount of data acquired by edge devices increases, and the customer's border side needs to calculate results. The speed is also increasing, which has prompted the birth of edge computing theory.

边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,可以满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算是相对于云计算而言的,其本质上是一种分布式计算。Edge computing refers to the use of an open platform that integrates network, computing, storage, and application core capabilities on the side close to the source of objects or data to provide the most recent services nearby. Its applications are initiated on the edge side to generate faster network service responses, which can meet the basic needs of the industry in real-time business, application intelligence, security and privacy protection. Edge computing is relative to cloud computing, which is essentially a distributed computing.

边缘计算理论涉及到大量的数据处理,且对数据处理的要求越来越高,而目前一般的数据处理采用的是云计算,具体的云计算是通过网络将所有的数据都通过各节点服务器后再上传到中心服务器处理的方式来进行的。The theory of edge computing involves a large amount of data processing, and the requirements for data processing are getting higher and higher. At present, the general data processing adopts cloud computing. The specific cloud computing is to pass all the data through the network through each node server. Then upload it to the central server for processing.

传统的边缘计算是一种在物理上靠近数据生成的位置并处理数据的方法,如物联网的各个感知节点,有些感知节点不仅负责采集、传递数据,还实现部分数据处理、结果输出的功能。但由于还没有相应的边缘计算行业标准、规范和协议,所提供的边缘计算方案缺少技术和产品共性,难以通用于工业通信,即在一定程度上尚不能减轻云端计算的压力以及解决数据延时问题。Traditional edge computing is a method of physically approaching the location where data is generated and processing data, such as various sensing nodes in the Internet of Things. Some sensing nodes are not only responsible for collecting and transmitting data, but also realize some functions of data processing and result output. However, due to the lack of corresponding edge computing industry standards, specifications and protocols, the provided edge computing solutions lack technical and product commonality, and are difficult to be universally used in industrial communications, that is, to a certain extent, it cannot reduce the pressure of cloud computing and solve data delays. question.

发明内容SUMMARY OF THE INVENTION

为了解决上述现有技术中存在的问题,本发明提供一种人工智能边缘的计算系统和计算方法,可以提高数据处理效率,减轻计算的压力和降低数据延时,并能提高边缘的计算的安全性。In order to solve the above-mentioned problems in the prior art, the present invention provides an artificial intelligence edge computing system and computing method, which can improve data processing efficiency, reduce computing pressure and data delay, and improve the security of edge computing sex.

为解决上述技术问题,本发明的一方面提供一种人工智能边缘的计算系统,其包括有至少一个物联网设备、边缘采集计算设备和移动边缘服务器;其中,In order to solve the above technical problems, one aspect of the present invention provides an artificial intelligence edge computing system, which includes at least one Internet of Things device, an edge collection computing device and a mobile edge server; wherein,

所述物联网设备用于收集环境信息,并将所述环境信息转换成所述待处理数据;The IoT device is used to collect environmental information and convert the environmental information into the data to be processed;

所述边缘采集计算设备用于获取接入所述边缘采集计算设备的多个物联网设备采集的监控特征数据,以预测所述指定区域是否发生异常;其中,所述边缘采集计算设备包括有AIOS操作系统单元、数据采集单元、数据转换单元、数据清洗单元以及数据聚合计算单元;The edge collection computing device is used to obtain monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, so as to predict whether an abnormality occurs in the designated area; wherein the edge collection computing device includes AIOS Operating system unit, data acquisition unit, data conversion unit, data cleaning unit and data aggregation calculation unit;

所述移动边缘服务器用于数据采集和数据整理,其中,所述移动边缘服务器包括显示单元、存储单元、无线网络接口单元、判断模块以及报警指令生成单元。The mobile edge server is used for data collection and data sorting, wherein the mobile edge server includes a display unit, a storage unit, a wireless network interface unit, a judgment module, and an alarm instruction generation unit.

优选地,所述数据采集单元用于对照度、温度、湿度、PM2.5环境数据的采集,数据采集单元采集到的数据在归类处理后被送到数据转换单元。Preferably, the data acquisition unit is used for the acquisition of contrast, temperature, humidity, and PM2.5 environmental data, and the data collected by the data acquisition unit is sent to the data conversion unit after classification processing.

数据转换单元用于接收自数据采集单元的数据进行格式转换,并发送给数据清洗单元;The data conversion unit is used for format conversion of the data received from the data acquisition unit, and sent to the data cleaning unit;

数据清洗单元用于对接收自数据转换单元的数据进行数据清洗,并发送给数据聚合计算单元;The data cleaning unit is used to clean the data received from the data conversion unit, and send it to the data aggregation computing unit;

数据聚合计算单元用于对接收自数据清洗单元的数据进行聚合计算,形成整理后的数据;所述整理后的数据被输入到AIOS操作系统中的云端深度学习模型中,并输出结果。The data aggregation calculation unit is used to perform aggregation calculation on the data received from the data cleaning unit to form sorted data; the sorted data is input into the cloud deep learning model in the AIOS operating system, and the result is output.

优选地,所述AIOS操作系统单元包括有用于连接数据采集单元、数据转换单元、数据清洗单元和数据聚合计算单元的总线及设备驱动,以及用于提供深度学习算法框架、神经网络模型、各算法SDK和服务的平台层;所述AIOS操作系统单元可支持单linux操作系统以及linux+RTOS异构操作系统。Preferably, the AIOS operating system unit includes a bus and a device driver for connecting the data acquisition unit, the data conversion unit, the data cleaning unit and the data aggregation computing unit, as well as for providing a deep learning algorithm framework, a neural network model, various algorithms The platform layer of the SDK and services; the AIOS operating system unit can support a single linux operating system and a linux+RTOS heterogeneous operating system.

优选地,所述边缘采集计算设备中,所述AIOS操作系统单元还包括有AI核心处理器,所述AI核心处理器包括多核ARM处理器、多核GPU、多核神经网络处理器NNIE和多核DSP。Preferably, in the edge collection computing device, the AIOS operating system unit further includes an AI core processor, and the AI core processor includes a multi-core ARM processor, a multi-core GPU, a multi-core neural network processor NNIE and a multi-core DSP.

优选地,在所述移动边缘服务器中,所述显示单元为LED、LCD或OLED中的一种,显示单元实现设备运行状态或配置信息的显示;Preferably, in the mobile edge server, the display unit is one of LED, LCD or OLED, and the display unit realizes the display of device operation status or configuration information;

所述存储单元包括板载存储、外部存储介质,其中,存储单元包括EMMC、E2PROM、FLASHSD卡、SSD、硬盘,存储单元存储智能区块链处理单元或路由处理单元写入或需要读取的数据;The storage unit includes onboard storage and external storage media, wherein the storage unit includes EMMC, E2PROM, FLASHSD card, SSD, hard disk, and the storage unit stores data written or read by the intelligent blockchain processing unit or routing processing unit. ;

所述无线网络接口单元包括串口、IO口、RS485、USB、音频和视频接口,无线网络接口单元实现外部信息的输入,无线网络接口单元负责输入输出除了网络数据外的其他形式的数据。The wireless network interface unit includes serial port, IO port, RS485, USB, audio and video interfaces, the wireless network interface unit realizes the input of external information, and the wireless network interface unit is responsible for inputting and outputting other forms of data except network data.

优选地,所述边缘采集计算设备还包括安全保护单元,所述安全保护单元具有公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。Preferably, the edge collection computing device further includes a security protection unit, and the security protection unit has a public key authentication mechanism and a private key authentication mechanism to provide a single or batch edge device authentication and verification process.

优选地,所述移动边缘服务器还包括判断模块和报警指令生成模块,其中,所述无线网络接口单元收集与执行端相关的数据;判断模块,判断与执行端相关的数据是否异常;报警指令生成模块,用于当判断结果为是时,生成报警指令;所述无线网络接口单元将报警指令发送显示单元,所述显示单元执行所述报警指令。Preferably, the mobile edge server further includes a judgment module and an alarm instruction generation module, wherein the wireless network interface unit collects data related to the execution end; the judgment module determines whether the data related to the execution end is abnormal; the alarm instruction generation The module is used for generating an alarm instruction when the judgment result is yes; the wireless network interface unit sends the alarm instruction to the display unit, and the display unit executes the alarm instruction.

作为本发明的另一方面,还提供一种人工智能边缘的计算方法,其在前述的系统中实现,其包括有以下步骤:As another aspect of the present invention, a computing method for artificial intelligence edge is also provided, which is implemented in the aforementioned system and includes the following steps:

步骤S10:移动边缘服务器和边缘采集计算设备利用收集的大量历史数据进行深度学习模型训练,最终产生云端深度学习模型;将深度学习模型下发到AIOS操作系统单元;Step S10: the mobile edge server and the edge collection computing device use the collected large amount of historical data to perform deep learning model training, and finally generate a cloud deep learning model; deliver the deep learning model to the AIOS operating system unit;

步骤S11:物联网设备收集环境信息,并将环境信息转换成待处理数据;Step S11: The IoT device collects environmental information, and converts the environmental information into data to be processed;

步骤S12:边缘采集计算设备获取接入边缘采集计算设备的多个物联网设备采集的监控特征数据,经处理后发送给到AIOS操作系统中的云端深度学习模型中,并输出结果,以预测指定区域是否发生异常;Step S12: The edge collection computing device obtains the monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, and after processing, sends it to the cloud deep learning model in the AIOS operating system, and outputs the results to predict the specified data. Whether an exception occurs in the area;

步骤S13,移动边缘服务器的无线网络接口单元收集与执行端相关的数据;并通过判断模块判断执行端相关与云端深度学习模型的数据是否异常;在判断到数据异常时,则报警指令生成模块生成报警指令;Step S13, the wireless network interface unit of the mobile edge server collects the data related to the execution end; and judges whether the data related to the execution end and the cloud deep learning model is abnormal through the judgment module; when it is judged that the data is abnormal, the alarm instruction generation module generates alarm command;

步骤S14,所述无线网络接口单元将所述报警指令发送显示单元,所述显示单元执行所述报警指令。Step S14, the wireless network interface unit sends the alarm instruction to a display unit, and the display unit executes the alarm instruction.

优选地,所述步骤S12进一步包括:Preferably, the step S12 further includes:

数据采集单元对照度、温度、湿度、PM2.5环境数据进行采集,所述采集的数据为模拟数据或数字数据,数据采集单元将采集到的数据经归类处理后发送送到数据转换单元;The data acquisition unit collects the environmental data of luminance, temperature, humidity and PM2.5, the collected data is analog data or digital data, and the data collection unit sends the collected data to the data conversion unit after classifying and processing;

所述数据转换单元对所述数据进行格式转换,并发送给数据清洗单元;The data conversion unit performs format conversion on the data and sends it to the data cleaning unit;

数据清洗单元进行数据清洗,然后由数据聚合计算单元进行聚合计算,形成整理后的数据;The data cleaning unit cleans the data, and then the data aggregation computing unit performs the aggregation calculation to form the sorted data;

将所述整理后的数据输入到AIOS操作系统中的云端深度学习模型中,并输出结果。Input the sorted data into the cloud deep learning model in the AIOS operating system, and output the result.

优选地,进一步包括:安全保护单元根据其具有的公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。Preferably, it further includes: the security protection unit implements the authentication and verification process of providing single or batch edge devices according to the public key authentication mechanism and the private key authentication mechanism it has.

实施本发明实施例,具有如下的有益效果:Implementing the embodiment of the present invention has the following beneficial effects:

首先,在本发明的实施例中,数据转换单元连接数据采集器,数据转换单元连接数据清洗单元,数据清洗单元连接数据聚合计算单元,数据转换单元、数据清洗单元和数据聚合计算单元三者协同用于对数据采集单元采集的数据进行整理,提高数据处理效率,从而减轻计算的压力和降低数据延时。First, in the embodiment of the present invention, the data conversion unit is connected to the data collector, the data conversion unit is connected to the data cleaning unit, the data cleaning unit is connected to the data aggregation calculation unit, and the data conversion unit, the data cleaning unit and the data aggregation calculation unit cooperate with each other. It is used to organize the data collected by the data acquisition unit to improve the data processing efficiency, thereby reducing the calculation pressure and reducing the data delay.

其次,在本发明的实施例中,边缘采集计算设备还包括安全保护单元,安全保护单元具有公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程,提高了边缘的计算的安全性。Secondly, in the embodiment of the present invention, the edge collection computing device further includes a security protection unit, and the security protection unit has a public key authentication mechanism and a private key authentication mechanism, which realizes the authentication and verification process of providing single or batch edge devices, and improves the edge Computing security.

另外,在本发明的实施例中,无线网络接口单元包括串口、IO口、RS485、USB、音频和视频接口,无线网络接口单元实现外部信息的输入,无线网络接口单元负责输入输出除了网络数据外的其他形式的数据;具备多种数据接入协议,可以支持多种设备接入功能,除了具备传统路由的功能外,可以对获取的数据进行进一步处理运算。In addition, in the embodiment of the present invention, the wireless network interface unit includes serial ports, IO ports, RS485, USB, audio and video interfaces, the wireless network interface unit realizes the input of external information, and the wireless network interface unit is responsible for input and output except for network data. It has a variety of data access protocols, and can support a variety of device access functions. In addition to the traditional routing function, it can further process and calculate the acquired data.

附图说明Description of drawings

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the specification, and are used to explain the present invention together with the embodiments of the present invention, and do not constitute a limitation to the present invention.

图1为本发明提供的一种人工智能边缘的计算系统的一个实施例的结构示意图;1 is a schematic structural diagram of an embodiment of an artificial intelligence edge computing system provided by the present invention;

图2为图1中边缘采集计算设备的结构示意图;FIG. 2 is a schematic structural diagram of the edge collection computing device in FIG. 1;

图3为图1中移动边缘服务器的结构示意图;FIG. 3 is a schematic structural diagram of the mobile edge server in FIG. 1;

图4为本发明提供的一种人工智能边缘的计算方法的一个实施例的主流程示意图。FIG. 4 is a schematic main flow diagram of an embodiment of an artificial intelligence edge computing method provided by the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.

如图1所示,示出了本发明提供的一种人工智能边缘的计算系统的一个实施例的结构示意图;一并结合图2和图3所示,在本发明实施例中,所述人工智能边缘的计算系统至少包括有物联网设备1、边缘采集计算设备2和移动边缘服务器3。As shown in FIG. 1, it shows a schematic structural diagram of an embodiment of an artificial intelligence edge computing system provided by the present invention; as shown in FIG. 2 and FIG. 3 together, in the embodiment of the present invention, the artificial intelligence The computing system of the intelligent edge includes at least an IoT device 1 , an edge collection computing device 2 and a mobile edge server 3 .

其中,物联网设备1用于收集环境信息,并将环境信息转换成待处理数据。其中,多个物联网设备属于同一指定区域。The IoT device 1 is used to collect environmental information and convert the environmental information into data to be processed. Among them, multiple IoT devices belong to the same designated area.

边缘采集计算设备2,用于获取接入其的多个物联网设备1采集的监控特征数据,以预测指定区域是否发生异常。更具体地,人工智能边缘采集计算设2备包括有数据采集单元20、数据转换单元21、数据清洗单元22和数据聚合计算单元23。The edge collection computing device 2 is used to obtain monitoring feature data collected by multiple IoT devices 1 connected thereto, so as to predict whether an abnormality occurs in a designated area. More specifically, the artificial intelligence edge collection computing device 2 includes a data collection unit 20 , a data conversion unit 21 , a data cleaning unit 22 and a data aggregation computing unit 23 .

在边缘采集计算设备2中,数据采集单元20用于对照度、温度、湿度、PM2.5环境数据的采集,数据采集单元20采集的数据是模拟数据或是数字数据,数据采集单元20采集到的数据由无线网络接口单元归类处理后送到数据转换单元21。In the edge collection computing device 2, the data collection unit 20 is used for the collection of contrast, temperature, humidity, PM2.5 environmental data, the data collected by the data collection unit 20 is analog data or digital data, and the data collected by the data collection unit 20 The data are classified and processed by the wireless network interface unit and then sent to the data conversion unit 21 .

数据转换单元21用于对来自所述数据采集单元20的数据进行格式转换,并发送给数据清洗单元22;The data conversion unit 21 is configured to perform format conversion on the data from the data acquisition unit 20 and send it to the data cleaning unit 22;

数据清洗单元22用于对来自数据清洗单元22的数据进行数据清洗(去除不需要的数据);The data cleaning unit 22 is used to perform data cleaning on the data from the data cleaning unit 22 (remove unnecessary data);

由数据聚合计算单元23用于对来自数据清洗单元22的数据进行聚合计算,形成整理后的数据;所述整理后的数据被输入到AIOS操作系统中25的云端深度学习模型中,并输出结果。The data aggregation calculation unit 23 is used to aggregate and calculate the data from the data cleaning unit 22 to form sorted data; the sorted data is input into the cloud deep learning model of the AIOS operating system 25, and the result is output .

进一步的,边缘采集计算设备2还包括安全保护单元24,安全保护单元24具有公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。Further, the edge collection computing device 2 further includes a security protection unit 24, and the security protection unit 24 has a public key authentication mechanism and a private key authentication mechanism, and provides a single or batch edge device authentication and verification process.

边缘采集计算设备2中还包括有AIOS操作系统单元25,所述AIOS操作系统单元25包括有用于连接数据采集单元20、数据转换单元21、数据清洗单元22和数据聚合计算单元23的总线及设备驱动,以及用于提供深度学习算法框架、神经网络模型、各种算法SDK和服务的平台层;AIOS操作系统单元25可支持单linux操作系统以及linux+RTOS异构操作系统。The edge collection computing device 2 also includes an AIOS operating system unit 25, and the AIOS operating system unit 25 includes a bus and equipment for connecting the data collection unit 20, the data conversion unit 21, the data cleaning unit 22 and the data aggregation computing unit 23. Drivers, and a platform layer for providing deep learning algorithm frameworks, neural network models, various algorithm SDKs and services; the AIOS operating system unit 25 can support a single linux operating system and a linux+RTOS heterogeneous operating system.

边缘采集计算设备中,AIOS操作系统单元25还包括有AI核心处理器,AI核心处理器包括多核ARM处理器、多核GPU、多核神经网络处理器NNIE和多核DSP。In the edge collection computing device, the AIOS operating system unit 25 also includes an AI core processor, and the AI core processor includes a multi-core ARM processor, a multi-core GPU, a multi-core neural network processor NNIE and a multi-core DSP.

移动边缘服务器3用于数据采集和数据整理,其中,移动边缘服务器3至少包括显示单元30、存储单元31、无线网络接口单元32、判断模块33以及报警指令生成模块34。The mobile edge server 3 is used for data collection and data sorting, wherein the mobile edge server 3 at least includes a display unit 30 , a storage unit 31 , a wireless network interface unit 32 , a judgment module 33 and an alarm instruction generation module 34 .

其中,显示单元30为LED、LCD或OLED中的一种,显示单元30实现设备运行状态或配置信息的显示。Wherein, the display unit 30 is one of LED, LCD or OLED, and the display unit 30 realizes the display of the operating state or configuration information of the device.

存储单元31包括板载存储、外部存储介质,其中,存储单元31包括EMMC、E2PROM、FLASHSD卡、SSD、硬盘,存储单元31存储智能区块链处理单元或路由处理单元写入或需要读取的数据。The storage unit 31 includes onboard storage and external storage media, wherein the storage unit 31 includes EMMC, E2PROM, FLASHSD card, SSD, and hard disk, and the storage unit 31 stores the data written or read by the intelligent blockchain processing unit or routing processing unit. data.

无线网络接口单元32包括串口、IO口、RS485、USB、音频和视频接口,无线网络接口单元32实现外部信息的输入,收集与执行端相关的数据,无线网络接口单元32负责输入输出除了网络数据外的其他形式的数据。The wireless network interface unit 32 includes serial ports, IO ports, RS485, USB, audio and video interfaces, the wireless network interface unit 32 realizes the input of external information, collects data related to the execution end, and the wireless network interface unit 32 is responsible for input and output in addition to network data. other forms of data.

判断模块33用于判断云端深度学习模型的输出结果与执行端相关的数据是否均异常,若判断结果均为两者均异常,则确定数据异常;否则,则确定数据不异常;。The judgment module 33 is used for judging whether the output result of the cloud deep learning model and the data related to the execution terminal are both abnormal. If the judgment result is both abnormal, it is determined that the data is abnormal; otherwise, it is determined that the data is not abnormal;

报警指令生成模块34用于在判断模块33的判断结果为数据异常时,生成报警指令。无线网络接口单元32将报警指令发送显示单元30,显示单元30执行报警指令。The alarm instruction generation module 34 is configured to generate an alarm instruction when the judgment result of the judgment module 33 is that the data is abnormal. The wireless network interface unit 32 sends the alarm instruction to the display unit 30, and the display unit 30 executes the alarm instruction.

图4所示,示出了本发明提供的一种人工智能边缘的计算方法的一个实施例的主流程示意图。在本实施例中,其在如图1至图3所示的系统中实现,具体在,所述人工智能边缘的计算方法,包括有以下步骤:As shown in FIG. 4 , it shows a schematic diagram of the main flow of an embodiment of an artificial intelligence edge computing method provided by the present invention. In this embodiment, it is implemented in the system as shown in FIG. 1 to FIG. 3 . Specifically, the computing method of the artificial intelligence edge includes the following steps:

步骤S10:移动边缘服务器和边缘采集计算设备利用收集的大量历史数据进行深度学习模型训练,最终产生云端深度学习模型;将深度学习模型下发到AIOS操作系统单元。Step S10: The mobile edge server and the edge collection computing device use the collected large amount of historical data to perform deep learning model training, and finally generate a cloud deep learning model; and deliver the deep learning model to the AIOS operating system unit.

步骤S11:物联网设备收集环境信息,并将环境信息转换成待处理数据。Step S11: The IoT device collects environmental information, and converts the environmental information into data to be processed.

步骤S12:边缘采集计算设备获取接入边缘采集计算设备的多个物联网设备采集的监控特征数据,经处理后发送给到AIOS操作系统中的云端深度学习模型中,并输出结果,以预测指定区域是否发生异常。具体地,所述步骤S12包括如下的步骤:Step S12: The edge collection computing device obtains the monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, and after processing, sends it to the cloud deep learning model in the AIOS operating system, and outputs the results to predict the specified data. Whether an exception has occurred in the area. Specifically, the step S12 includes the following steps:

数据采集单元对照度、温度、湿度、PM2.5环境数据进行采集,所述采集的数据为模拟数据或数字数据,数据采集单元将采集到的数据经归类处理后发送送到数据转换单元;The data acquisition unit collects the environmental data of luminance, temperature, humidity and PM2.5, the collected data is analog data or digital data, and the data collection unit sends the collected data to the data conversion unit after classifying and processing;

所述数据转换单元对所述数据进行格式转换,并发送给数据清洗单元;The data conversion unit performs format conversion on the data and sends it to the data cleaning unit;

数据清洗单元进行数据清洗,然后由数据聚合计算单元进行聚合计算,形成整理后的数据;The data cleaning unit cleans the data, and then the data aggregation computing unit performs the aggregation calculation to form the sorted data;

将所述整理后的数据输入到AIOS操作系统中的云端深度学习模型中,并输出结果;Input the sorted data into the cloud deep learning model in the AIOS operating system, and output the result;

步骤S13,移动边缘服务器的无线网络接口单元收集与执行端相关的数据;并通过判断模块判断执行端相关与云端深度学习模型的数据是否异常;在判断到数据异常时,则报警指令生成模块生成报警指令;Step S13, the wireless network interface unit of the mobile edge server collects the data related to the execution end; and judges whether the data related to the execution end and the cloud deep learning model is abnormal through the judgment module; when it is judged that the data is abnormal, the alarm instruction generation module generates alarm command;

步骤S14,所述无线网络接口单元将所述报警指令发送显示单元,所述显示单元执行所述报警指令。Step S14, the wireless network interface unit sends the alarm instruction to a display unit, and the display unit executes the alarm instruction.

进一步的,所述方法进一步包括如下步骤:步骤S14:安全保护单元根据其具有的公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。Further, the method further includes the following steps: Step S14: The security protection unit implements a single or batch edge device authentication verification process according to the public key authentication mechanism and the private key authentication mechanism it has.

更多细节,可以结合前述图1至图3的说明,在此不进行详述。More details can be combined with the descriptions of the foregoing FIG. 1 to FIG. 3 , and will not be described in detail here.

实施本发明实施例,具有如下的有益效果:Implementing the embodiment of the present invention has the following beneficial effects:

首先,在本发明的实施例中,数据转换单元连接数据采集器,数据转换单元连接数据清洗单元,数据清洗单元连接数据聚合计算单元,数据转换单元、数据清洗单元和数据聚合计算单元三者协同用于对数据采集单元采集的数据进行整理,提高数据处理效率,从而减轻计算的压力和降低数据延时。First, in the embodiment of the present invention, the data conversion unit is connected to the data collector, the data conversion unit is connected to the data cleaning unit, the data cleaning unit is connected to the data aggregation calculation unit, and the data conversion unit, the data cleaning unit and the data aggregation calculation unit cooperate with each other. It is used to organize the data collected by the data acquisition unit to improve the data processing efficiency, thereby reducing the calculation pressure and reducing the data delay.

其次,在本发明的实施例中,边缘采集计算设备还包括安全保护单元,安全保护单元具有公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程,提高了边缘的计算的安全性。Secondly, in the embodiment of the present invention, the edge collection computing device further includes a security protection unit, and the security protection unit has a public key authentication mechanism and a private key authentication mechanism, which realizes the authentication and verification process of providing single or batch edge devices, and improves the edge Computing security.

另外,在本发明的实施例中,无线网络接口单元包括串口、IO口、RS485、USB、音频和视频接口,无线网络接口单元实现外部信息的输入,无线网络接口单元负责输入输出除了网络数据外的其他形式的数据;具备多种数据接入协议,可以支持多种设备接入功能,除了具备传统路由的功能外,可以对获取的数据进行进一步处理运算。In addition, in the embodiment of the present invention, the wireless network interface unit includes serial ports, IO ports, RS485, USB, audio and video interfaces, the wireless network interface unit realizes the input of external information, and the wireless network interface unit is responsible for input and output except for network data. It has a variety of data access protocols, and can support a variety of device access functions. In addition to the traditional routing function, it can further process and calculate the acquired data.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Modifications or equivalent replacements are made to the specific embodiments of the present invention, and any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention shall be included within the protection scope of the claims of the present invention.

Claims (10)

1.一种人工智能边缘的计算系统,其特征在于,包括有至少一个物联网设备、边缘采集计算设备和移动边缘服务器;其中,1. a computing system of artificial intelligence edge, is characterized in that, comprises at least one Internet of Things device, edge collection computing device and mobile edge server; Wherein, 所述物联网设备用于收集环境信息,并将所述环境信息转换成所述待处理数据;The IoT device is used to collect environmental information and convert the environmental information into the data to be processed; 所述边缘采集计算设备用于获取接入所述边缘采集计算设备的多个物联网设备采集的监控特征数据,以预测所述指定区域是否发生异常;其中,所述边缘采集计算设备包括有AIOS操作系统单元、数据采集单元、数据转换单元、数据清洗单元以及数据聚合计算单元;The edge collection computing device is used to obtain monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, so as to predict whether an abnormality occurs in the designated area; wherein the edge collection computing device includes AIOS Operating system unit, data acquisition unit, data conversion unit, data cleaning unit and data aggregation calculation unit; 所述移动边缘服务器用于数据采集和数据整理,其中,所述移动边缘服务器包括显示单元、存储单元、无线网络接口单元、判断模块以及报警指令生成单元。The mobile edge server is used for data collection and data sorting, wherein the mobile edge server includes a display unit, a storage unit, a wireless network interface unit, a judgment module, and an alarm instruction generation unit. 2.根据权利要求1所述的人工智能边缘的计算系统,其特征在于:2. the computing system of artificial intelligence edge according to claim 1, is characterized in that: 所述数据采集单元用于对照度、温度、湿度、PM2.5环境数据的采集,数据采集单元采集到的数据在归类处理后被送到数据转换单元。The data collection unit is used for collection of contrast, temperature, humidity, and PM2.5 environmental data, and the data collected by the data collection unit is sent to the data conversion unit after being classified and processed. 数据转换单元用于接收自数据采集单元的数据进行格式转换,并发送给数据清洗单元;The data conversion unit is used for format conversion of the data received from the data acquisition unit, and sent to the data cleaning unit; 数据清洗单元用于对接收自数据转换单元的数据进行数据清洗,并发送给数据聚合计算单元;The data cleaning unit is used to clean the data received from the data conversion unit, and send it to the data aggregation computing unit; 数据聚合计算单元用于对接收自数据清洗单元的数据进行聚合计算,形成整理后的数据;所述整理后的数据被输入到AIOS操作系统中的云端深度学习模型中,并输出结果。The data aggregation calculation unit is used to perform aggregation calculation on the data received from the data cleaning unit to form sorted data; the sorted data is input into the cloud deep learning model in the AIOS operating system, and the result is output. 3.根据权利要求2所述的人工智能边缘的计算系统,其特征在于:所述AIOS操作系统单元包括有用于连接数据采集单元、数据转换单元、数据清洗单元和数据聚合计算单元的总线及设备驱动,以及用于提供深度学习算法框架、神经网络模型、各算法SDK和服务的平台层;所述AIOS操作系统单元可支持单linux操作系统以及linux+RTOS异构操作系统。3. the computing system of artificial intelligence edge according to claim 2 is characterized in that: described AIOS operating system unit comprises the bus and equipment that is used to connect data acquisition unit, data conversion unit, data cleaning unit and data aggregation computing unit A driver, and a platform layer for providing a deep learning algorithm framework, a neural network model, various algorithm SDKs and services; the AIOS operating system unit can support a single linux operating system and a linux+RTOS heterogeneous operating system. 4.根据权利要求3所述的人工智能边缘的计算系统,其特征在于:所述边缘采集计算设备中,所述AIOS操作系统单元还包括有AI核心处理器,所述AI核心处理器包括多核ARM处理器、多核GPU、多核神经网络处理器NNIE和多核DSP。4. The artificial intelligence edge computing system according to claim 3, characterized in that: in the edge collection computing device, the AIOS operating system unit further comprises an AI core processor, and the AI core processor comprises a multi-core processor ARM processor, multi-core GPU, multi-core neural network processor NNIE and multi-core DSP. 5.根据权利要求1至4任一项所述的人工智能边缘的计算系统,其特征在于:5. The computing system of artificial intelligence edge according to any one of claims 1 to 4, is characterized in that: 在所述移动边缘服务器中,所述显示单元为LED、LCD或OLED中的一种,显示单元实现设备运行状态或配置信息的显示;In the mobile edge server, the display unit is one of LED, LCD or OLED, and the display unit realizes the display of device operation status or configuration information; 所述存储单元包括板载存储、外部存储介质,其中,存储单元包括EMMC、E2PROM、FLASHSD卡、SSD、硬盘,存储单元存储智能区块链处理单元或路由处理单元写入或需要读取的数据;The storage unit includes onboard storage and external storage media, wherein the storage unit includes EMMC, E2PROM, FLASHSD card, SSD, hard disk, and the storage unit stores data written or read by the intelligent blockchain processing unit or routing processing unit. ; 所述无线网络接口单元包括串口、IO口、RS485、USB、音频和视频接口,无线网络接口单元实现外部信息的输入,无线网络接口单元负责输入输出除了网络数据外的其他形式的数据。The wireless network interface unit includes serial port, IO port, RS485, USB, audio and video interfaces, the wireless network interface unit realizes the input of external information, and the wireless network interface unit is responsible for inputting and outputting other forms of data except network data. 6.根据权利要求1所述的人工智能边缘的计算系统,其特征在于:所述边缘采集计算设备还包括安全保护单元,所述安全保护单元具有公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。6. The artificial intelligence edge computing system according to claim 1, wherein the edge collection computing device further comprises a security protection unit, and the security protection unit has a public key authentication mechanism and a private key authentication mechanism, and provides Single or batch edge device authentication verification process. 7.根据权利要求1所述的人工智能边缘的计算系统,其特征在于:所述移动边缘服务器还包括判断模块和报警指令生成模块,其中,所述无线网络接口单元收集与执行端相关的数据;判断模块,判断与执行端相关的数据是否异常;报警指令生成模块,用于当判断结果为是时,生成报警指令;所述无线网络接口单元将报警指令发送显示单元,所述显示单元执行所述报警指令。7. The computing system of artificial intelligence edge according to claim 1, is characterized in that: described mobile edge server also comprises judging module and alarm instruction generation module, wherein, described wireless network interface unit collects data related to execution end Judging module, to judge whether the data related to the execution end is abnormal; Alarm instruction generation module, for when the judgment result is yes, generate an alarm instruction; The wireless network interface unit sends the alarm instruction to a display unit, and the display unit executes the the alarm command. 8.一种人工智能边缘的计算方法,其在如权利要求1至7任一项所述的系统中实现,其特征在于,包括有以下步骤:8. a computing method of artificial intelligence edge, it is realized in the system as described in any one of claim 1 to 7, it is characterized in that, comprise the following steps: 步骤S10,移动边缘服务器和边缘采集计算设备利用收集的大量历史数据进行深度学习模型训练,生成云端深度学习模型并下发到AIOS操作系统单元;Step S10, the mobile edge server and the edge collection computing device use the collected large amount of historical data to perform deep learning model training, generate a cloud deep learning model and deliver it to the AIOS operating system unit; 步骤S11,物联网设备收集环境信息,并将环境信息转换成待处理数据;Step S11, the IoT device collects environmental information, and converts the environmental information into data to be processed; 步骤S12,边缘采集计算设备获取接入边缘采集计算设备的多个物联网设备采集的监控特征数据,经处理后发送给到AIOS操作系统中的云端深度学习模型中,并输出结果,以预测指定区域是否发生异常;In step S12, the edge collection computing device obtains the monitoring feature data collected by multiple IoT devices connected to the edge collection computing device, and after processing, it is sent to the cloud deep learning model in the AIOS operating system, and the results are output to predict the specified data. Whether an exception occurs in the area; 步骤S13,移动边缘服务器的无线网络接口单元收集与执行端相关的数据;并通过判断模块判断执行端相关与云端深度学习模型的数据是否异常;在判断到数据异常时,则报警指令生成模块生成报警指令;Step S13, the wireless network interface unit of the mobile edge server collects the data related to the execution end; and judges whether the data related to the execution end and the cloud deep learning model is abnormal through the judgment module; when it is judged that the data is abnormal, the alarm instruction generation module generates alarm command; 步骤S14,所述无线网络接口单元将所述报警指令发送显示单元,所述显示单元执行所述报警指令。Step S14, the wireless network interface unit sends the alarm instruction to a display unit, and the display unit executes the alarm instruction. 9.如权利要求8所述的方法,其特征在于,所述步骤S12进一步包括:9. The method of claim 8, wherein the step S12 further comprises: 数据采集单元对照度、温度、湿度、PM2.5环境数据进行采集,所述采集的数据为模拟数据或数字数据,数据采集单元将采集到的数据经归类处理后发送送到数据转换单元;The data acquisition unit collects the environmental data of luminance, temperature, humidity and PM2.5, the collected data is analog data or digital data, and the data collection unit sends the collected data to the data conversion unit after classifying and processing; 所述数据转换单元对所述数据进行格式转换,并发送给数据清洗单元;The data conversion unit performs format conversion on the data and sends it to the data cleaning unit; 数据清洗单元进行数据清洗,然后由数据聚合计算单元进行聚合计算,形成整理后的数据;The data cleaning unit cleans the data, and then the data aggregation computing unit performs the aggregation calculation to form the sorted data; 将所述整理后的数据输入到AIOS操作系统中的云端深度学习模型中,并输出结果。Input the sorted data into the cloud deep learning model in the AIOS operating system, and output the result. 10.如权利要求9所述的方法,其特征在于,进一步包括:安全保护单元根据其具有的公钥认证机制和私钥认证机制,实现提供单一或批量边缘设备认证校验过程。10 . The method of claim 9 , further comprising: the security protection unit implements a single or batch edge device authentication verification process according to the public key authentication mechanism and the private key authentication mechanism it has. 11 .
CN202010268728.8A 2020-04-08 2020-04-08 Computing system and computing method for artificial intelligence edge Pending CN111556469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010268728.8A CN111556469A (en) 2020-04-08 2020-04-08 Computing system and computing method for artificial intelligence edge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010268728.8A CN111556469A (en) 2020-04-08 2020-04-08 Computing system and computing method for artificial intelligence edge

Publications (1)

Publication Number Publication Date
CN111556469A true CN111556469A (en) 2020-08-18

Family

ID=72005655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010268728.8A Pending CN111556469A (en) 2020-04-08 2020-04-08 Computing system and computing method for artificial intelligence edge

Country Status (1)

Country Link
CN (1) CN111556469A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649118A (en) * 2020-11-10 2021-04-13 许继集团有限公司 Transmission line temperature sensing system based on edge calculation
CN113179190A (en) * 2021-06-29 2021-07-27 深圳智造谷工业互联网创新中心有限公司 Edge controller, edge computing system and configuration method thereof
CN113806070A (en) * 2021-08-10 2021-12-17 中标慧安信息技术股份有限公司 Data management method and device for edge computing and cloud computing
CN114567568A (en) * 2022-03-01 2022-05-31 北京中电普华信息技术有限公司 Electric power Internet of things data processing method and device based on edge calculation
CN116319795A (en) * 2023-05-24 2023-06-23 无锡光煜晞科技有限责任公司 Unmanned detection and identification system of subway train based on edge calculation
CN117494111A (en) * 2023-09-11 2024-02-02 德浦勒仪表(广州)有限公司 Edge computing system and method for data processing and transmission of industrial flowmeter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180285766A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Diagnosing slow tasks in distributed computing
CN109194761A (en) * 2018-09-18 2019-01-11 北京工业大学 A kind of acquisition of LORA environment of internet of things data and cochain implementation method based on edge calculations and block chain
WO2019023488A1 (en) * 2017-07-28 2019-01-31 Dolby Laboratories Licensing Corporation Method and system for providing media content to a client
CN109885566A (en) * 2019-02-25 2019-06-14 南京世界村云数据产业集团有限公司 A kind of acquisition of data and edge calculations system
CN109947079A (en) * 2019-03-20 2019-06-28 阿里巴巴集团控股有限公司 Region method for detecting abnormality and edge calculations equipment based on edge calculations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180285766A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Diagnosing slow tasks in distributed computing
WO2019023488A1 (en) * 2017-07-28 2019-01-31 Dolby Laboratories Licensing Corporation Method and system for providing media content to a client
CN109194761A (en) * 2018-09-18 2019-01-11 北京工业大学 A kind of acquisition of LORA environment of internet of things data and cochain implementation method based on edge calculations and block chain
CN109885566A (en) * 2019-02-25 2019-06-14 南京世界村云数据产业集团有限公司 A kind of acquisition of data and edge calculations system
CN109947079A (en) * 2019-03-20 2019-06-28 阿里巴巴集团控股有限公司 Region method for detecting abnormality and edge calculations equipment based on edge calculations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱婕等: "《云计算架构设计与应用技术研究》", 延边大学出版社, pages: 166 - 173 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649118A (en) * 2020-11-10 2021-04-13 许继集团有限公司 Transmission line temperature sensing system based on edge calculation
CN113179190A (en) * 2021-06-29 2021-07-27 深圳智造谷工业互联网创新中心有限公司 Edge controller, edge computing system and configuration method thereof
CN113806070A (en) * 2021-08-10 2021-12-17 中标慧安信息技术股份有限公司 Data management method and device for edge computing and cloud computing
CN114567568A (en) * 2022-03-01 2022-05-31 北京中电普华信息技术有限公司 Electric power Internet of things data processing method and device based on edge calculation
CN114567568B (en) * 2022-03-01 2024-04-05 北京中电普华信息技术有限公司 Electric power Internet of things data processing method and device based on edge calculation
CN116319795A (en) * 2023-05-24 2023-06-23 无锡光煜晞科技有限责任公司 Unmanned detection and identification system of subway train based on edge calculation
CN117494111A (en) * 2023-09-11 2024-02-02 德浦勒仪表(广州)有限公司 Edge computing system and method for data processing and transmission of industrial flowmeter

Similar Documents

Publication Publication Date Title
CN111556469A (en) Computing system and computing method for artificial intelligence edge
CN111885040A (en) Distributed network situation perception method, system, server and node equipment
US11088820B2 (en) Secure models for IoT devices
CN102664961B (en) Method for anomaly detection in MapReduce environment
CN111091278B (en) Edge detection model construction method and device for mechanical equipment anomaly detection
CN106056211B (en) Neuron computing unit, neuron computing module and artificial neural networks core
Yu et al. Implementation of industrial cyber physical system: Challenges and solutions
CN109657003A (en) A method of hardware data is directly accessed big data platform
CN106326321B (en) Big data exchange method and device
CN108064379A (en) Query engine for remote endpoint information retrieval
US11350360B2 (en) Generating adaptive models for IoT networks
CN113485792B (en) Pod scheduling method in kubernetes cluster, terminal equipment and storage medium
CN114896216A (en) Industrial Internet data storage method and system based on block chain and electronic equipment
Grzywaczewski Training ai for self-driving vehicles: the challenge of scale
TWI678629B (en) Reliability evaluating method for multi-state flow network and system thereof
US10616067B2 (en) Model and filter deployment across IoT networks
JP7067845B2 (en) Edge caching for cognitive applications
CN108090186A (en) A kind of electric power data De-weight method on big data platform
CN115622867A (en) Method and system for early warning and classification of security incidents in industrial control system
CN111224970A (en) SDN network system, network attack defense method, device and storage medium
CN114731342B (en) Managed data export from edge devices to remote networks
CN111083184A (en) Gas chromatograph fault diagnosis system structure based on edge calculation framework
CN117113266A (en) Unmanned factory anomaly detection method and device based on graph isomorphism network
CN111199777B (en) Biological big data-oriented streaming and mutation real-time mining system and method
CN114640665A (en) Multi-source segmented parallel file downloading method and tool

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200818