CN111550522A - A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness - Google Patents
A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness Download PDFInfo
- Publication number
- CN111550522A CN111550522A CN202010427123.9A CN202010427123A CN111550522A CN 111550522 A CN111550522 A CN 111550522A CN 202010427123 A CN202010427123 A CN 202010427123A CN 111550522 A CN111550522 A CN 111550522A
- Authority
- CN
- China
- Prior art keywords
- fixedly connected
- propulsion shafting
- high static
- low dynamic
- dynamic stiffness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 32
- 230000000737 periodic effect Effects 0.000 title claims abstract description 22
- 230000005284 excitation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000013016 damping Methods 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/14—Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
- F16F15/1407—Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
- F16F15/1414—Masses driven by elastic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H23/00—Transmitting power from propulsion power plant to propulsive elements
- B63H23/32—Other parts
- B63H23/34—Propeller shafts; Paddle-wheel shafts; Attachment of propellers on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/16—Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
- F16F15/167—Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/08—Inertia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/10—Adhesion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2238/00—Type of springs or dampers
- F16F2238/02—Springs
- F16F2238/026—Springs wound- or coil-like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及船舶推进轴系减振技术领域,具体为一种带高静低动刚度振子周期结构的船舶推进轴系。The invention relates to the technical field of vibration reduction of ship propulsion shafting, in particular to a ship propulsion shafting with a vibrator periodic structure with high static and low dynamic stiffness.
背景技术Background technique
螺旋桨是水面船舶的主要推进装置,船舶在水中航行,不可避免地在艉部形成不均匀的伴流场,螺旋桨在不均匀伴流场中旋转会产生脉动推力,经推进轴系、艉轴承、中间轴承、推力轴承及其基座传递到船体,引起船体产生振动,进而形成水下声辐射,而船舶推进轴系是螺旋桨工作时引起的激振力向壳体传播的主要途径,因此,对轴系振动采取有效的控制措施显得尤为重要,是船舶艉部激励引起低频振动噪声控制的关键所在,对于船舶推进轴系而言,其纵向振动控制的重点是减小经推力轴承基座传递至船体的二次脉动激励力,由于纵向力传递路径为螺旋桨、传动轴、推力轴承、推力轴承基座、船体之间,因此只能在此路径上对振源进行隔离或者消减,推进轴系的纵向静推力一般较大,隔振器需承受较大的静载荷,因此隔振具有一定的难度,所以轴系纵向振动控制技术的研究大多安装动力吸振器,但仍缺乏对低频纵振控制的有效措施,带高静低动刚度振子周期结构的低频带隙特性应用于推进轴系减振具有很大的潜力,可以避免传统的动力吸振技术对低频段或超低频段吸振效果差的不足。The propeller is the main propulsion device of the surface ship. When the ship sails in the water, an uneven wake field is inevitably formed in the stern. The intermediate bearing, thrust bearing and its base are transmitted to the hull, causing the hull to vibrate, thereby forming underwater sound radiation, and the ship's propulsion shafting is the main way for the excitation force caused by the propeller to propagate to the hull. It is particularly important to take effective control measures for shafting vibration, which is the key to the control of low-frequency vibration and noise caused by the excitation of the stern of the ship. The secondary pulsating excitation force of the hull, since the longitudinal force transmission path is between the propeller, the transmission shaft, the thrust bearing, the thrust bearing base, and the hull, the vibration source can only be isolated or reduced on this path, and the propulsion shaft The longitudinal static thrust is generally large, and the vibration isolator needs to bear a large static load, so vibration isolation is difficult. Therefore, most of the research on shafting longitudinal vibration control technology installs dynamic vibration absorbers, but there is still a lack of low-frequency longitudinal vibration control. Effective measures, the low frequency bandgap characteristics of the periodic structure of the vibrator with high static and low dynamic stiffness have great potential in the vibration reduction of propulsion shafting, which can avoid the insufficiency of traditional dynamic vibration absorption technology for low frequency or ultra-low frequency vibration absorption.
发明内容SUMMARY OF THE INVENTION
(一)解决的技术问题(1) Technical problems solved
针对现有技术的不足,本发明提供了一种带高静低动刚度振子周期结构的船舶推进轴系,解决了现有技术中船舶推进轴系低频或超低频纵向振动控制难的问题。Aiming at the deficiencies of the prior art, the present invention provides a ship propulsion shafting with a periodic structure of vibrators with high static and low dynamic stiffness, which solves the problem that the low frequency or ultra-low frequency longitudinal vibration of the ship propulsion shafting is difficult to control in the prior art.
(二)技术方案(2) Technical solutions
为实现以上目的,本发明通过以下技术方案予以实现:一种带高静低动刚度振子周期结构的船舶推进轴系,包括推进轴系,所述推进轴系内设置有若干个纵向周期排列的内孔,所述内孔内均设置有质量振子,所述质量振子一侧的顶部固定连接在第一粘性阻尼器的一端且质量振子同侧的底部固定连接在第一线性弹簧的一端,所述质量振子另一侧的顶部固定连接在第二粘性阻尼器的一端且质量振子同侧的底部固定连接在第二线性弹簧的一端,所述质量振子顶端固定连接有第一凸轮,所述第一凸轮顶部设置有第一滚轮,所述第一滚轮转动连接在第一机架的中间位置,所述第一机架顶部一侧固定连接在第三线性弹簧的底端且第一机架顶部另一侧固定连接在第三粘性阻尼器的底端,所述质量振子底端固定连接有第二凸轮,所述第二凸轮底部设置有第二滚轮,所述第二滚轮转动连接在第二机架的中间位置,所述第二机架底部一侧固定连接在第四线性弹簧的顶端且第二机架底部另一侧固定连接在第四粘性阻尼器的顶端。In order to achieve the above purpose, the present invention is achieved through the following technical solutions: a ship propulsion shaft system with a periodic structure of vibrators with high static and low dynamic stiffness, including a propulsion shaft The inner hole is provided with a mass vibrator, the top of one side of the mass vibrator is fixedly connected to one end of the first viscous damper, and the bottom of the same side of the mass vibrator is fixedly connected to one end of the first linear spring, so The top of the other side of the mass vibrator is fixedly connected to one end of the second viscous damper and the bottom of the same side of the mass vibrator is fixedly connected to one end of the second linear spring, the top of the mass vibrator is fixedly connected with a first cam, and the A cam top is provided with a first roller, the first roller is rotatably connected to the middle position of the first frame, one side of the top of the first frame is fixedly connected to the bottom end of the third linear spring and the top of the first frame The other side is fixedly connected to the bottom end of the third viscous damper, the bottom end of the mass oscillator is fixedly connected with a second cam, the bottom of the second cam is provided with a second roller, and the second roller is rotatably connected to the second In the middle position of the frame, one side of the bottom of the second frame is fixedly connected to the top of the fourth linear spring and the other side of the bottom of the second frame is fixedly connected to the top of the fourth viscous damper.
优选的,所述第一粘性阻尼器和第一线性弹簧的另一端均固定连接在内孔内的一边侧壁。Preferably, the other ends of the first viscous damper and the first linear spring are fixedly connected to one side wall of the inner hole.
优选的,所述第二粘性阻尼器和第二线性弹簧的另一端均固定连接在内孔内的另一边侧壁。Preferably, the other ends of the second viscous damper and the second linear spring are fixedly connected to the other side wall in the inner hole.
优选的,所述第三线性弹簧和第三粘性阻尼器的顶端均固定连接在内孔内的顶部侧壁。Preferably, the top ends of the third linear spring and the third viscous damper are both fixedly connected to the top side walls in the inner hole.
优选的,所述第四线性弹簧和第四粘性阻尼器的底端均固定连接在内孔内的底部侧壁。Preferably, the bottom ends of the fourth linear spring and the fourth viscous damper are both fixedly connected to the bottom side wall in the inner hole.
优选的,所述第一机架和第二机架的两侧均固定连接有滑块,所述滑块与内孔的内壁之间均为滑动连接。Preferably, sliding blocks are fixedly connected to both sides of the first frame and the second frame, and the sliding blocks are all slidably connected to the inner wall of the inner hole.
工作原理:由第一滚轮9与第一凸轮8、第二滚轮15与第二凸轮14共同构成负刚度机构,由第一线性弹簧5与第二线性弹簧7构成正刚度机构;当质量振子3在静平衡位置时,负刚度机构与正刚度机构并联叠加组成高静低动刚度机构。对高静低动刚度机构进行静力分析(参见图2);质量为m的质量振子3;第一粘性阻尼器4和第二粘性阻尼器6为阻尼系数ch的水平方向阻尼器;第一线性弹簧5与第二线性弹簧7为刚度kh的水平弹簧;第一凸轮8与第二凸轮14为半径为R的半圆形凸轮;第一滚轮9与第二滚轮15为半径为r的圆形滚轮;第三线性弹簧12与第四线性弹簧17为刚度为kv的竖直弹簧;第三粘性阻尼器13与第四粘性阻尼器18为阻尼系数为cv的竖直方向阻尼器;当系统处于静力平衡时,第四线性弹簧17的压缩量为δ1,第三线性弹簧12的压缩量为δ2,考虑到重力的影响,则:Working principle: the
kv(δ1-δ2)=mg (1)k v (δ 1 -δ 2 )=mg (1)
水平方向的刚度和为2kh,当水平方向产生x位移,相应的弹性回复力为:The stiffness sum in the horizontal direction is 2k h . When the x displacement occurs in the horizontal direction, the corresponding elastic restoring force is:
此时,若则凸轮滚轮脱离,相应的弹性回复力为f=2khx。对弹性力进行求导,可得系统的动刚度位移表达式为:at this time, like Then the cam roller is disengaged, and the corresponding elastic restoring force is f=2k h x. Taking the derivation of the elastic force, the dynamic stiffness displacement expression of the system can be obtained as:
当系统处于静平衡位置时,When the system is in static equilibrium,
当结构参数满足时,系统具有准零动刚度特性即高静低动刚度特性;这时质量振子具有低频或超低频的特征,当这种具有超低固有频率的质量振子沿着轴系纵向周期布置就构成了推进轴系周期结构,周期结构能够表现出对弹性波的衰减域特性,称为带隙特性。当弹性波的频率落在带隙范围内时,弹性波的传播将大大衰减,减振效果明显提高。因此,周期结构具备对某些低频段或超低频弹性波的隔离能力。当螺旋桨在不均匀伴流场中工作时,会承受纵向脉动激励力的作用,该纵向脉动激励力的特征频率为低频或超低频,一旦此低频纵向弹性波落入推进轴系的纵振抑制频率带隙,纵向振动即可被抑制住,从而实现推进轴系纵向振动的控制。When the structural parameters are satisfied When , the system has quasi-zero dynamic stiffness characteristics, that is, high static and low dynamic stiffness characteristics; at this time, the mass oscillator has the characteristics of low frequency or ultra-low frequency. When this mass oscillator with ultra-low natural frequency is periodically arranged along the longitudinal axis of the shaft system, it constitutes Pushing forward the periodic structure of the shafting, the periodic structure can exhibit the attenuation domain characteristic of elastic waves, which is called the band gap characteristic. When the frequency of the elastic wave falls within the band gap range, the propagation of the elastic wave will be greatly attenuated, and the vibration reduction effect will be significantly improved. Therefore, the periodic structure has the ability to isolate some low-frequency or ultra-low frequency elastic waves. When the propeller works in an uneven wake field, it will be subjected to the action of the longitudinal pulsation excitation force. The characteristic frequency of the longitudinal pulsation excitation force is low frequency or ultra-low frequency. Once the low frequency longitudinal elastic wave falls into the propulsion shaft system, the longitudinal vibration is suppressed. With the frequency band gap, the longitudinal vibration can be suppressed, so as to realize the control of the longitudinal vibration of the propulsion shafting.
(三)有益效果(3) Beneficial effects
本发明提供了一种带高静低动刚度振子周期结构的船舶推进轴系。具备以下有益效果:The invention provides a ship propulsion shaft system with a periodic structure of a vibrator with high static and low dynamic stiffness. Has the following beneficial effects:
1、本发明通过第一线性弹簧、第二线性弹簧、第一凸轮、第一滚轮、第二凸轮、第二滚轮构成高静低动刚度机构,使质量振子具有低频的特性,并沿着轴系周期排列组成推进轴系周期结构,从而可以通过具有高静低动刚度振子实现船舶推进轴系的低频或超低频的纵向振动带隙减振。1. The present invention constitutes a high static and low dynamic stiffness mechanism through the first linear spring, the second linear spring, the first cam, the first roller, the second cam and the second roller, so that the mass vibrator has the characteristics of low frequency, and along the axis The propulsion shafting is periodically arranged to form a periodic structure of the propulsion shafting, so that the low-frequency or ultra-low frequency longitudinal vibration bandgap vibration reduction of the ship's propulsion shafting can be realized by the vibrator with high static and low dynamic stiffness.
2、本发明通过将质量振子设置在船舶推进轴系的内孔中,可以节省空间,使结构更紧凑,稳定性更好,极大的减少了推进轴系旋转时对质量振子的不利影响,具有较好的工程应用推广前景。2. By arranging the mass oscillator in the inner hole of the ship's propulsion shaft system, the present invention can save space, make the structure more compact and have better stability, and greatly reduce the adverse effects on the mass oscillator when the propulsion shaft system rotates. It has a good prospect of engineering application promotion.
附图说明Description of drawings
图1为本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2为本发明的质量振子单元结构示意图。FIG. 2 is a schematic structural diagram of the mass oscillator unit of the present invention.
其中,1、推进轴系;2、内孔;3、质量振子;4、第一粘性阻尼器;5、第一线性弹簧;6、第二粘性阻尼器;7、第二线性弹簧;8、第一凸轮;9、第一滚轮;10、第一机架;11、滑块;12、第三线性弹簧;13、第三粘性阻尼器;14、第二凸轮;15、第二滚轮;16、第二机架;17、第四线性弹簧;18、第四粘性阻尼器。Among them, 1. Propulsion shafting; 2. Inner hole; 3. Mass vibrator; 4. First viscous damper; 5. First linear spring; 6. Second viscous damper; 7. Second linear spring; 8. The first cam; 9, the first roller; 10, the first frame; 11, the slider; 12, the third linear spring; 13, the third viscous damper; 14, the second cam; 15, the second roller; 16 , the second frame; 17, the fourth linear spring; 18, the fourth viscous damper.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例:Example:
如图1-2所示,本发明实施例提供一种带高静低动刚度振子周期结构的船舶推进轴系,包括推进轴系1,推进轴系1内设置有若干个纵向周期排列的内孔2,内孔2内均设置有质量振子3,将质量振子3设置在内孔2中,可以节省更多的空间,并使推进轴系1的结构更加紧凑,稳定性更好,而且还能够极大的减少推进轴系1在工作旋转时对质量振子3产生不利影响,质量振子3一侧的顶部固定连接在第一粘性阻尼器4的一端且质量振子3同侧的底部固定连接在第一线性弹簧5的一端,质量振子3另一侧的顶部固定连接在第二粘性阻尼器6的一端且质量振子3同侧的底部固定连接在第二线性弹簧7的一端,通过第一线性弹簧5和第二线性弹簧7可以承受质量振子3振动时的惯性力,质量振子3顶端固定连接有第一凸轮8,第一凸轮8顶部设置有第一滚轮9,第一滚轮9转动连接在第一机架10的中间位置,第一机架10顶部一侧固定连接在第三线性弹簧12的底端且第一机架10顶部另一侧固定连接在第三粘性阻尼器13的底端,质量振子3底端固定连接有第二凸轮14,第二凸轮14底部设置有第二滚轮15,第二滚轮15转动连接在第二机架16的中间位置,第二机架16底部一侧固定连接在第四线性弹簧17的顶端且第二机架16底部另一侧固定连接在第四粘性阻尼器18的顶端。第一粘性阻尼器4和第一线性弹簧5的另一端均固定连接在内孔2内的一边侧壁,第二粘性阻尼器6和第二线性弹簧7的另一端均固定连接在内孔2内的另一边侧壁,第三线性弹簧12和第三粘性阻尼器13的顶端均固定连接在内孔2内的顶部侧壁,第四线性弹簧17和第四粘性阻尼器18的底端均固定连接在内孔2内的底部侧壁,第一机架10和第二机架16的两侧均固定连接有滑块11,滑块11与内孔2的内壁之间均为滑动连接,滑块11使第一机架10和第二机架16可以在内孔2中移动,同时通过内孔2的内壁又可以限制第一机架10和第二机架16只能按照限定的方向移动。由第一滚轮9与第一凸轮8、第二滚轮15与第二凸轮14共同构成负刚度机构,由第一线性弹簧5与第二线性弹簧7构成正刚度机构;当质量振子3在静平衡位置时,负刚度机构与正刚度机构并联叠加组成高静低动刚度机构,此时质量振子3具有低频或超低频的特征。当这种具有超低固有频率的质量振子3沿着推进轴系1纵向周期布置就构成了推进轴系周期结构,周期结构能够表现出对弹性波的衰减域特性。当弹性波的频率落在带隙范围内时,弹性波的传播将大大衰减,减振效果明显提高;由于螺旋桨在不均匀伴流场中工作时,会承受低频或超低频纵向脉动激励力的作用,一旦此低频纵向弹性波落入推进轴系的纵振抑制频率带隙,纵向振动即可被抑制住,从而实现推进轴系纵向振动的控制。As shown in Figures 1-2, an embodiment of the present invention provides a ship propulsion shafting with a periodic structure of vibrators with high static and low dynamic stiffness, including a propulsion shafting 1, and the propulsion shafting 1 is provided with a number of longitudinally arranged inner shafts.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010427123.9A CN111550522B (en) | 2020-05-19 | 2020-05-19 | A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010427123.9A CN111550522B (en) | 2020-05-19 | 2020-05-19 | A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111550522A true CN111550522A (en) | 2020-08-18 |
CN111550522B CN111550522B (en) | 2022-08-12 |
Family
ID=71998728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010427123.9A Expired - Fee Related CN111550522B (en) | 2020-05-19 | 2020-05-19 | A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111550522B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112539243A (en) * | 2020-11-24 | 2021-03-23 | 江苏科技大学 | Polar region ship shafting vibration intelligent control device that circles round |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013101439A1 (en) * | 2013-02-13 | 2014-08-28 | Harald Breitbach | Torsional vibration damper for attenuating torsional vibrations of rotating shaft, has spring element that is pre-stressed to provide negative stiffness for deflections of damper masses from starting position |
US20150123417A1 (en) * | 2013-11-01 | 2015-05-07 | Sabanci University | Variable Negative Stiffness Actuation |
CN106567908A (en) * | 2016-11-17 | 2017-04-19 | 石家庄铁道大学 | Segmented negative rigidity mechanism and vibration damping device provided with the same |
CN107740843A (en) * | 2017-11-17 | 2018-02-27 | 北京市劳动保护科学研究所 | A kind of cam bawl negative stiffness structure low frequency vibration isolation device |
CN108843697A (en) * | 2018-05-15 | 2018-11-20 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of adjustable shafting damper of ship longitudinal rigidity |
CN109973571A (en) * | 2017-12-28 | 2019-07-05 | 北京市劳动保护科学研究所 | A quasi-zero stiffness vibration isolator with horizontal damping |
CN110107632A (en) * | 2019-06-03 | 2019-08-09 | 江南大学 | A kind of positive and negative Stiffness low frequency vibration isolation device coupling dynamic vibration absorber |
CN110285181A (en) * | 2019-07-12 | 2019-09-27 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | The vibration isolator of high quiet low dynamic stiffness characteristic and rail system with it |
-
2020
- 2020-05-19 CN CN202010427123.9A patent/CN111550522B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013101439A1 (en) * | 2013-02-13 | 2014-08-28 | Harald Breitbach | Torsional vibration damper for attenuating torsional vibrations of rotating shaft, has spring element that is pre-stressed to provide negative stiffness for deflections of damper masses from starting position |
US20150123417A1 (en) * | 2013-11-01 | 2015-05-07 | Sabanci University | Variable Negative Stiffness Actuation |
CN106567908A (en) * | 2016-11-17 | 2017-04-19 | 石家庄铁道大学 | Segmented negative rigidity mechanism and vibration damping device provided with the same |
CN107740843A (en) * | 2017-11-17 | 2018-02-27 | 北京市劳动保护科学研究所 | A kind of cam bawl negative stiffness structure low frequency vibration isolation device |
CN109973571A (en) * | 2017-12-28 | 2019-07-05 | 北京市劳动保护科学研究所 | A quasi-zero stiffness vibration isolator with horizontal damping |
CN108843697A (en) * | 2018-05-15 | 2018-11-20 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of adjustable shafting damper of ship longitudinal rigidity |
CN110107632A (en) * | 2019-06-03 | 2019-08-09 | 江南大学 | A kind of positive and negative Stiffness low frequency vibration isolation device coupling dynamic vibration absorber |
CN110285181A (en) * | 2019-07-12 | 2019-09-27 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | The vibration isolator of high quiet low dynamic stiffness characteristic and rail system with it |
Non-Patent Citations (1)
Title |
---|
朱石坚等: "《舰船机械隔振系统线谱混沌化控制》", 31 August 2014, 国防工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112539243A (en) * | 2020-11-24 | 2021-03-23 | 江苏科技大学 | Polar region ship shafting vibration intelligent control device that circles round |
Also Published As
Publication number | Publication date |
---|---|
CN111550522B (en) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Acoustic metamaterials for noise reduction: a review | |
Lin et al. | A study of vibration and vibration control of ship structures | |
Chen et al. | Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators | |
Zhang | Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach | |
CN107701635B (en) | Low-Frequency Broadband Local Resonance Structures with Super Damping Properties | |
CN109949789B (en) | Frequency-variable sandwich sheet vibration reduction superstructure | |
Sun | Experimental investigation of vibration damper composed of acoustic metamaterials | |
CN111550522B (en) | A ship propulsion shafting system with oscillator periodic structure with high static and low dynamic stiffness | |
CN110528340A (en) | Phonon crystal vibration isolator and floating plate track device for vibration insutation | |
Gao et al. | Low frequency acoustic properties of a honeycomb-silicone rubber acoustic metamaterial | |
CN112356521A (en) | Low-frequency vibration-damping light metamaterial lattice structure and manufacturing method thereof | |
CN111619779A (en) | Vibration isolation device based on acoustic black hole structure and ship system | |
Xiao et al. | Quasi-static band gaps in metamaterial pipes with negative stiffness resonators | |
Qiang et al. | Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam | |
CN104763765A (en) | Novel high static and low dynamic rigidity piecewise linear vibration isolator and work method thereof | |
Chen et al. | Research on vibration reduction performance of metaconcrete based on local resonance theory | |
CN205845511U (en) | A Defect State Structural Acoustic Metamaterial Panel | |
CN117216932B (en) | Method and system for designing punching elastic super-structure | |
Kohlenberg et al. | Modelling of acoustic liners consisting of helmholtz resonators coupled with a second cavity by flexible walls | |
Yan et al. | Vibrational power flow analysis of a submerged viscoelastic cylindrical shell with wave propagation approach | |
CN109018188A (en) | A kind of wavy period buoyant raft of annular and preparation method thereof | |
CN110594332A (en) | A Broadband Vibration and Noise Reduction Metamaterial Multi-span Beam Structure | |
CN210933658U (en) | A kind of super structure vibration damping tennis racket | |
Zou et al. | The low-noise optimization of a swath ship’s structures based on the three-dimensional sono-elasticity of ships | |
CN111833837A (en) | A tunable single-stage multi-band gap acoustic metamaterial structure and adjustment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220812 |
|
CF01 | Termination of patent right due to non-payment of annual fee |