CN111555357A - 一种光伏发电优化控制的方法 - Google Patents

一种光伏发电优化控制的方法 Download PDF

Info

Publication number
CN111555357A
CN111555357A CN202010497754.8A CN202010497754A CN111555357A CN 111555357 A CN111555357 A CN 111555357A CN 202010497754 A CN202010497754 A CN 202010497754A CN 111555357 A CN111555357 A CN 111555357A
Authority
CN
China
Prior art keywords
neural network
power generation
photovoltaic power
layer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010497754.8A
Other languages
English (en)
Inventor
王波
张博放
刘兴伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN202010497754.8A priority Critical patent/CN111555357A/zh
Publication of CN111555357A publication Critical patent/CN111555357A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种光伏发电优化控制的方法;利用新型电子器件忆阻器的忆阻特性,提出了一种用于并网控制的忆阻器神经网络优化算法,改善了光伏发电系统的控制性能。本发明公开的一种光伏发电优化控制方法,不仅实现了对电流的跟踪控制,而且有效减少了谐波电流含量,提高了光伏发电效率。

Description

一种光伏发电优化控制的方法
技术领域
本发明涉及光伏发电领域,特别涉及一种光伏发电优化控制的方法。
背景技术
作为一种清洁高效的新能源,近年来光伏发电得到了迅猛的发展。并网发电不仅是光伏利用的发展趋势,也是太阳能发电规模化发展的必然方向。在实际的光伏发电系统中,谐波电流含量较高,这个问题不仅会降低电能的利用率,使电气设备过热、绝缘老化、产生噪声、缩短使用寿命,严重时将会导致电气设备发生故障、烧毁、引起继电保护等自动装置的错误动作,干扰周围的电子设备。为了更高效、环保地利用太阳能,实现对谐波电流的有效抑制是光伏发电中的一个重要研究方向。
发明内容
为了解决背景技术中的问题,本发明公开了一种光伏发电优化控制的方法,包括以下步骤:
步骤1:建立一种基于忆阻器神经网络优化控制的光伏发电系统模型;
步骤2:建立一种忆阻器神经网络,忆阻神经网络选用J-I-L 结构,输入层为J个节点,隐含层为I个节点,输出层为 L个节点,Gij为连接输入层和隐含层之间的权值,Gjl为隐含层与输出层间的权值,△Gij为权值的更新值;
隐含层的输入和输出为:
Figure 100002_DEST_PATH_IMAGE001
其中,Roff和Ron为忆阻器的两个极限电阻值,uv为离子移动速率,D为两层二氧化钛总厚度,v为激励脉冲,△t为激励脉冲时间;
输出层的输入和输出为:
Figure 100002_DEST_PATH_IMAGE002
具体运行如下:
(1)初始化忆阻器神经网络,给出输入层、输出层中神经元的个数以及初始参数;
(2)采样得到指定电流i* c和输出电流ic,得到误差电流e(k)= ic-i* c
(3)更新忆阻器神经网络权值;
(4)计算忆阻器神经网络输出,确定所述PID模块的最优控制参数;
(5)令 k=k+1,返回(2);
步骤3:误差电流e(k)被输入到经过忆阻器神经网络优化后的PID模块产生作用于所述SPWM模块的控制信号;
步骤4:所述SPWM模块的输出信号作用于所述光伏逆变器,使得光伏发电系统的输出电流ic跟踪指定电流i* c
有益效果:
本专利公开的一种光伏发电优化控制的方法,结合新型电子器件忆阻器搭建出一种基于忆阻器神经网络优化控制的光伏发电系统,不仅实现了对电流的跟踪控制,而且降低了谐波电流对输出电流的影响。
附图说明
图1 是本发明实施例的一种基于忆阻器神经网络优化控制的光伏发电系统框图。
图2 是本发明实施例的一种基于忆阻器神经网络优化控制的光伏发电系统的输出电流波形。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图和实施方式对本发明实施例作进一步的详细说明。
如图1所示,一种光伏发电优化控制的方法的具体实施包括以下步骤:
步骤1:建立一种基于忆阻器神经网络优化控制的光伏发电系统模型;
步骤2:建立一种忆阻器神经网络,忆阻神经网络选用J-I-L 结构,输入层为J个节点,隐含层为I个节点,输出层为 L个节点,Gij为连接输入层和隐含层之间的权值,Gjl为隐含层与输出层间的权值,△Gij为权值的更新值;
隐含层的输入和输出为:
Figure DEST_PATH_IMAGE003
其中,Roff和Ron为忆阻器的两个极限电阻值,uv为离子移动速率,D为两层二氧化钛总厚度,v为激励脉冲,△t为激励脉冲时间;
输出层的输入和输出为:
Figure 11212DEST_PATH_IMAGE002
具体运行如下:
(1)初始化忆阻器神经网络,给出输入层、输出层中神经元的个数以及初始参数;
(2)采样得到指定电流i* c和输出电流ic,得到误差电流e(k)= ic-i* c
(3)更新忆阻器神经网络权值;
(4)计算忆阻器神经网络输出,确定所述PID模块的最优控制参数;
(5)令 k=k+1,返回(2);
步骤3:误差电流e(k)被输入到经过忆阻器神经网络优化后的PID模块产生作用于所述SPWM模块的控制信号;
步骤4:所述SPWM模块的输出信号作用于所述光伏逆变器,使得光伏发电系统的输出电流ic跟踪指定电流i* c
为验证上述方法的可实现性,本实施例基于上述步骤,在Matlab13.0环境中进行了仿真, 图2显示了一种基于忆阻器神经网络优化控制的光伏发电系统的输出电流波形。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (1)

1.一种光伏发电优化控制的方法,其特征在于,包括以下步骤:
步骤1:建立一种基于忆阻器神经网络优化控制的光伏发电系统模型;
步骤2:建立一种忆阻器神经网络,忆阻神经网络选用J-I-L 结构,输入层为J个节点,隐含层为I个节点,输出层为 L个节点,Gij为连接输入层和隐含层之间的权值,Gjl为隐含层与输出层间的权值,△Gij为权值的更新值;
隐含层的输入和输出为:
Figure DEST_PATH_IMAGE001
其中,Roff和Ron为忆阻器的两个极限电阻值,uv为离子移动速率,D为两层二氧化钛总厚度,v为激励脉冲,△t为激励脉冲时间;
输出层的输入和输出为:
Figure DEST_PATH_IMAGE002
具体运行如下:
(1)初始化忆阻器神经网络,给出输入层、输出层中神经元的个数以及初始参数;
(2)采样得到指定电流i* c和输出电流ic,得到误差电流e(k)= ic-i* c
(3)更新忆阻器神经网络权值;
(4)计算忆阻器神经网络输出,确定所述PID模块的最优控制参数;
(5)令 k=k+1,返回(2);
步骤3:误差电流e(k)被输入到经过忆阻器神经网络优化后的PID模块产生作用于所述SPWM模块的控制信号;
步骤4:所述SPWM模块的输出信号作用于所述光伏逆变器,使得光伏发电系统的输出电流ic跟踪指定电流i* c
CN202010497754.8A 2020-06-04 2020-06-04 一种光伏发电优化控制的方法 Pending CN111555357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010497754.8A CN111555357A (zh) 2020-06-04 2020-06-04 一种光伏发电优化控制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010497754.8A CN111555357A (zh) 2020-06-04 2020-06-04 一种光伏发电优化控制的方法

Publications (1)

Publication Number Publication Date
CN111555357A true CN111555357A (zh) 2020-08-18

Family

ID=72008677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010497754.8A Pending CN111555357A (zh) 2020-06-04 2020-06-04 一种光伏发电优化控制的方法

Country Status (1)

Country Link
CN (1) CN111555357A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047753A (zh) * 2022-06-16 2022-09-13 中国科学院光电技术研究所 一种基于模糊算法的自适应忆阻pid控制器设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495953A (zh) * 2011-11-29 2012-06-13 河北省电力建设调整试验所 基于采集到的电能质量数据和环境参数对光伏数据进行分析评估和发电负荷预测的方法
CN105305446A (zh) * 2015-10-22 2016-02-03 南京亚派科技股份有限公司 基于智能控制的谐波电流跟踪方法
CN106532749A (zh) * 2016-12-27 2017-03-22 合肥工业大学 一种微电网不平衡功率和谐波电压补偿系统及其应用
CN107533668A (zh) * 2016-03-11 2018-01-02 慧与发展有限责任合伙企业 用于计算神经网络的节点值的硬件加速器
CN109659940A (zh) * 2019-02-25 2019-04-19 南京工程学院 一种用于微电网特定次谐波补偿的储能变流器控制方法
CN109960307A (zh) * 2019-03-01 2019-07-02 湖南诺诚光伏能源有限公司 一种光伏离网逆变器mppt自抗扰控制方法
CN110651330A (zh) * 2017-05-22 2020-01-03 佛罗里达大学研究基金会 二分忆阻网络中的深度学习

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495953A (zh) * 2011-11-29 2012-06-13 河北省电力建设调整试验所 基于采集到的电能质量数据和环境参数对光伏数据进行分析评估和发电负荷预测的方法
CN105305446A (zh) * 2015-10-22 2016-02-03 南京亚派科技股份有限公司 基于智能控制的谐波电流跟踪方法
CN107533668A (zh) * 2016-03-11 2018-01-02 慧与发展有限责任合伙企业 用于计算神经网络的节点值的硬件加速器
CN106532749A (zh) * 2016-12-27 2017-03-22 合肥工业大学 一种微电网不平衡功率和谐波电压补偿系统及其应用
CN110651330A (zh) * 2017-05-22 2020-01-03 佛罗里达大学研究基金会 二分忆阻网络中的深度学习
CN109659940A (zh) * 2019-02-25 2019-04-19 南京工程学院 一种用于微电网特定次谐波补偿的储能变流器控制方法
CN109960307A (zh) * 2019-03-01 2019-07-02 湖南诺诚光伏能源有限公司 一种光伏离网逆变器mppt自抗扰控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏思为: "《基于忆阻神经网络PID控制器设计》", 《计算机学报》 *
魏江涛: "《忆阻神经网络在有源电力滤波器中的应用》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047753A (zh) * 2022-06-16 2022-09-13 中国科学院光电技术研究所 一种基于模糊算法的自适应忆阻pid控制器设计方法

Similar Documents

Publication Publication Date Title
Yadav et al. A literature review on industrially accepted MPPT techniques for solar PV system
Shadmand et al. An improved MPPT technique for high gain DC-DC converter using model predictive control for photovoltaic applications
Pathak et al. An application of intelligent non-linear discrete-PID controller for MPPT of PV system
Shadmand et al. Maximum Power Point Tracking using Model Predictive Control of a flyback converter for photovoltaic applications
CN107154647B (zh) 一种光伏发电系统的功率降额方法及控制器
US20130049478A1 (en) Power system, method of operation thereof, and controller for operating
Deniz RETRACTED ARTICLE: ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array
Gnanavel et al. Experimental validation of an eleven level symmetrical inverter using genetic algorithm and queen bee assisted genetic algorithm for solar photovoltaic applications
Ahmed et al. Optimal controller tuning for P&O maximum power point tracking of PV systems using genetic and cuckoo search algorithms
Bellini et al. MPPT algorithm for current balancing of partially shaded photovoltaic modules
Jena et al. Setting a fostered energy network by decarbonizing the grid: H ybridization, control, and future solutions upon storage
Abushaiba et al. A new model predictive based maximum power point tracking method for photovoltaic applications
CN111555357A (zh) 一种光伏发电优化控制的方法
Prince et al. FPA tuned extended Kalman filter for power quality enhancement in PV integrated shunt active power filter
Gautam et al. An intelligent BWO algorithm-based maximum power extraction from solar-PV-powered BLDC motor-driven light electric vehicles
Vikram et al. Solar PV Array Fed BLDC Motor Using Zeta Converter For Water Pumping Applications
Varma et al. A total-cross-tied-based dynamic photovoltaic array reconfiguration for water pumping system
Ilic et al. Digital average current-mode controller for DC–DC converters in physical vapor deposition applications
CN113690926B (zh) 一种改进烟花算法优化单相逆变器控制参数整定方法
Flores-Bahamonde et al. Sub-modular power optimizers based on partial power converters for utility scale pv plants
Madark et al. Adaptive backstepping control of induction motor powered by photovoltaic generator
JP5601912B2 (ja) 電力変換装置の制御装置、および、この制御装置を用いた系統連系インバータシステム
Zhang et al. Multi-objective fuzzy-optimization of crowbar resistances for the low-voltage ride-through of doubly fed induction wind turbine generation systems
Zhu et al. Power ramp-rate control for differential power processing-based distributed pv systems
Omine et al. Hybrid MPPT algorithms for photovoltaic systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200818

WD01 Invention patent application deemed withdrawn after publication