CN111549300A - 一种屈服强度800MPa级工程机械用钢及其制备方法 - Google Patents

一种屈服强度800MPa级工程机械用钢及其制备方法 Download PDF

Info

Publication number
CN111549300A
CN111549300A CN202010383691.3A CN202010383691A CN111549300A CN 111549300 A CN111549300 A CN 111549300A CN 202010383691 A CN202010383691 A CN 202010383691A CN 111549300 A CN111549300 A CN 111549300A
Authority
CN
China
Prior art keywords
rolling
steel
temperature
yield strength
engineering machinery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010383691.3A
Other languages
English (en)
Inventor
卢晓禹
王少炳
任丽芳
黄利
杨雄
刘朋成
魏淼
董丽丽
王海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202010383691.3A priority Critical patent/CN111549300A/zh
Publication of CN111549300A publication Critical patent/CN111549300A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种屈服强度800MPa级工程机械用钢及其制备方法,提供的工程机械用钢的化学成分按质量百分比计为C:0.07~0.09%,Si:0.15~0.25%,Mn:1.75~1.85%,P:≤0.015%,S:≤0.005%,Cr:0.20~0.30%,Ni:0.15~0.25%,Mo:0.10~0.20%,Nb:0.025~0.035%,Ti:0.010~0.020%,B:0.0008~0.0015%,Al:0.030~0.050%,其余为Fe及不可避免杂质。本发明提供的工程机械用钢兼具有高强度、良好塑形和韧性,能够满足各种大型设备生产的需要。

Description

一种屈服强度800MPa级工程机械用钢及其制备方法
技术领域
本发明属于工程机械用钢制备技术领域,具体涉及一种屈服强度800MPa级工程机械用钢及其制备方法。
背景技术
屈服强度800MPa级工程机械用钢主要应用于各类起重机、重型汽车、自卸车的伸缩臂及侧板、挡板,在这类设备中要求工程机械用钢具有较高的强度,其可以减轻构件的重量,减轻设备的自重量,减少设备的燃料消耗,提高设备的工作效率,另外还要求钢带具有良好的冷成型性能以及焊接性能。
目前,申请号201110412321.9公布了一种屈服强度800MPa级工程机械用调质钢及其生产方法。该文献重点介绍了优化控制控冷工艺参数、采用合适的调质热处理工艺,得到800MPa级工程机械用钢。申请号201711132161.6公布了一种800MPa级工程车用热轧结构钢及其生产方法。该文献重点介绍了通过控轧控冷得到屈服强度700MPa,抗拉强度800MPa的热轧结构钢。申请号201811524865.2公布了直接淬火型屈服800MPa级结构钢板及其生产方法。该文献重点介绍了采用直接淬火+高温回火控冷工艺生产800MPa级结构钢板。但是以上文献获得的钢板的屈服强度虽然能够满足一般设备生产的需要,但是随着轻量化理念的推广,逐渐不能满足对钢强度有更高要求的大型设备的生产,并且以上文献公开的方法成本较高,不能满足资源节约型生产的需要。
发明内容
针对现有技术中存在的问题的一个或多个,本发明一个方面提供一种屈服强度800MPa级工程机械用钢,其化学成分按质量百分比计为C:0.07~0.09%,Si:0.15~0.25%,Mn:1.75~1.85%,P:≤0.015%,S:≤0.005%,Cr:0.20~0.30%,Ni:0.15~0.25%,Mo:0.10~0.20%,Nb:0.025~0.035%,Ti:0.010~0.020%,B:0.0008~0.0015%,Al:0.030~0.050%,其余为Fe及不可避免杂质。
上述屈服强度800MPa级工程机械用钢的力学性能满足:屈服强度≥922MPa,抗拉强度≥997MPa,延伸率≥13.0%。
本发明另一方面提供了上述的屈服强度800MPa级工程机械用钢的制备方法,其包括以下工艺:冶炼-连铸-加热-控轧控冷轧制-回火热处理,其中:
所述加热工艺为将经连铸工艺获得的板坯冷装入炉进行加热,在炉时间180~240min,出炉温度为1250±15℃;
所述控轧控冷轧制工艺包括粗轧和精轧二阶段轧制,其中粗轧采用3+3模式,压缩比为3.0~3.5;精轧时使用的精轧机七机架全部使用,压下率依次递减,压缩比为4.0~5.0;精轧开轧温度为950±15℃,精轧终轧温度控制在860±20℃,终冷温度控制在150~200℃;
所述回火热处理工艺的回火温度为300±15℃,保温30~60min,出炉空冷至室温。
基于以上技术方案提供的屈服强度800MPa级工程机械用钢采用在线淬火+离线低温回火工艺制备获得,其中在线淬火可以保证硬相组织M,离线低温回火可以消除内应力,改善板形,适当提高塑形,从而得到了屈服强度800MPa以上的高强度、良好塑形和韧性的工程机械用钢,能够满足各类起重机、重型汽车、自卸车的伸缩臂及侧板、挡板的生产需要,并且提供的制备方法由于省略了淬火工艺流程,因此还可以缩短工艺流程,并增加单位时间的产量,增加利润,又降低制造成本。
附图说明
图1为实施例1获得的屈服强度800MPa级工程机械用钢的金相组织照片;
图2为实施例1获得的屈服强度800MPa级工程机械用钢的180°冷弯照片(d=4a)。
具体实施方式
本发明旨在提供一种屈服强度800MPa级工程机械用钢及其制备方法,以提供一种兼具有高强度、良好塑形和韧性的高强工程机械用钢板,同时降低生产成本。
其中该工程机械用钢的化学成分按照质量百分比计为C:0.07~0.09%,Si:0.15~0.25%,Mn:1.75~1.85%,P:≤0.015%,S:≤0.005%,Cr:0.20~0.30%,Ni:0.15~0.25%,Mo:0.10~0.20%,Nb:0.025~0.035%,Ti:0.010~0.020%,B:0.0008~0.0015%,Al:0.030~0.050%,其余为Fe及不可避免夹杂。提供的制备方法包括以下工艺:冶炼-连铸-加热-控轧控冷轧制-回火热处理,其中:
加热工艺为将经连铸工艺获得的板坯冷装入炉进行加热,在炉时间180~240min,出炉温度为1250±15℃;
控轧控冷轧制工艺包括粗轧和精轧二阶段轧制,其中粗轧采用3+3模式,压缩比为3.0~3.5;精轧时使用的精轧机七机架全部使用,压下率依次递减,压缩比为4.0~5.0;精轧开轧温度为950±15℃,精轧终轧温度控制在860±20℃,终冷温度控制在150~200℃;
回火热处理工艺的回火温度为300±15℃,保温30~60min,出炉空冷至室温。
在本发明提供的制备方法中加热工艺中加热温度为1250±15℃,达到完全奥氏体化温度,可以使板坯组织完全奥氏体化。精轧终轧温度为860±20℃,可以保证精轧在完全未再结晶温度区域轧制,得到均匀细小的晶粒组织。终冷温度为150~200℃,可以保证马氏体组织转变完全,增加钢板强度和硬度。离线回火温度为300±15℃,可以消除钢板内应力,适当提高塑形,改善板形。另外,本发明还在保证塑形的同时,利用B元素进一步增加淬透性,得到硬相组织M,从而获得一种兼具有高强度、良好塑形和韧性的高强工程机械用钢板,由于提供的制备方法采用在线淬火+离线低温回火的生产工艺,因此省略了淬火工艺流程,可以缩短工艺消耗时间,从而降低制造成本。
以下通过实施例详细描述本发明的内容,这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的内容有任何限制。
实施例
各实施例的化学成分含量见表1;加热工艺参数见表2;控轧控冷轧制工艺参数见表3;回火热处理工艺参数见表4;所得高强钢板的力学性能见表5。
表1:冶炼的化学成分(wt%)
实施例 C Si Mn P S Al
1 0.088 0.19 1.81 0.014 0.003 0.038
2 0.079 0.18 1.79 0.013 0.002 0.035
3 0.082 0.19 1.83 0.014 0.003 0.032
实施例 Cr Ni Mo B Nb Ti
1 0.22 0.18 0.152 0.0012 0.033 0.018
2 0.21 0.16 0.148 0.0011 0.031 0.015
3 0.25 0.18 0.155 0.0013 0.028 0.012
表2:加热工艺参数
实施例 出炉温度℃ 加热时间min
1 1258 218
2 1249 209
3 1259 223
表3:控轧控冷轧制工艺参数
实施例 精轧开轧温度℃ 精轧终轧温度℃ 终冷温度℃
1 956 863 182
2 948 858 168
3 951 872 175
表4:回火热处理工艺参数
实施例 回火温度℃ 保温时间min
1 286 45
2 305 52
3 312 58
表5:产品力学性能
Figure BDA0002483066710000041
如图1所示,示出了实施例1获得的高强钢板的金相组织,可见组织为回火马氏体,图2示出的是实施例1获得的高强钢板的180°冷弯照片(d=4a),可见该钢板具有非常高的韧性和塑性,结合上表5数据可知,获得的钢板的屈服强度≥922MPa,抗拉强度≥997MPa,延伸率≥13.0%,因此,本发明获得了兼具有高强度、良好塑形和韧性的高强工程机械用钢板。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种屈服强度800MPa级工程机械用钢,其特征在于,所述屈服强度800MPa级工程机械用钢的化学成分按质量百分比计为C:0.07~0.09%,Si:0.15~0.25%,Mn:1.75~1.85%,P:≤0.015%,S:≤0.005%,Cr:0.20~0.30%,Ni:0.15~0.25%,Mo:0.10~0.20%,Nb:0.025~0.035%,Ti:0.010~0.020%,B:0.0008~0.0015%,Al:0.030~0.050%,其余为Fe及不可避免杂质。
2.根据权利要求1所述的屈服强度800MPa级工程机械用钢,其特征在于,所述屈服强度800MPa级工程机械用钢的力学性能满足:屈服强度≥922MPa,抗拉强度≥997MPa,延伸率≥13.0%。
3.权利要求1或2所述的屈服强度800MPa级工程机械用钢的制备方法,其包括以下工艺:冶炼-连铸-加热-控轧控冷轧制-回火热处理,其特征在于:
所述加热工艺为将经连铸工艺获得的板坯冷装入炉进行加热,在炉时间180~240min,出炉温度为1250±15℃;
所述控轧控冷轧制工艺包括粗轧和精轧二阶段轧制,其中粗轧采用3+3模式,压缩比为3.0~3.5;精轧时使用的精轧机七机架全部使用,压下率依次递减,压缩比为4.0~5.0;精轧开轧温度为950±15℃,精轧终轧温度控制在860±20℃,终冷温度控制在150~200℃;
所述回火热处理工艺的回火温度为300±15℃,保温30~60min,出炉空冷至室温。
CN202010383691.3A 2020-05-08 2020-05-08 一种屈服强度800MPa级工程机械用钢及其制备方法 Pending CN111549300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010383691.3A CN111549300A (zh) 2020-05-08 2020-05-08 一种屈服强度800MPa级工程机械用钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010383691.3A CN111549300A (zh) 2020-05-08 2020-05-08 一种屈服强度800MPa级工程机械用钢及其制备方法

Publications (1)

Publication Number Publication Date
CN111549300A true CN111549300A (zh) 2020-08-18

Family

ID=72006179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010383691.3A Pending CN111549300A (zh) 2020-05-08 2020-05-08 一种屈服强度800MPa级工程机械用钢及其制备方法

Country Status (1)

Country Link
CN (1) CN111549300A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107637A (zh) * 2021-11-26 2022-03-01 包头钢铁(集团)有限责任公司 一种屈服强度890MPa级稀土工程机械用钢的制备方法
CN115433872A (zh) * 2022-08-29 2022-12-06 包头钢铁(集团)有限责任公司 一种屈服强度800MPa级稀土工程机械用钢及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840723A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度1100MPa以上超高强度钢板及其制造方法
CN102747303A (zh) * 2012-06-29 2012-10-24 宝山钢铁股份有限公司 一种屈服强度1100MPa级高强度钢板及其制造方法
CN106591714A (zh) * 2016-11-03 2017-04-26 内蒙古包钢钢联股份有限公司 屈服强度700MPa级工程机械用钢板及其制备方法
CN108707824A (zh) * 2018-05-25 2018-10-26 山东钢铁股份有限公司 一种抗氢致延迟开裂耐磨钢板及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840723A (zh) * 2005-03-30 2006-10-04 宝山钢铁股份有限公司 屈服强度1100MPa以上超高强度钢板及其制造方法
CN102747303A (zh) * 2012-06-29 2012-10-24 宝山钢铁股份有限公司 一种屈服强度1100MPa级高强度钢板及其制造方法
CN106591714A (zh) * 2016-11-03 2017-04-26 内蒙古包钢钢联股份有限公司 屈服强度700MPa级工程机械用钢板及其制备方法
CN108707824A (zh) * 2018-05-25 2018-10-26 山东钢铁股份有限公司 一种抗氢致延迟开裂耐磨钢板及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107637A (zh) * 2021-11-26 2022-03-01 包头钢铁(集团)有限责任公司 一种屈服强度890MPa级稀土工程机械用钢的制备方法
CN115433872A (zh) * 2022-08-29 2022-12-06 包头钢铁(集团)有限责任公司 一种屈服强度800MPa级稀土工程机械用钢及其制备方法
CN115433872B (zh) * 2022-08-29 2024-01-30 包头钢铁(集团)有限责任公司 一种屈服强度800MPa级稀土工程机械用钢及其制备方法

Similar Documents

Publication Publication Date Title
CN106119694B (zh) 用中薄板坯直接轧制的抗拉强度≥1900MPa热成形钢及生产方法
CN106086684B (zh) 用薄板坯直接轧制的抗拉强度≥1900MPa薄热成形钢及生产方法
CN109013715B (zh) 一种降低42CrMo热轧态硬度和弯曲度的轧制方法
CN106119693B (zh) 用薄板坯直接轧制的抗拉强度≥2100MPa薄热成形钢及生产方法
CN108754319A (zh) 采用ESP产线生产的抗拉强度≥1800MPa级热成形钢及方法
CN102703803B (zh) 一种球状珠光体型热轧卷板及其生产方法
CN110669989A (zh) 一种冷冲压用高延伸率汽车桥壳用钢及其生产方法
WO2022214107A1 (zh) 一种高韧性的低合金高强度钢的轧制方法
CN113699437A (zh) 车厢板用热连轧双相耐磨钢及生产方法
CN111549300A (zh) 一种屈服强度800MPa级工程机械用钢及其制备方法
CN111575609A (zh) 一种兼具高强度、良好塑性和韧性的工程机械用钢及其制备方法
CN106086686B (zh) 用中薄板坯直接轧制的抗拉强度≥2100MPa热成形钢及生产方法
CN113930668A (zh) 一种屈服强度550MPa级桥壳用钢板及其制备方法
CN104646422B (zh) 多辊轧机中间辊及其制造方法
CN107557660A (zh) 一种正火‑50℃低温用钢及其制造方法
CN110578094A (zh) 一种1.0GPa级冷轧TRIP-BF钢的制备方法
CN114085971B (zh) 一种利用交叉温轧连续退火生产高强塑积铁素体-马氏体双相钢的工艺方法
CN113667892B (zh) 一种经济型低温连续退火冷轧高强钢带及其生产方法
CN112410673B (zh) 超高强度钢板轧制用高速钢轧辊及其制造方法
CN114107637A (zh) 一种屈服强度890MPa级稀土工程机械用钢的制备方法
CN115341142A (zh) 一种温成型用钢及其制备方法
CN115354127A (zh) 一种700MPa级稀土高强高韧钢板的制备方法
CN114941110A (zh) 汽车车身结构件一体式成形用中锰钢和方法
CN113930658A (zh) 一种小型低合金q355b角钢的生产工艺
CN102936684A (zh) 一种非调质储油罐用12MnNiVR钢板的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200818