CN111555367B - 一种智能电网混合优化模型的加速分布式优化方法 - Google Patents

一种智能电网混合优化模型的加速分布式优化方法 Download PDF

Info

Publication number
CN111555367B
CN111555367B CN202010402590.6A CN202010402590A CN111555367B CN 111555367 B CN111555367 B CN 111555367B CN 202010402590 A CN202010402590 A CN 202010402590A CN 111555367 B CN111555367 B CN 111555367B
Authority
CN
China
Prior art keywords
power
cost
hybrid
optimization
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010402590.6A
Other languages
English (en)
Other versions
CN111555367A (zh
Inventor
罗松林
罗煜
陈威洪
刘树安
李敬光
张鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Power Grid Co Ltd
Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangdong Power Grid Co Ltd
Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Power Grid Co Ltd, Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangdong Power Grid Co Ltd
Priority to CN202010402590.6A priority Critical patent/CN111555367B/zh
Publication of CN111555367A publication Critical patent/CN111555367A/zh
Application granted granted Critical
Publication of CN111555367B publication Critical patent/CN111555367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种智能电网的混合优化模型,所述模型分为两个阶段:第一阶段:确定电价典型场景;第二阶段:在所述第一阶段的每个所述电价典型场景下进行可再生能源RE和负载的混合随机规划鲁棒优化;还包括一种基于智能电网的混合优化模型的加速分布式优化方法;本发明综合考虑了可再生能源、固定负荷和电价不确定性,结合随机规划和鲁棒优化的优点,随机场景被有效且合理地减少,因此降低了计算的复杂度,与集中式优化算法相比,该算法减少了计算量和通信量,具有更快的收敛速度,具有很高的实用价值。

Description

一种智能电网混合优化模型的加速分布式优化方法
技术领域
本发明涉及双电源供电技术领域,具体涉及一种智能电网的混合优化模型及加速分布式优化方法。
背景技术
发展清洁可再生能源发电已成为世界范围内解决环境污染和化石燃料枯竭问题的一种趋势,其中太阳能和风能是重要的可再生资源。然而,由于太阳能、风能等具有间歇性和不确定性,给智能电网带来了巨大的挑战。智能电网的能源管理是在满足供需平衡约束和各种运行不等式约束的前提下优化发电成本。在智能电网中,由于可再生能源和其他小规模分布式发电的渗透深度的增加,能量管理的复杂性将增加。通过对各种可再生能源和分布式能源的协调控制和优化,智能电网可以有效地挖掘潜在的灵活性,实现高效率和可靠性,并显著降低总成本,同时保证智能电网的安全稳定,这是目前很多科研机构和工程人员研究的热点之一。
目前的研究主要集中在如何解决智能电网优化问题的两个困难。
第一是在智能电网中,太阳能、风能等可再生能源具有间歇性和不确定性,会给电网带来安全和稳定性问题。通常不确定性优化采用的方法是随机规划和鲁棒优化。然而对于随机规划而言,如果考虑大量的场景,虽然增加了优化的精确度,但是模型复杂程度和计算负担同时也会大大增加。对鲁棒优化来说,结果的保守性和经济性很难衡量。如何要将两者有机结合起来解决不确定性问题是一个巨大的挑战;
第二是智能电网中接入了大量的分布式能源,如果用集中式算法来解决优化问题,可能会带来沉重的计算负担,并且缺乏对拓扑变化的适应性、对即插即用操作的鲁棒性和对大型系统的可扩展性。
发明内容
为此,本发明提供一种智能电网的混合优化模型及加速分布式优化方法,以解决现有技术中智能电网结合中存在计算量和精度相互矛盾的问题。
为了实现上述目的,本发明提供如下技术方案:
一种智能电网的混合优化模型,所述模型分为两个阶段:
第一阶段:确定电价典型场景;
第二阶段:在所述第一阶段的每个所述电价典型场景下进行可再生能源RE和负载的混合随机规划鲁棒优化。
作为本发明一种有选地方案,所电价典型场景的获取方法包括:通过对电价历史数据的分析,得到电价的预测分布,再进行场景选择。
作为本发明一种有选地方案,场景选择采用拉丁超立方体抽样方法,分别从(0,1)等分的ns个子区间产生ns个场景。
作为本发明一种有选地方案,所述第二阶段的鲁棒优化是将传统能源发电CGs、风力发电WGs、电池存储系统BSSs、可移动设备SAs和在 ns个场景下与外部电网的销售/购买电力的总体预期成本降到最低:
Figure BDA0002490067210000021
其中:
Figure BDA0002490067210000022
为第i个传统能源发电的成本函数,
Figure BDA0002490067210000023
为第 i个风力发电的削减罚款函数,
Figure BDA0002490067210000024
为第i个电池存储系统的成本函数,
Figure BDA0002490067210000025
为第i个可移动设备不满意成本的函数,
Figure BDA0002490067210000031
外部电网购买/出售电力的成本函数。
作为本发明一种有选地方案,第s个价格场景下各个成本具体为:
Figure BDA0002490067210000032
其中,
Figure BDA0002490067210000033
为基准值功率输出;
Figure BDA0002490067210000034
为可再生能源发电和负荷偏差的备用容量;agi,bgi和cgi为成本系数;Λ为风电偏差的协方差矩阵;
Figure BDA0002490067210000035
其中,awi为成本系数
Figure BDA0002490067210000036
为基准值功率输出,Pwi,f预测手段得到的最大可用风能;
Figure BDA0002490067210000037
其中,
Figure BDA0002490067210000038
为基准功率值,
Figure BDA0002490067210000039
为可再生能源发电和负荷偏差的备用容量,absi为成本系数;
Figure BDA00024900672100000313
其中,asai为折中的成本系数;
Figure BDA00024900672100000310
其中,
Figure BDA00024900672100000311
是成本系数。
作为本发明一种有选地方案,在第s个电价的情况下,建立混合随机规划鲁棒优化模型具体为:
Figure BDA00024900672100000312
s.t.D(X)=0
E(X)≤0
其中,xi是因变量,fi(xi)表示传统能源发电成本函数、风力发电成本函数、电池存储系统成本函数、可移动设备成本函数和在ns个场景下于外部电网的销售/购买电力的成本函数;M表示场景的序号。
另外,在本发明中提供了一种基于权利要求1-5任一项智能电网混合优化模型的加速分布式优化方法,包括如下步骤:
步骤100、在多智能体系统一致的算法基础上建立混合随机规划鲁棒优化模型相对应的拉格朗日对偶为:
Figure BDA0002490067210000041
其中,λ和μ分别是D(X)和E(X)的拉格朗日对偶乘子;
步骤200、每个智能体拉格朗日对偶中分解得到子问题,所述子问题具体为:
Figure BDA0002490067210000042
其中,Xi是X在当地的复制,λi是λ在当地的复制,μi是μ在当地的复制;
步骤300、在每个智能体中设置初始变量,并逐次进行迭代,在第k 次迭代时由加速梯度下降法进行更新,具体为:
Figure BDA0002490067210000043
Figure BDA0002490067210000044
Figure BDA0002490067210000045
Figure BDA0002490067210000046
其中
Figure BDA0002490067210000047
是Li关于
Figure BDA0002490067210000048
的导数,τ1是固定的步长;
分布式优化的信息交换过程基于多智能体系统一致性算法,每个智能体只与它的邻居交换信息,信息交换矩阵W的信息交换权重wij计算如下:
Figure BDA0002490067210000051
其中Ni和ni是智能体i的邻居集和邻居个体;
PΩ是Xi在其取值集合上的投影,具体定义为:
Figure BDA0002490067210000052
将xij的更新、交换和投影协议简化为:
Figure BDA0002490067210000053
λi更新规则和信息交换协议为:
Figure BDA0002490067210000054
Figure BDA0002490067210000055
Figure BDA0002490067210000056
其中τ2是固定步长;
μi的更新规则和信息交换协议与λi相同:
Figure BDA0002490067210000057
Figure BDA0002490067210000058
Figure BDA0002490067210000059
迭代停止准则由以下条件确定:
Figure BDA00024900672100000510
本发明具有如下优点:
本发明综合考虑了可再生能源、固定负荷和电价不确定性,结合随机规划和鲁棒优化的优点,随机场景被有效且合理地减少,因此降低了计算的复杂度,与集中式优化算法相比,该算法减少了计算量和通信量,具有更快的收敛速度,具有很高的实用价值。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施例提供优化方法的流程示意图;
图2为本发明实施例提供优化方法的又一流程示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种智能电网的混合优化模型,所述模型分为两个阶段:
第一阶段:确定电价典型场景;
第二阶段:在所述第一阶段的每个所述电价典型场景下进行可再生能源RE和负载的混合随机规划鲁棒优化。
作为本发明一种有选地方案,所电价典型场景的获取方法包括:通过对电价历史数据的分析,得到电价的预测分布,再进行场景选择。
作为本发明一种有选地方案,场景选择采用拉丁超立方体抽样方法,分别从(0,1)等分的ns个子区间产生ns个场景。
作为本发明一种有选地方案,所述第二阶段的鲁棒优化是将传统能源发电CGs、风力发电WGs、电池存储系统BSSs、可移动设备SAs和在 ns个场景下与外部电网的销售/购买电力的总体预期成本降到最低:
Figure BDA0002490067210000071
其中:
Figure BDA0002490067210000072
为第i个传统能源发电的成本函数,Pgi/gi为其出力,ng为传统能源发电机个数;
Figure BDA0002490067210000073
为第i个风力发电的削减罚款函数,Pwi为其出力,nw为风力发电机个数;
Figure BDA0002490067210000074
为第i个储能系统的成本函数,Pbsi/bsi为其出力,nb为储能系统个数;
Figure BDA0002490067210000075
为第i 个可移动设备不满意成本的函数,Psai为其出力,nsa可移动设备个数;
Figure BDA0002490067210000076
为外部电网购买/出售电力的成本函数,Pbuy/sell为外部电网购买/出售的电力。
以下是对(1)在第s个价格场景下成本的具体描述。
第i台(i=1,…,ng)常规发电机的成本函数为二次型,如下所示:
Figure BDA0002490067210000077
其中,
Figure BDA0002490067210000078
为基准值功率输出;
Figure BDA0002490067210000079
为可再生能源发电和负荷偏差的备用容量;agi,bgi和cgi为成本系数;Λ为风电偏差的协方差矩阵,σ为协方差总和。
第i(i=1,…,nw)个WG的削减罚款模型如下:
Figure BDA0002490067210000081
其中,awi为成本系数
Figure BDA0002490067210000082
为基准值功率输出,Pwi,f预测手段得到的最大可用风能。
第i(i=1,2…,nbs)个BSS的成本如下:
Figure BDA0002490067210000083
其中,
Figure BDA0002490067210000084
为基准功率值,
Figure BDA0002490067210000085
为可再生能源发电和负荷偏差的备用容量,absi为成本系数。
假设某些负载是固定的,而一些可移动设备负载可以被削减。然而,当第i(i=1,…,nsa)个SA偏离期望功耗Psai,d时,此调度可能导致用户不满意。采用以下函数定量描述不满意成本:
Figure BDA0002490067210000086
其中,asai为折中的成本系数。
从外部电网购买/出售电力
Figure BDA0002490067210000087
的成本表示如下:
Figure BDA0002490067210000088
其中,
Figure BDA0002490067210000089
是成本系数。
对于基准功率值,应满足以下等式约束:
Figure BDA00024900672100000810
其中PLi,f是预测的固定负荷。功率损耗可以忽略或乘以总负载的小部分(2%-4%)。风力输出和固定负荷的不确定集采取多面体形式,如下所示:
-ΔPwi+Pwi,f≤Pwi,a≤ΔPwi+Pwi,f (8)
-ΔPLi+PLi,f≤PLi,a≤ΔPLi+PLi,f (9)
ΔPLi,ΔPwi≥0 (10)
其中Pwi,a和PLi,a是风电和固定负载的实际出力,ΔPwi和ΔPLi是通过一些适当的预测方法获得的最大功率偏差。
由于本发明不强调预测技术,因此这里不讨论预测的细节。最差的情况是当风电功率输出达到下限,固定负荷需求达到上限时,最大总功率偏离预测值如下:
Figure BDA0002490067210000091
其中ξ∈[0,1]是控制鲁棒性大小的参数,选择较大的数值意味着更保守,可根据经验或历史数据选择。
ΔPmax由CG备用和BSS备用的附加功率
Figure BDA0002490067210000092
补偿:
Figure BDA0002490067210000093
CGs、BSSs、SAs和销售/购买电力的电力输出应在风力发电和负荷最坏情况下最大限度和最小限度内:
Figure BDA0002490067210000094
Figure BDA0002490067210000095
Figure BDA0002490067210000096
Figure BDA0002490067210000097
Figure BDA0002490067210000098
Figure BDA0002490067210000101
其中Rgi,max和Rgi,min分别是CGs最大和最小的斜坡率,Δt是时间间隔。
储存在第i个BSS中的能量也有以下限制:
Figure BDA0002490067210000102
Figure BDA0002490067210000103
其中ηci和ηdi是能量的充放电效率;
Figure BDA0002490067210000104
是储存能量的初始值。
Figure BDA0002490067210000105
可以用放电功率
Figure BDA0002490067210000106
和充电功率
Figure BDA0002490067210000107
来表示,如(21)所示,它们不能同时为非零。
Figure BDA0002490067210000108
Figure BDA0002490067210000109
Figure BDA00024900672100001010
因此鲁棒优化考虑最坏的情况,我们得到:
Figure BDA00024900672100001011
Figure BDA00024900672100001012
为了考虑具有ndl线路的网络中的线路阻塞问题,添加了以下约束条件:
Figure BDA00024900672100001013
Figure BDA00024900672100001014
Figure BDA00024900672100001015
其中
Figure BDA00024900672100001016
表示节点i-j之间线路的功率潮流,PLinel,max表示上限,Bij表示基于PLinel的功率潮流方向定义的关联矩阵。
因此,在第s个电价的情况下,简化的HSR模型如下:
Figure BDA0002490067210000111
s.t.D(X)=0(29b)
E(X)≤0(29c)
其中xi是因变量,X=[x1,x2…,xM]=[Pg1,Pg2…,Pgng,Pbs1,Pbs2…,Pbsnbs,Psa1,Psa2…,Psansa,g1,g2…,gng,bs1,bs2…,bsnbs]T,fi表示(2)-(6),(29b) 包含(7),(12)和(23),(29c)包含(14)-(16)和(24)-(26);Ω包含(13),(17),(18)和(22)。
需要注意的是,这种方法有效且合理地减少了随机情景,因为这种方法只有LHS选择得到的ns个电价情景。
另外,如图1所示,在本发明中提供了一种基于智能电网混合优化模型的加速分布式优化方法,包括如下步骤:
步骤100、在多智能体系统一致的算法基础上建立混合随机规划鲁棒优化模型相对应的拉格朗日对偶为:
Figure BDA0002490067210000112
其中,λ和μ分别是D(X)和E(X)的拉格朗日对偶乘子;
步骤200、每个智能体拉格朗日对偶中分解得到子问题,所述子问题具体为:
Figure BDA0002490067210000113
其中,Xi是X在当地的复制,λi是λ在当地的复制,μi是μ在当地的复制;
步骤300、在每个智能体中设置初始变量,并逐次进行迭代,在第k 次迭代时由加速梯度下降法进行更新,具体为:
Figure BDA0002490067210000121
Figure BDA0002490067210000122
Figure BDA0002490067210000123
Figure BDA0002490067210000124
其中
Figure BDA0002490067210000125
是Li关于
Figure BDA0002490067210000126
的导数,τ1是固定的步长;
分布式优化的信息交换过程基于多智能体系统一致性算法,每个智能体只与它的邻居交换信息,信息交换矩阵W的信息交换权重wij计算如下:
Figure BDA0002490067210000127
其中Ni和ni是智能体i的邻居集和邻居个体;
PΩ是Xi在其取值集合上的投影,具体定义为:
Figure BDA0002490067210000128
将xij的更新、交换和投影协议简化为:
Figure BDA0002490067210000129
λi更新规则和信息交换协议为:
Figure BDA00024900672100001210
Figure BDA00024900672100001211
Figure BDA00024900672100001212
其中τ2是固定步长;
μi的更新规则和信息交换协议与λi相同:
Figure BDA0002490067210000131
Figure BDA0002490067210000132
Figure BDA0002490067210000133
迭代停止准则由以下条件确定:
Figure BDA0002490067210000134
这意味着连续K代的误差总和应该小于固定的误差容限δe
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (2)

1.一种智能电网混合优化模型的加速分布式优化方法,其特征在于,基于智能电网的混合优化模型实现,
所述模型分为两个阶段:
第一阶段:确定电价典型场景;
第二阶段:在所述第一阶段的每个所述电价典型场景下进行可再生能源RE和负载的混合随机规划鲁棒优化;
电价典型场景的获取方法包括:通过对电价历史数据的分析,得到电价的预测分布,再进行场景选择;
场景选择采用拉丁超立方体抽样方法,分别从(0,1)等分的ns个子区间产生ns个场景;
所述第二阶段的鲁棒优化是将传统能源发电CGs、风力发电WGs、电池存储系统BSSs、可移动设备SAs和在ns个场景下与外部电网的销售/购买电力的总体预期成本降到最低:
Figure FDA0003208646570000011
其中:
Figure FDA0003208646570000012
为第i个传统能源发电的成本函数,
Figure FDA0003208646570000013
为第i个传统能源发电的出力,ng为传统能源发电机个数;
Figure FDA0003208646570000014
为第i个风力发电的削减罚款函数,
Figure FDA0003208646570000015
为第i个风力发电的出力,nw为风力发电机个数;
Figure FDA0003208646570000016
为第i个储能系统的成本函数,
Figure FDA0003208646570000017
为第i个储能系统的出力,nb为储能系统个数;
Figure FDA0003208646570000018
为第i个可移动设备不满意成本的函数,
Figure FDA0003208646570000019
为第i个可移动设备的出力,nsa可移动设备个数;
Figure FDA00032086465700000110
为外部电网购买/出售电力的成本函数,
Figure FDA00032086465700000111
为外部电网购买/出售的电力;
在第s个电价的情况下,建立混合随机规划鲁棒优化模型具体为:
Figure FDA0003208646570000021
s.t.D(X)=0
E(X)≤0
其中,xi是因变量,fi(xi)表示传统能源发电成本函数、风力发电成本函数、电池存储系统成本函数、可移动设备成本函数和在ns个场景下于外部电网的销售/购买电力的成本函数;M表示场景的序号;
所述智能电网混合优化模型的加速分布式优化方法包括如下步骤:
步骤100、在多智能体系统一致的算法基础上建立混合随机规划鲁棒优化模型相对应的拉格朗日对偶为:
Figure FDA0003208646570000022
其中,λ和μ分别是D(X)和E(X)的拉格朗日对偶乘子;
步骤200、每个智能体拉格朗日对偶中分解得到子问题,所述子问题具体为:
Figure FDA0003208646570000023
其中,Xi是X在当地的复制,λi是λ在当地的复制,μi是μ在当地的复制;
步骤300、在每个智能体中设置初始变量,并逐次进行迭代,在第k次迭代时由加速梯度下降法进行更新,具体为:
Figure FDA0003208646570000024
Figure FDA0003208646570000025
Figure FDA0003208646570000026
Figure FDA0003208646570000027
其中
Figure FDA0003208646570000028
是Li关于
Figure FDA0003208646570000029
的导数,τ1是固定的步长;
分布式优化的信息交换过程基于多智能体系统一致性算法,每个智能体只与它的邻居交换信息,信息交换矩阵W的信息交换权重wij计算如下:
Figure FDA0003208646570000031
其中Ni和ni是智能体i的邻居集和邻居个体;
PΩ是Xi在其取值集合上的投影,具体定义为:
Figure FDA0003208646570000032
将xij的更新、交换和投影协议简化为:
Figure FDA0003208646570000033
λi更新规则和信息交换协议为:
Figure FDA0003208646570000034
Figure FDA0003208646570000035
Figure FDA0003208646570000036
其中τ2是固定步长;
μi的更新规则和信息交换协议与λi相同:
Figure FDA0003208646570000037
Figure FDA0003208646570000038
Figure FDA0003208646570000039
迭代停止准则由以下条件确定:
Figure FDA0003208646570000041
其中,δe是于固定的误差容限。
2.根据权利要求1所述的一种智能电网混合优化模型的加速分布式优化方法,其特征在于,第s个价格场景下各个成本具体为:
Figure FDA0003208646570000042
其中,
Figure FDA0003208646570000043
为基准值功率输出;
Figure FDA0003208646570000044
为可再生能源发电和负荷偏差的备用容量;agi,bgi和cgi为成本系数;Λ为风电偏差的协方差矩阵,σ为协方差总合;
Figure FDA0003208646570000045
其中,awi为成本系数
Figure FDA0003208646570000046
为基准值功率输出,Pwi,f预测手段得到的最大可用风能;
Figure FDA0003208646570000047
其中,
Figure FDA0003208646570000048
为基准功率值,
Figure FDA0003208646570000049
为可再生能源发电和负荷偏差的备用容量,absi为成本系数;
Figure FDA00032086465700000410
其中,asai为折中的成本系数,Psai,d指期望功耗;
Figure FDA00032086465700000411
其中,
Figure FDA00032086465700000412
是成本系数。
CN202010402590.6A 2020-05-13 2020-05-13 一种智能电网混合优化模型的加速分布式优化方法 Active CN111555367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010402590.6A CN111555367B (zh) 2020-05-13 2020-05-13 一种智能电网混合优化模型的加速分布式优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010402590.6A CN111555367B (zh) 2020-05-13 2020-05-13 一种智能电网混合优化模型的加速分布式优化方法

Publications (2)

Publication Number Publication Date
CN111555367A CN111555367A (zh) 2020-08-18
CN111555367B true CN111555367B (zh) 2021-10-01

Family

ID=72008142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010402590.6A Active CN111555367B (zh) 2020-05-13 2020-05-13 一种智能电网混合优化模型的加速分布式优化方法

Country Status (1)

Country Link
CN (1) CN111555367B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460482A (zh) * 2018-01-31 2018-08-28 南京理工大学 考虑可中断负荷和日前小时电价的风电消纳方法
CN110298138A (zh) * 2019-07-09 2019-10-01 南方电网科学研究院有限责任公司 一种综合能源系统优化方法、装置、设备及可读存储介质
CN110661258A (zh) * 2019-09-29 2020-01-07 广东电网有限责任公司 一种电力系统灵活性资源分布式鲁棒优化方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381505B1 (en) * 1998-09-28 2002-04-30 Aspen Technology, Inc. Robust steady-state target calculation for model predictive control
US7991512B2 (en) * 2007-08-28 2011-08-02 General Electric Company Hybrid robust predictive optimization method of power system dispatch
CN108322933B (zh) * 2018-01-24 2020-04-07 江南大学 一种节点加速梯度下降定位方法
US20200005201A1 (en) * 2018-07-02 2020-01-02 Demand Energy Networks, Inc. Stochastic economic optimization of electrical systems, and related systems, apparatuses, and methods
CN109508823B (zh) * 2018-11-06 2021-06-15 西安理工大学 一种基于场景分析法的配电网中分布式电源规划方法
CN110322056B (zh) * 2019-06-19 2022-08-16 河海大学 一种计及中央空调系统的虚拟电厂随机自适应鲁棒优化调度方法
CN111082451B (zh) * 2019-09-18 2023-04-18 中国电建集团青海省电力设计院有限公司 基于场景法的增量配电网多目标优化调度模型

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460482A (zh) * 2018-01-31 2018-08-28 南京理工大学 考虑可中断负荷和日前小时电价的风电消纳方法
CN110298138A (zh) * 2019-07-09 2019-10-01 南方电网科学研究院有限责任公司 一种综合能源系统优化方法、装置、设备及可读存储介质
CN110661258A (zh) * 2019-09-29 2020-01-07 广东电网有限责任公司 一种电力系统灵活性资源分布式鲁棒优化方法

Also Published As

Publication number Publication date
CN111555367A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Du et al. A cooperative game approach for coordinating multi-microgrid operation within distribution systems
Zhou et al. Game-theoretical energy management for energy Internet with big data-based renewable power forecasting
Luo et al. Short‐term operational planning framework for virtual power plants with high renewable penetrations
Zandrazavi et al. Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles
Su et al. Stochastic energy scheduling in microgrids with intermittent renewable energy resources
CN110298138B (zh) 一种综合能源系统优化方法、装置、设备及可读存储介质
Daghi et al. Factor analysis based optimal storage planning in active distribution network considering different battery technologies
Sharma et al. A critical and comparative review of energy management strategies for microgrids
Liang et al. Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China
Karimi et al. Optimal microgrid operation scheduling by a novel hybrid multi-objective and multi-attribute decision-making framework
Chang et al. A distributed robust optimization approach for the economic dispatch of flexible resources
Hou et al. A real-time rolling horizon chance constrained optimization model for energy hub scheduling
Javadi et al. Economic heat and power dispatch in modern power system harmony search algorithm versus analytical solution
Vosoogh et al. An intelligent day ahead energy management framework for networked microgrids considering high penetration of electric vehicles
CN109636056A (zh) 一种基于多智能体技术的多能源微网去中心化优化调度方法
Razmi et al. Comparative assessment of two different modes multi‐objective optimal power management of micro‐grid: grid‐connected and stand‐alone
Jia et al. A retroactive approach to microgrid real-time scheduling in quest of perfect dispatch solution
Rouholamini et al. Optimal fuzzy‐based power management for real time application in a hybrid generation system
Lin et al. Optimal ESS allocation in distribution network using accelerated generalised Benders decomposition
Parvizimosaed et al. A multi-objective optimization for energy management in a renewable micro-grid system: A data mining approach
Li et al. Optimization of dynamic dispatch for multiarea integrated energy system based on hierarchical learning method
Ashtari et al. A two-stage energy management framework for optimal scheduling of multi-microgrids with generation and demand forecasting
An et al. Real-time optimal operation control of micro energy grid coupling with electricity-thermal-gas considering prosumer characteristics
Pan et al. Dual‐layer optimal dispatching strategy for microgrid energy management systems considering demand response
ALAhmad et al. Optimal planning of energy storage system for hybrid power system considering multi correlated input stochastic variables

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant