CN111547059A - A distributed drive electric vehicle inertial parameter estimation method - Google Patents

A distributed drive electric vehicle inertial parameter estimation method Download PDF

Info

Publication number
CN111547059A
CN111547059A CN202010325309.3A CN202010325309A CN111547059A CN 111547059 A CN111547059 A CN 111547059A CN 202010325309 A CN202010325309 A CN 202010325309A CN 111547059 A CN111547059 A CN 111547059A
Authority
CN
China
Prior art keywords
vehicle
mass
parameters
center
inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010325309.3A
Other languages
Chinese (zh)
Inventor
金贤建
杨俊朋
严择圆
王佳栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010325309.3A priority Critical patent/CN111547059A/en
Publication of CN111547059A publication Critical patent/CN111547059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1315Location of the centre of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The invention relates to a distributed driving electric vehicle inertia parameter estimation method, which comprises the specific steps of firstly considering the change of vehicle inertia parameters caused by uncertain load parameters, establishing a three-degree-of-freedom whole vehicle dynamics model, selecting a nonlinear tire model of a magic formula, designing a state and parameter estimation system of a double-adaptive unscented Kalman filter, and then determining a double-adaptive unscented Kalman filter observer, thereby realizing the estimation of vehicle inertia parameters such as the longitudinal speed of a vehicle, the vehicle mass center and lateral deviation angle and the like, and the vehicle mass, the yaw rotation inertia, the distance from the mass center to the front axle of the vehicle. The method is based on the vehicle dynamics estimation model considering load parameter change, can effectively inhibit the divergence influence of the vehicle state parameter filter by adopting the self-adaptive unscented Kalman filtering method, corrects and predicts the vehicle inertia parameter in real time by utilizing the estimation value of the vehicle state in the double self-adaptive unscented Kalman filter, and has the advantages of high estimation precision and strong reliability.

Description

一种分布式驱动电动汽车惯性参数估计方法A distributed drive electric vehicle inertial parameter estimation method

技术领域technical field

本发明属于分布式驱动电动汽车主动安全控制领域,具体涉及一种分布式驱动电动汽车惯性参数估计方法。The invention belongs to the field of active safety control of distributed driving electric vehicles, and particularly relates to a method for estimating inertial parameters of distributed driving electric vehicles.

背景技术Background technique

电动汽车由于具有节能和降低排放的巨大潜力,成为当今节能环保汽车技术研发的热点,也使得发展电动汽车成为未来汽车工业的发展方向。但电动汽车保有量的增多带来诸多的交通问题,尤其是车辆的主动安全性备受关注。近几年,随着电子信息技术及智能化控制技术的发展,现代汽车市场出现了许多可以有效提高主动安全性的汽车底盘电控系统:如基于汽车纵向控制的制动防抱死系统(ABS)、牵引力控制系统(TCS),和基于汽车横向控制的电子稳定系统(ESP)、电动助力转向系统(EPS),及基于汽车横摆方向控制的直接横摆力矩控制系统(DYC)。要实现这些主动安全动力学系统的有效可靠控制,就需要准确实时地获得车辆行驶中的一些关键状态参数信息,如车辆侧向速度、车辆质心侧偏角等。Due to the great potential of energy saving and emission reduction, electric vehicles have become a hot spot in the research and development of energy-saving and environmentally friendly vehicle technology, and the development of electric vehicles has also become the development direction of the future automobile industry. However, the increase in the number of electric vehicles has brought many traffic problems, especially the active safety of vehicles. In recent years, with the development of electronic information technology and intelligent control technology, there have been many automotive chassis electronic control systems that can effectively improve active safety in the modern automobile market. ), Traction Control System (TCS), and Electronic Stability System (ESP) based on vehicle lateral control, Electric Power Steering (EPS), and Direct Yaw Moment Control (DYC) based on vehicle yaw direction control. In order to realize the effective and reliable control of these active safety dynamic systems, it is necessary to obtain some key state parameter information, such as vehicle lateral speed, vehicle center of mass slip angle, etc., accurately and in real time.

然而,测量这些状态参数需要安装昂贵的车载传感器,且传感器量测信号的可靠性问题尚未完全解决,这些车辆运行的关键状态难以使用标准的车载传感器直接测量,只能被观测或估计。同时基于实际车辆工程应用视角,如何利用现有车载传感器测量信息,在线准确估计不易直接测量的车辆状态参数信息是车辆工程应用中亟待解决的难题。However, the measurement of these state parameters requires the installation of expensive on-board sensors, and the reliability of sensor measurement signals has not been fully resolved. These key states of vehicle operation are difficult to measure directly using standard on-board sensors, and can only be observed or estimated. At the same time, from the perspective of practical vehicle engineering application, how to use the existing vehicle sensor measurement information to accurately estimate the vehicle state parameter information that is difficult to directly measure online is an urgent problem to be solved in vehicle engineering applications.

在目前的车辆状态估计研究中,大多数集中在车辆运行过程中的状态估计,而对车辆惯性参数估计研究相对较少。事实上,分布式驱动电动汽车簧下质量的增加导致整车质量的重新分布,特别是载荷参数不确定(乘客或货物加载)导致车辆惯性参数包括车辆质量、横摆转动惯量、车辆质心位置的变化,直接影响车辆底盘系统的操纵特性、控制性能以及稳定性如侧向稳定性,实时观测分布式驱动电动汽车惯性参数信息显得尤为重要。In the current research on vehicle state estimation, most of them focus on the state estimation during vehicle operation, while the research on vehicle inertia parameter estimation is relatively rare. In fact, the increase of the unsprung mass of the distributed drive electric vehicle leads to the redistribution of the whole vehicle mass, especially the uncertainty of the load parameters (passenger or cargo loading) leads to the vehicle inertia parameters including the vehicle mass, the yaw moment of inertia, the position of the vehicle center of mass Changes directly affect the handling characteristics, control performance and stability of the vehicle chassis system, such as lateral stability, and it is particularly important to observe the inertial parameter information of distributed drive electric vehicles in real time.

另外,传统车辆非线性卡尔曼滤波状态估计假设噪声统计特性已知且为零均值白噪声,但在实际的车辆工程应用过程中存在外界及环境干扰,噪声的统计特性往往是未知的,假设确定条件下的噪声统计特性会导致车辆状态估计性能下降,甚至会引起估计发散。在车辆状态参数估计过程中如何避免不确定噪的声统计特性导致的估计失效,也是应该考虑到的重要问题。In addition, the traditional vehicle nonlinear Kalman filter state estimation assumes that the statistical characteristics of noise are known and zero-mean white noise, but there are external and environmental disturbances in the actual vehicle engineering application process, and the statistical characteristics of noise are often unknown. The statistical characteristics of noise under the condition can cause the performance of vehicle state estimation to degrade, and even cause the estimation to diverge. In the process of vehicle state parameter estimation, how to avoid estimation failure caused by the acoustic statistical characteristics of uncertain noise is also an important issue that should be considered.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种分布式驱动电动汽车惯性参数估计方法,基于建立的考虑载荷变化的车辆非线性动力学模型,采用双自适应无迹卡尔曼滤波算法,在估计车辆纵向速度、车辆质心侧偏角等状态量的基础上对整车质量、横摆转动惯量、质心到车辆前轴的距离等车辆惯性参数进行实时估计,具有精度高、可靠性强等优点。The purpose of the present invention is to provide a method for estimating inertial parameters of a distributed drive electric vehicle. Based on the established nonlinear dynamic model of the vehicle considering load changes, the dual adaptive unscented Kalman filter algorithm is used to estimate the longitudinal speed of the vehicle, the Based on the state quantities such as the center of mass slip angle, the vehicle inertial parameters such as the mass of the vehicle, the yaw moment of inertia, and the distance from the center of mass to the front axle of the vehicle are estimated in real time, which has the advantages of high accuracy and strong reliability.

为了实现上述目的,本发明提供如下方案:In order to achieve the above object, the present invention provides the following scheme:

一种分布式驱动电动汽车惯性参数估计方法,采用双自适应无迹卡尔曼滤波算法,具体包括如下步骤:A method for estimating inertial parameters of a distributed drive electric vehicle adopts a dual-adaptive unscented Kalman filter algorithm, which specifically includes the following steps:

(1)构建考虑载荷参数不确定如乘客或货物加载的三自由度车辆动力学模型,建立与车辆纵向速度、车辆横摆角速度、车辆质心侧偏角、车辆侧向速度和加速度以及整车质量、横摆转动惯量、质心到车辆前轴的距离相关的包括车辆纵向、侧向、横摆运动在内的三自由度整车动力学模型。(1) Construct a three-degree-of-freedom vehicle dynamics model that considers uncertain load parameters such as passenger or cargo loading, and establish a relationship with the vehicle longitudinal speed, vehicle yaw rate, vehicle center of mass slip angle, vehicle lateral speed and acceleration, and vehicle mass. , yaw moment of inertia, the distance from the center of mass to the front axle of the vehicle, including vehicle longitudinal, lateral, yaw motion, three degrees of freedom vehicle dynamics model.

上述步骤(1)中,所建立的包括车辆纵向、侧向、横摆运动在内的分布式驱动电动汽车整车动力学方程如下:In the above step (1), the established dynamic equation of the distributed drive electric vehicle including the longitudinal, lateral and yaw motions of the vehicle is as follows:

Figure BDA0002462993050000021
Figure BDA0002462993050000021

其中,

Figure BDA0002462993050000022
in,
Figure BDA0002462993050000022

Figure BDA0002462993050000023
Figure BDA0002462993050000023

其中,

Figure BDA0002462993050000024
in,
Figure BDA0002462993050000024

Figure BDA0002462993050000025
Figure BDA0002462993050000025

其中,

Figure BDA0002462993050000026
in,
Figure BDA0002462993050000026

在考虑载荷参数变化的情况下,模型的质心位置将发生变化。当车辆加载的质量质心位置相对于原始坐标系坐标矢量为

Figure BDA0002462993050000027
当载荷mp加载后,车辆总质量为mn=me+mp The position of the center of mass of the model will change taking into account changes in the load parameters. When the position of the mass center of mass loaded by the vehicle is relative to the original coordinate system, the coordinate vector is
Figure BDA0002462993050000027
When the load m p is loaded, the total mass of the vehicle is m n =m e +m p

加载后原质心处的横摆转动惯量为:

Figure BDA0002462993050000028
The yaw moment of inertia at the original center of mass after loading is:
Figure BDA0002462993050000028

式中Izzo为车辆空载时的横摆转动惯量。where Izzo is the yaw moment of inertia when the vehicle is unloaded.

加载后原质心处的横摆转动惯量:

Figure BDA0002462993050000031
The yaw moment of inertia at the original center of mass after loading:
Figure BDA0002462993050000031

其中

Figure BDA0002462993050000032
in
Figure BDA0002462993050000032

位于原来坐标系下的新的质心位置坐标:The new centroid position coordinates in the original coordinate system:

Figure BDA0002462993050000033
Figure BDA0002462993050000034
Figure BDA0002462993050000033
and
Figure BDA0002462993050000034

加载后横摆转动惯量

Figure BDA0002462993050000035
Yaw moment of inertia after loading
Figure BDA0002462993050000035

同时,当载荷变化后,其质心位置相关几何参数也发生相应的改变为:At the same time, when the load changes, the relevant geometric parameters of its centroid position also change accordingly:

Figure BDA0002462993050000036
Figure BDA0002462993050000036

上述式中,Vx、Vy分别为车辆质心的纵向和侧向速度;rz为车辆质心的横摆角速度;β为车辆质心侧偏角;me、mp、mn分别表示车辆空载质量、加载的质量、总质量;Fxij、Fyij分别是车辆第i、j轮胎的纵向、侧向力,其中i=f,r;j=l,r。Fw、Ff分别是车辆空气阻力与地面轮胎滚动阻力;Cd为空气阻力系数;ρ为空气密度;Af为汽车正面迎风面积;ax、ay分别为车辆纵向与侧向加速度;μ为已知路面附着系数;δfl、δfr分别为前轮左右轮的转向角;Izz、Mz分别表示车辆横摆转动惯量和车辆横摆力矩;lf、lr分别为质心到车辆前后轴的水平距离;bl、br分别为质心到左右车轮中心的水平距离;mp为车辆的载荷质量;L、B为车辆前后轴的水平距离和车辆左右车轮的水平距离;lf0、lr0分别为未加载时车辆前后轴到质心的水平距离;xp、yp分别为载荷在原车辆坐标系下的坐标值;xn、yn为车辆加载时的质心坐标;bf0、br0分别为车辆未加载时左右轮到质心的水平距离。In the above formula, V x and V y are the longitudinal and lateral velocities of the center of mass of the vehicle, respectively; r z is the yaw rate of the center of mass of the vehicle; β is the sideslip angle of the center of mass of the vehicle; Loaded mass, loaded mass, and total mass; F xij and F yij are the longitudinal and lateral forces of the ith and jth tires of the vehicle, respectively, where i=f,r; j=l,r. F w , F f are the air resistance of the vehicle and the rolling resistance of the ground tires; C d is the air resistance coefficient; ρ is the air density; A f is the front windward area of the vehicle; a x , a y are the longitudinal and lateral accelerations of the vehicle; μ is the known road adhesion coefficient; δ fl , δ fr are the steering angles of the front and left wheels, respectively; I zz , M z represent the vehicle yaw moment of inertia and vehicle yaw moment, respectively; l f , l r are the center of mass to The horizontal distance between the front and rear axles of the vehicle; b l and br are the horizontal distance from the center of mass to the center of the left and right wheels respectively; mp is the load mass of the vehicle; L and B are the horizontal distance between the front and rear axles of the vehicle and the horizontal distance between the left and right wheels of the vehicle; l f0 , l r0 are the horizontal distance from the front and rear axles of the vehicle to the center of mass when the vehicle is not loaded; x p , y p are the coordinate values of the load in the original vehicle coordinate system; x n , y n are the center of mass coordinates when the vehicle is loaded; b f0 , b r0 are the horizontal distances from the left and right wheels to the center of mass when the vehicle is not loaded, respectively.

(2)构建轮胎模型,选择Pacejka模型建立非线性轮胎,其用同一套复合三角函数公式来统一表达轮胎的纵向力、横向力等,具有适应性强、精度高的优点。(2) Build the tire model, select the Pacejka model to build the nonlinear tire, which uses the same set of complex trigonometric function formulas to uniformly express the longitudinal force and lateral force of the tire, which has the advantages of strong adaptability and high precision.

步骤(2)中所述Pacejka模型建立非线性轮胎如下:The Pacejka model described in step (2) establishes the nonlinear tire as follows:

Figure BDA0002462993050000037
Figure BDA0002462993050000037

上式中,轮胎模型参数D、B、C、E分别为峰值因子,刚度因子,曲线形状因子,曲线曲率因子;Sh、Sv分别为曲线水平方向漂移和曲线垂直方向漂移。Y为轮胎侧向力、纵向力;X为轮胎侧偏角α或纵向滑移率s。轮胎的侧向力和纵向力计算如下:In the above formula, the tire model parameters D, B, C, and E are the peak factor, stiffness factor, curve shape factor, and curve curvature factor, respectively; Sh and S v are the horizontal drift of the curve and the vertical drift of the curve, respectively. Y is the tire lateral force and longitudinal force; X is the tire side slip angle α or the longitudinal slip rate s. The lateral and longitudinal forces of the tire are calculated as follows:

Figure BDA0002462993050000041
Figure BDA0002462993050000041

其中,对于轮胎侧向力

Figure BDA0002462993050000042
Among them, for tire lateral force
Figure BDA0002462993050000042

对于轮胎纵向力

Figure BDA0002462993050000043
For tire longitudinal force
Figure BDA0002462993050000043

上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.

(3)根据构建的三自由度车辆动力学模型和轮胎模型,设计双自适应无迹卡尔曼滤波器的状态和参数估计系统,同时证明车辆惯性参数的局部可观性。状态估计系统的状态方程和观测方程,离散化后可表示为如下形式:(3) According to the constructed three-degree-of-freedom vehicle dynamics model and tire model, the state and parameter estimation system of dual adaptive unscented Kalman filter is designed, and the local observability of vehicle inertial parameters is proved at the same time. The state equation and observation equation of the state estimation system can be expressed in the following form after discretization:

Figure BDA0002462993050000044
Figure BDA0002462993050000044

其中

Figure BDA0002462993050000045
in
Figure BDA0002462993050000045

Figure BDA0002462993050000046
Figure BDA0002462993050000046

Figure BDA0002462993050000047
Figure BDA0002462993050000047

Figure BDA0002462993050000051
Figure BDA0002462993050000051

∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r

在上述状态观测系统中,x(k)=[rz,Vx,β,ay,Vy]T、θ(k)=[mn,Izz,lf]T分别为车辆非线性动力学观测器系统的状态矢量和参数矢量,u(k)=[δf,wij,Tij]T和z(k)=[rz,ax,ay]T分别为车辆非线性动力学观测器系统的输入矢量和量测矢量,w(k)、v(k)分别为系统的过程噪音和量测噪音,两者为系统互不相关,Ts为采样时间。In the above state observation system, x(k)=[r z , V x , β, a y , V y ] T , θ(k)=[m n , I zz , l f ] T are the vehicle nonlinearities, respectively The state vector and parameter vector of the dynamic observer system, u(k)=[δ f , w ij , T ij ] T and z(k)=[r z , a x , a y ] T are the vehicle nonlinearities, respectively The input vector and measurement vector of the dynamic observer system, w(k), v(k) are the process noise and measurement noise of the system, respectively, the two are independent of the system, and T s is the sampling time.

相应的参数估计系统可以进一步被构造:The corresponding parameter estimation system can be further constructed:

Figure BDA0002462993050000052
Figure BDA0002462993050000052

其中,

Figure BDA0002462993050000053
in,
Figure BDA0002462993050000053

在上述参数估计系统中,r(k)、e(k)分别为系统的过程噪音和量测噪音,d(k)=[rz,ax,ay]T为量测矢量。In the above parameter estimation system, r(k) and e(k) are the process noise and measurement noise of the system, respectively, and d(k)=[r z , a x , a y ] T is the measurement vector.

通过研究惯性参数的可观性共分布矩阵的秩来证明其局部可观性,如果可观性共分布矩阵具有列全秩,则称惯性参数为局部可观。将车辆惯性参数的输出矢量和输出矢量的导数定义为:The local observability is proved by studying the rank of the observability co-distribution matrix of inertial parameters. If the observability co-distribution matrix has full column rank, the inertial parameters are said to be locally observable. The output vector and the derivative of the output vector of the vehicle inertial parameters are defined as:

Figure BDA0002462993050000054
Figure BDA0002462993050000054

其可观性共分布矩阵为:

Figure BDA0002462993050000055
Its observability co-distribution matrix is:
Figure BDA0002462993050000055

其中,可观性共分布矩阵部分求导为:Among them, the partial derivation of the observability co-distribution matrix is:

Figure BDA0002462993050000056
Figure BDA0002462993050000056

Figure BDA0002462993050000057
Figure BDA0002462993050000057

Figure BDA0002462993050000061
Figure BDA0002462993050000061

Figure BDA0002462993050000062
Figure BDA0002462993050000062

在车辆行驶状态下,

Figure BDA0002462993050000063
满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。When the vehicle is running,
Figure BDA0002462993050000063
Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.

(4)分布式驱动电动汽车惯性参数双自适应无迹卡尔曼滤波观测器具体运作包括以下步骤:(4) The specific operation of the dual-adaptive unscented Kalman filter observer for the inertial parameters of the distributed drive electric vehicle includes the following steps:

初始化;需要初始化的值分别为:

Figure BDA0002462993050000064
Pw,Pv,Pr,Pe;Initialization; the values that need to be initialized are:
Figure BDA0002462993050000064
P w , P v , P r , P e ;

时变参数的时间更新,得到

Figure BDA0002462993050000065
Figure BDA0002462993050000066
The time update of the time-varying parameter, we get
Figure BDA0002462993050000065
and
Figure BDA0002462993050000066

构建状态的sigma点,完成状态的时间更新,得到Xi(k|k-1)、

Figure BDA0002462993050000067
Figure BDA0002462993050000068
Build the sigma point of the state, complete the time update of the state, and obtain X i (k|k-1),
Figure BDA0002462993050000067
and
Figure BDA0002462993050000068

构建时变参数的sigma点,得到Θj(k-1|k-1);Construct the sigma points of time-varying parameters to get Θ j (k-1|k-1);

根据sigma点计算时变参数的输出估计,得到Dj(k|k-1)和

Figure BDA0002462993050000069
Calculate the output estimates of the time-varying parameters from the sigma points to obtain D j (k|k-1) and
Figure BDA0002462993050000069

根据sigma点计算状态的输出估计,得到zi(k|k-1)和

Figure BDA00024629930500000610
Calculate the output estimate of the state according to the sigma points to get zi (k|k-1) and
Figure BDA00024629930500000610

计算状态的卡尔曼增益,得到

Figure BDA00024629930500000611
和Lx(k);Calculate the Kalman gain of the state to get
Figure BDA00024629930500000611
and L x (k);

计算时变参数的卡尔曼增益,得到

Figure BDA00024629930500000615
和Lθ(k);Calculate the Kalman gain of the time-varying parameters, and get
Figure BDA00024629930500000615
and L θ (k);

分别完成状态和时变参数的测量更新,得到

Figure BDA00024629930500000613
Figure BDA00024629930500000614
Complete the measurement and update of the state and time-varying parameters, respectively, to obtain
Figure BDA00024629930500000613
and
Figure BDA00024629930500000614

分别完成状态和时变参数中的噪声的协方差的自适应更新,得到Pw(k-1)、Pv(k)、Pr(k-1)和Pe(k)。An adaptive update of the covariance of noise in the state and time-varying parameters is done, respectively, resulting in Pw (k-1), Pv (k), Pr (k-1), and Pe (k).

(5)对设计双自适应无迹卡尔曼滤波观测器编写S函数在线执行,先在Matlab/Simulink环境中先搭建Simulink-Carsim分布式驱动电动汽车系统状态估计联合仿真平台,由于Carsim软件没有开发针对新能源汽车的动力源系统,因此电动汽车的分布式驱动系统采用外接形式搭建,电动汽车的观测器系统等在Matlab/Simulink建立,然后将CarSim与Simulink通过CarSim-S函数连接接口实现仿真通信,最终实现车辆行驶过程中状态和惯性参数的估计。(5) Write the S-function for the design of the dual-adaptive unscented Kalman filter observer and execute it online. First, build the Simulink-Carsim distributed drive electric vehicle system state estimation co-simulation platform in the Matlab/Simulink environment. Since the Carsim software has not been developed For the power source system of new energy vehicles, the distributed drive system of electric vehicles is built in an external form, and the observer system of electric vehicles is established in Matlab/Simulink, and then CarSim and Simulink are connected through the CarSim-S function connection interface to realize simulation communication , and finally realize the estimation of state and inertia parameters in the process of vehicle driving.

本发明与现有技术比较,具有如下显而易见的突出的实质性特点和显著的技术进步:Compared with the prior art, the present invention has the following obvious outstanding substantive features and remarkable technological progress:

1.本发明在车辆非线性动力学估计模型建立过程中,考虑分布式驱动电动汽车载荷参数不确定例如乘客或货物加载导致车辆惯性参数包括车辆质量、横摆转动惯量、车辆质心位置的变化,构建了分布式驱动电动汽车惯性参数估计动力学模型;1. In the process of establishing the nonlinear dynamic estimation model of the vehicle, the present invention considers that the load parameters of the distributed drive electric vehicle are uncertain, such as the load of passengers or cargo, which causes the vehicle inertia parameters including vehicle mass, yaw moment of inertia, and changes in the position of the center of mass of the vehicle, A dynamic model for the estimation of inertial parameters of a distributed drive electric vehicle is constructed;

2.本发明根据分布式驱动电动汽车惯性参数估计动力学模型轮胎模型,利用分布式驱动电动汽车使用轮毂电机直接驱动四个车轮的轮毂电机转矩感知信息,设计基于双自适应无迹卡尔曼滤波器的惯性参数估计系统,同时证明车辆惯性参数的局部可观性;2. The present invention estimates the dynamic model tire model based on the inertial parameters of the distributed drive electric vehicle, utilizes the in-wheel motor torque perception information of the distributed drive electric vehicle using the in-wheel motor to directly drive the four wheels, and the design is based on the dual adaptive unscented Kalman The inertial parameter estimation system of the filter, while proving the local observability of the vehicle inertial parameters;

3.本发明在车辆惯性参数估计过程中,采用双自适应无迹卡尔曼滤波能够在线估计过程噪声和测量噪声的协方差矩阵,避免了传统卡尔曼滤波器由于假设估计过程中噪声统计特性以导致的滤波估计性能降低,甚至滤波发散偏离真实值等问题,具有估计精度高,可靠性强的优点。3. In the process of estimating the inertial parameters of the vehicle, the present invention adopts the dual adaptive unscented Kalman filter to estimate the covariance matrix of the process noise and the measurement noise online, avoiding the traditional Kalman filter due to the assumption that the statistical characteristics of the noise in the estimation process are The resulting filter estimation performance is reduced, and even the filter divergence deviates from the true value, which has the advantages of high estimation accuracy and strong reliability.

附图说明Description of drawings

图1是本发明一种分布式驱动电动汽车惯性参数估计方法的整体设计框架图。FIG. 1 is an overall design frame diagram of a method for estimating inertial parameters of a distributed drive electric vehicle according to the present invention.

图2是本发明的考虑载荷参数的车辆动力学模型示意图。FIG. 2 is a schematic diagram of a vehicle dynamics model considering load parameters according to the present invention.

图3是本发明的双自适应无迹卡尔曼滤波算法流程图。FIG. 3 is a flow chart of the dual-adaptive unscented Kalman filtering algorithm of the present invention.

具体实施方式Detailed ways

本发明的优选实施例,结合附图详细说明如下:The preferred embodiments of the present invention are described in detail in conjunction with the accompanying drawings as follows:

实施例一Example 1

在本实施例中,参见图1,一种分布式驱动电动汽车惯性参数估计方法,包括以下步骤:In this embodiment, referring to FIG. 1 , a method for estimating inertial parameters of a distributed drive electric vehicle includes the following steps:

S1、建立包括车辆纵向、侧向、横摆运动在内的三自由度整车非线性动力学模型,且考虑载荷参数不确定引起的车辆动力学估计模型系统变化;S1. Establish a three-degree-of-freedom vehicle nonlinear dynamic model including vehicle longitudinal, lateral, and yaw motions, and consider the system changes of the vehicle dynamics estimation model caused by the uncertainty of the load parameters;

S2、构建轮胎模型,选择Pacejka模型建立非线性轮胎;S2. Build a tire model, and select the Pacejka model to build a nonlinear tire;

S3、根据构建的三自由度车辆动力学模型和轮胎模型,设计基于双自适应无迹卡尔曼滤波器惯性参数估计系统框架,证明车辆惯性参数的局部可观性;S3. According to the constructed three-degree-of-freedom vehicle dynamics model and tire model, design an inertial parameter estimation system framework based on dual adaptive unscented Kalman filters, and prove the local observability of vehicle inertial parameters;

S4、基于所述步骤S3中的惯性参数估计系统,确定双自适应无迹卡尔曼滤波观测器具体运作方法及步骤,实现对车辆纵向速度、车辆质心侧偏角等车辆状态以及整车质量、横摆转动惯量、质心到车辆前轴的距离等车辆惯性参数的估计。S4. Based on the inertial parameter estimation system in the step S3, determine the specific operation method and steps of the dual-adaptive unscented Kalman filter observer, so as to realize the vehicle status such as vehicle longitudinal speed, vehicle center of mass sideslip angle, and vehicle mass, Estimation of vehicle inertial parameters such as yaw moment of inertia, the distance from the center of mass to the front axle of the vehicle.

实施例二Embodiment 2

本实施例与实施例一基本相同,特别之处如下:This embodiment is basically the same as the first embodiment, and the special features are as follows:

在本实施例中,所述步骤S1中的三自由度车辆动力学模型的方程为:In this embodiment, the equation of the three-degree-of-freedom vehicle dynamics model in step S1 is:

Figure BDA0002462993050000081
Figure BDA0002462993050000081

其中,in,

Figure BDA0002462993050000082
Figure BDA0002462993050000082

Figure BDA0002462993050000083
Figure BDA0002462993050000083

Figure BDA0002462993050000084
Figure BDA0002462993050000084

上述式中,Vx、Vy分别为车辆质心的纵向和侧向速度;rz为车辆质心的横摆角速度;β为车辆质心侧偏角;mn表示车辆总质量;Fxij、Fyij分别是车辆第i、j轮胎的纵向、侧向力,其中i=f,r;j=l,r;Fw、Ff分别是车辆空气阻力与地面轮胎滚动阻力;Cd为空气阻力系数;ρ为空气密度;Af为汽车正面迎风面积;ax、ay分别为车辆纵向与侧向加速度;μ为已知路面附着系数;δfl、δfr分别为前轮左右轮的转向角;Izz、Mz分别表示车辆横摆转动惯量和车辆横摆力矩;lf、lr分别为质心到车辆前后轴的水平距离;bl、br分别为质心到左右车轮中心的水平距离。In the above formula, V x and V y are the longitudinal and lateral velocities of the center of mass of the vehicle, respectively; r z is the yaw rate of the center of mass of the vehicle; β is the sideslip angle of the center of mass of the vehicle; m n represents the total mass of the vehicle; F xij , F yij are the longitudinal and lateral forces of the ith and jth tires of the vehicle, respectively, where i=f, r; j=l, r; F w , F f are the air resistance of the vehicle and the rolling resistance of the ground tires, respectively; C d is the air resistance coefficient ρ is the air density; A f is the front windward area of the vehicle; a x and a y are the longitudinal and lateral accelerations of the vehicle, respectively; μ is the known road adhesion coefficient; δ fl , δ fr are the steering angles of the left and right front wheels, respectively ; I zz , M z represent the vehicle yaw moment of inertia and vehicle yaw moment, respectively; l f , l r are the horizontal distance from the center of mass to the front and rear axles of the vehicle, respectively; b l , br are the horizontal distance from the center of mass to the center of the left and right wheels, respectively .

所述步骤S1中的三自由度车辆动力学模型在考虑载荷参数变化的情况下,模型的质心位置已发生变化;假设车辆加载的质量质心位置相对于原始坐标系坐标矢量为

Figure BDA0002462993050000085
载荷mp加载后,车辆总质量为mn=me+mp,则加载后原质心处的横摆转动惯量为:In the three-degree-of-freedom vehicle dynamics model in the step S1, the position of the center of mass of the model has changed when considering the change of the load parameters; it is assumed that the position of the center of mass of the vehicle loaded with respect to the coordinate vector of the original coordinate system is:
Figure BDA0002462993050000085
After the load m p is loaded, the total mass of the vehicle is m n =m e +m p , then the yaw moment of inertia at the original center of mass after loading is:

Figure BDA0002462993050000086
Figure BDA0002462993050000086

式中Izzo为车辆空载时的横摆转动惯量;where Izzo is the yaw moment of inertia when the vehicle is unloaded;

加载后原质心处的横摆转动惯量:

Figure BDA0002462993050000091
其中
Figure BDA0002462993050000092
The yaw moment of inertia at the original center of mass after loading:
Figure BDA0002462993050000091
in
Figure BDA0002462993050000092

位于原来坐标系下的新的质心位置坐标:The new centroid position coordinates in the original coordinate system:

Figure BDA0002462993050000093
Figure BDA0002462993050000094
Figure BDA0002462993050000093
and
Figure BDA0002462993050000094

加载后横摆转动惯量Yaw moment of inertia after loading

Figure BDA0002462993050000095
Figure BDA0002462993050000095

同时,当载荷后,其相关几何参数也发生相应的改变为:At the same time, when the load is loaded, its related geometric parameters also change accordingly:

Figure BDA0002462993050000096
Figure BDA0002462993050000096

上述式中,mp为车辆的载荷质量;Izzo为车辆空载时的横摆转动惯量;L、B为车辆前后轴的水平距离和车辆左右车轮的水平距离;lf0、lr0分别为未加载时车辆前后轴到质心的水平距离;xp、yp分别为载荷在原车辆坐标系下的坐标值;xn、yn为车辆加载时的质心坐标;bf0、br0分别为车辆未加载时左右轮到质心的水平距离。In the above formula, m p is the load mass of the vehicle; I zzo is the yaw moment of inertia when the vehicle is unloaded; L and B are the horizontal distance between the front and rear axles of the vehicle and the horizontal distance between the left and right wheels of the vehicle; l f0 , l r0 are respectively The horizontal distance from the front and rear axles of the vehicle to the center of mass when not loaded; x p , y p are the coordinate values of the load in the original vehicle coordinate system; x n , y n are the center of mass coordinates when the vehicle is loaded; b f0 , b r0 are the vehicle The horizontal distance between the left and right turns to the centroid when not loaded.

在本实施例中,所述步骤S2中的Pacejka模型同一套复合三角函数公式来统一表达轮胎的纵向力、横向力等,其形式为:In the present embodiment, the Pacejka model in the step S2 uses the same set of compound trigonometric function formulas to uniformly express the longitudinal force, lateral force, etc. of the tire, and its form is:

Figure BDA0002462993050000097
Figure BDA0002462993050000097

上式中,轮胎模型参数D、B、C、E分别为峰值因子、刚度因子、曲线形状因子、曲线曲率因子;Sh、Sv分别为曲线水平方向漂移和曲线垂直方向漂移;当X为轮胎侧偏角α,Y为轮胎侧向力;当X为轮胎纵向滑移率s,Y为轮胎纵向力;In the above formula, the tire model parameters D, B, C, and E are the peak factor, stiffness factor, curve shape factor, and curve curvature factor, respectively; Sh and S v are the horizontal drift of the curve and the vertical drift of the curve; when X is Tire side slip angle α, Y is the tire lateral force; when X is the tire longitudinal slip rate s, Y is the tire longitudinal force;

轮胎的侧向力和纵向力计算如下:The lateral and longitudinal forces of the tire are calculated as follows:

Figure BDA0002462993050000098
Figure BDA0002462993050000098

其中,对于轮胎侧向力

Figure BDA0002462993050000101
Among them, for tire lateral force
Figure BDA0002462993050000101

对于轮胎纵向力

Figure BDA0002462993050000102
For tire longitudinal force
Figure BDA0002462993050000102

上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.

在本实施例中,所述步骤S3中的双自适应无迹卡尔曼滤波器的状态估计系统为:In this embodiment, the state estimation system of the dual-adaptive unscented Kalman filter in the step S3 is:

Figure BDA0002462993050000103
Figure BDA0002462993050000103

其中

Figure BDA0002462993050000104
in
Figure BDA0002462993050000104

Figure BDA0002462993050000105
Figure BDA0002462993050000105

Figure BDA0002462993050000106
Figure BDA0002462993050000106

Figure BDA0002462993050000107
Figure BDA0002462993050000107

∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r

在上述状态观测系统中,x(k)=[rz,Vx,β,ay,Vy]T、θ(k)=[mn,Izz,lf]T分别为车辆非线性动力学观测器系统的状态矢量和参数矢量,u(k)=[δf,wij,Tij]T和z(k)=[rz,ax,ay]T分别为车辆非线性动力学观测器系统的输入矢量和量测矢量,w(k)、v(k)分别为系统的过程噪音和量测噪音,两者为系统互不相关,Ts为采样时间;In the above state observation system, x(k)=[r z , V x , β, a y , V y ] T , θ(k)=[m n , I zz , l f ] T are the vehicle nonlinearities, respectively The state vector and parameter vector of the dynamic observer system, u(k)=[δ f , w ij , T ij ] T and z(k)=[r z , a x , a y ] T are the vehicle nonlinearities, respectively Input vector and measurement vector of the dynamic observer system, w(k), v(k) are the process noise and measurement noise of the system, respectively, the two are independent of the system, and T s is the sampling time;

相应的双自适应无迹卡尔曼滤波器参数估计系统可进一步被构造:The corresponding dual adaptive unscented Kalman filter parameter estimation system can be further constructed:

Figure BDA0002462993050000111
Figure BDA0002462993050000111

其中,

Figure BDA0002462993050000112
in,
Figure BDA0002462993050000112

在上述参数估计系统中,r(k)、e(k)分别为系统的过程噪音和量测噪音,d(k)=[rz,ax,ay]T为量测矢量。In the above parameter estimation system, r(k) and e(k) are the process noise and measurement noise of the system, respectively, and d(k)=[r z , a x , a y ] T is the measurement vector.

在本实施例中,所述步骤S3中通过研究惯性参数的可观性共分布矩阵的秩来证明其局部可观性,如果可观性共分布矩阵具有列全秩,则称惯性参数为局部可观;证明车辆惯性参数的局部可观性过程如下:In this embodiment, in the step S3, the local observability is proved by studying the rank of the co-distribution matrix of the observability of the inertia parameter. If the co-distribution matrix of the observability has a full column rank, the inertia parameter is said to be locally observable; The local observability process of the vehicle inertial parameters is as follows:

车辆惯性参数的输出矢量和输出矢量的导数定义为:The output vector of the vehicle inertia parameter and the derivative of the output vector are defined as:

Figure BDA0002462993050000113
Figure BDA0002462993050000113

则其可观性共分布矩阵为:

Figure BDA0002462993050000114
其中部分求导结果为:Then its observability co-distribution matrix is:
Figure BDA0002462993050000114
Some of the derivation results are:

Figure BDA0002462993050000115
Figure BDA0002462993050000115

由上述求导可得,在车辆行驶状态下,

Figure BDA0002462993050000116
满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。From the above derivation, it can be obtained that when the vehicle is running,
Figure BDA0002462993050000116
Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.

在本实施例中,所述步骤S4中的双自适应无迹卡尔曼滤波观测器具体运作包括以下步骤:In this embodiment, the specific operation of the dual-adaptive unscented Kalman filter observer in the step S4 includes the following steps:

(1)初始化,需要初始化的值分别为:

Figure BDA0002462993050000121
Pw,Pv,Pr,Pe;(1) Initialization, the values that need to be initialized are:
Figure BDA0002462993050000121
P w , P v , P r , P e ;

(2)时变参数的时间更新,得到

Figure BDA0002462993050000122
Figure BDA0002462993050000123
(2) Time update of time-varying parameters, we get
Figure BDA0002462993050000122
and
Figure BDA0002462993050000123

(3)构建状态的sigma点,完成状态的时间更新,得到Xi(k|k-1)、

Figure BDA0002462993050000124
Figure BDA0002462993050000125
(3) Construct the sigma point of the state, complete the time update of the state, and obtain X i (k|k-1),
Figure BDA0002462993050000124
and
Figure BDA0002462993050000125

(4)构建时变参数的sigma点,得到Θj(k-1|k-1);(4) Construct the sigma point of time-varying parameters to obtain Θ j (k-1|k-1);

(5)根据sigma点计算时变参数的输出估计,得到Dj(k|k-1)和

Figure BDA0002462993050000126
(5) Calculate the output estimation of the time-varying parameters according to the sigma point, and obtain D j (k|k-1) and
Figure BDA0002462993050000126

(6)根据sigma点计算状态的输出估计,得到zi(k|k-1)和

Figure BDA0002462993050000127
(6) Calculate the output estimation of the state according to the sigma point, and obtain zi (k|k-1) and
Figure BDA0002462993050000127

(7)计算状态的卡尔曼增益,得到

Figure BDA0002462993050000128
和Lx(k);(7) Calculate the Kalman gain of the state, and get
Figure BDA0002462993050000128
and L x (k);

(8)计算时变参数的卡尔曼增益,得到

Figure BDA0002462993050000129
和Lθ(k);(8) Calculate the Kalman gain of the time-varying parameters, and get
Figure BDA0002462993050000129
and L θ (k);

(9)分别完成状态和时变参数的测量更新,得到

Figure BDA00024629930500001210
Figure BDA00024629930500001211
(9) Complete the measurement and update of the state and time-varying parameters, respectively, and obtain
Figure BDA00024629930500001210
and
Figure BDA00024629930500001211

(10)分别完成状态和时变参数中的噪声的协方差的自适应更新,得到Pw(k-1)、Pv(k)、Pr(k-1)和Pe(k)。(10) The adaptive update of the covariance of noise in the state and time-varying parameters is completed respectively, and Pw (k-1), Pv (k), Pr (k-1) and Pe (k) are obtained.

实施例三Embodiment 3

本实施例与前述实施例基本相同,特别之处如下:This embodiment is basically the same as the previous embodiment, and the special features are as follows:

在本实施例中,一种分布式驱动电动汽车惯性参数估计方法,如图1所示,通过车载传感器获取的车辆前轮转角δf、车轮轮胎角速度wij、车轮转矩Tij、车辆横摆角速度rz、纵向加速度ax和侧向加速度ay等信息,结合建立的相关自由度的车辆动力学模型设计的双自适应无迹卡尔曼滤波算法,以车辆前轮转角δf、轮胎角速度wij、轮胎转矩Tij为系统输入量,车辆横摆角速度rz、纵向加速度ax和侧向加速度ay为系统观测量,实现对车辆横摆角速度rz、车辆纵向速度Vx、车辆质心侧偏角β、车辆侧向速度Vy和加速度ay以及整车质量mn、横摆转动惯量Izz、质心到车辆前轴的距离lf的估计。In this embodiment, a method for estimating inertial parameters of a distributed driving electric vehicle, as shown in FIG. 1 , includes the vehicle front wheel rotation angle δ f , the wheel tire angular velocity w ij , the wheel torque T ij , the vehicle lateral According to the information such as yaw rate r z , longitudinal acceleration a x and lateral acceleration a y , combined with the established vehicle dynamics model of the relevant degrees of freedom, a double adaptive unscented Kalman filter algorithm is designed to calculate the front wheel rotation angle δ f of the vehicle, tire The angular velocity w ij and the tire torque T ij are the system input quantities, the vehicle yaw angular velocity r z , the longitudinal acceleration a x and the lateral acceleration a y are the system observation quantities . , vehicle center of mass slip angle β, vehicle lateral speed V y and acceleration a y and the vehicle mass m n , yaw moment of inertia I zz , the center of mass to the vehicle front axle distance lf estimates.

该估计方法的具体步骤如下:The specific steps of the estimation method are as follows:

1.构建相关自由度车辆动力学模型:1. Build a vehicle dynamics model with the relevant degrees of freedom:

考虑载荷参数的分布式驱动电动汽车动力学模型如图2所示,定义车辆坐标系的原点位于整车质心(CG)处,建立的包括车辆纵向、侧向、横摆运动在内的分布式驱动电动汽车整车动力学方程如下:The dynamic model of the distributed drive electric vehicle considering the load parameters is shown in Figure 2. The origin of the vehicle coordinate system is defined at the center of mass (CG) of the vehicle. The dynamic equation of driving an electric vehicle is as follows:

Figure BDA00024629930500001212
Figure BDA00024629930500001212

其中,

Figure BDA0002462993050000131
in,
Figure BDA0002462993050000131

Figure BDA0002462993050000132
Figure BDA0002462993050000132

其中,

Figure BDA0002462993050000133
in,
Figure BDA0002462993050000133

Figure BDA0002462993050000134
Figure BDA0002462993050000134

其中,

Figure BDA0002462993050000135
in,
Figure BDA0002462993050000135

在考虑载荷参数变化的情况下,模型的质心位置已发生变化。假设车辆加载的质量质心位置相对于原始坐标系坐标矢量为

Figure BDA0002462993050000136
载荷mp加载后,车辆总质量为mn=me+mp,则加载后原质心处的横摆转动惯量为:The position of the center of mass of the model has changed, taking into account changes in the load parameters. Assume that the position of the mass center of mass loaded by the vehicle is relative to the original coordinate system coordinate vector as
Figure BDA0002462993050000136
After the load m p is loaded, the total mass of the vehicle is m n =m e +m p , then the yaw moment of inertia at the original center of mass after loading is:

Figure BDA0002462993050000137
Figure BDA0002462993050000137

式中Izzo为车辆空时的横摆转动惯量。where Izzo is the yaw moment of inertia of the vehicle in empty time.

利用并行轴原理,可得到加载后原质心处的横摆转动惯量:Using the principle of parallel axes, the yaw moment of inertia at the original center of mass after loading can be obtained:

Figure BDA0002462993050000138
Figure BDA0002462993050000138

进一步,

Figure BDA0002462993050000139
further,
Figure BDA0002462993050000139

进一步,假设整车的质心高度不发生变化,利用杠杆原理,计算出位于原来坐标系下的新的质心位置坐标:Further, assuming that the height of the center of mass of the whole vehicle does not change, use the lever principle to calculate the new position coordinates of the center of mass in the original coordinate system:

Figure BDA00024629930500001310
Figure BDA00024629930500001310

Figure BDA00024629930500001311
and
Figure BDA00024629930500001311

综上:

Figure BDA00024629930500001312
In summary:
Figure BDA00024629930500001312

同时,当加载后,其相关几何参数也发生相应的改变为:At the same time, after loading, its related geometric parameters also change accordingly:

Figure BDA0002462993050000141
Figure BDA0002462993050000141

2.构建轮胎模型,选择Pacejka模型建立非线性轮胎,其用同一套复合三角函数公式来统一表达轮胎的纵向力、横向力。2. Build a tire model, select the Pacejka model to build a nonlinear tire, which uses the same set of complex trigonometric function formulas to uniformly express the longitudinal force and lateral force of the tire.

Pacejka模型建立非线性轮胎如下:The Pacejka model builds nonlinear tires as follows:

Figure BDA0002462993050000142
Figure BDA0002462993050000142

轮胎的侧向力和纵向力计算如下:The lateral and longitudinal forces of the tire are calculated as follows:

Figure BDA0002462993050000143
Figure BDA0002462993050000143

其中,对于轮胎侧向力

Figure BDA0002462993050000144
Among them, for tire lateral force
Figure BDA0002462993050000144

对于轮胎纵向力

Figure BDA0002462993050000145
For tire longitudinal force
Figure BDA0002462993050000145

上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.

车轮垂直载荷Fzij计算如下:The wheel vertical load F zij is calculated as follows:

Figure BDA0002462993050000146
Figure BDA0002462993050000146

车轮轮胎侧偏角αij计算如下:The wheel tire slip angle α ij is calculated as follows:

Figure BDA0002462993050000151
Figure BDA0002462993050000151

车轮轮胎纵向滑移sij计算如下:The wheel tire longitudinal slip s ij is calculated as follows:

Figure BDA0002462993050000152
Figure BDA0002462993050000152

3.建立双自适应无迹卡尔曼滤波器的状态和参数估计系统及证明车辆惯性参数的局部可观性:3. Establish a state and parameter estimation system for dual adaptive unscented Kalman filters and prove the local observability of vehicle inertial parameters:

1)根据上述三自由度车辆动力学模型,状态估计系统可以构造为:1) According to the above three-degree-of-freedom vehicle dynamics model, the state estimation system can be constructed as:

Figure BDA0002462993050000153
Figure BDA0002462993050000153

具体为:Specifically:

Figure BDA0002462993050000154
Figure BDA0002462993050000154

Figure BDA0002462993050000155
Figure BDA0002462993050000155

其中,in,

Figure BDA0002462993050000161
Figure BDA0002462993050000161

Figure BDA0002462993050000162
Figure BDA0002462993050000162

∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r

上述式是中Ts采样时间。The above formula is the sampling time in T s .

相应的参数估计系统可以进一步被构造:The corresponding parameter estimation system can be further constructed:

Figure BDA0002462993050000163
Figure BDA0002462993050000163

具体为:Specifically:

Figure BDA0002462993050000164
Figure BDA0002462993050000164

2)车辆惯性参数的输出矢量和输出矢量的导数定义为:2) The output vector of the vehicle inertia parameter and the derivative of the output vector are defined as:

Figure BDA0002462993050000165
Figure BDA0002462993050000165

则其可观性共分布矩阵为:

Figure BDA0002462993050000166
Then its observability co-distribution matrix is:
Figure BDA0002462993050000166

其中,部分求导结果为:Among them, part of the derivation results are:

Figure BDA0002462993050000167
Figure BDA0002462993050000167

Figure BDA0002462993050000168
Figure BDA0002462993050000168

Figure BDA0002462993050000169
Figure BDA0002462993050000169

Figure BDA00024629930500001610
Figure BDA00024629930500001610

Figure BDA00024629930500001611
Figure BDA00024629930500001611

由上述求导可得,在车辆行驶状态下,

Figure BDA0002462993050000171
满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。From the above derivation, it can be obtained that when the vehicle is running,
Figure BDA0002462993050000171
Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.

4.设计双自适应无迹卡尔曼滤波观测器如图3所示,具体的算法步骤如下:4. Design a dual-adaptive unscented Kalman filter observer as shown in Figure 3. The specific algorithm steps are as follows:

1)初始化;这里需要初始化的值分别为:

Figure BDA0002462993050000172
Pw,Pv,Pr,Pe 1) Initialization; the values that need to be initialized here are:
Figure BDA0002462993050000172
P w ,P v ,P r ,P e

2)车辆参数时间更新2) Vehicle parameter time update

计算车辆参数向量的一步预测值:Compute a one-step prediction for a vector of vehicle parameters:

Figure BDA0002462993050000173
Figure BDA0002462993050000173

计算一步车辆参数预测误差协方差矩阵:Compute the one-step vehicle parameter prediction error covariance matrix:

Figure BDA0002462993050000174
Figure BDA0002462993050000174

3)构建状态的sigma点及车辆状态时间更新3) The sigma point of the build state and the vehicle state time update

根据系统状态的状态均值和协方差建立初始化的2L+1个sigma点集为:According to the state mean and covariance of the system state, the initialized 2L+1 sigma point set is established as:

Figure BDA0002462993050000175
Figure BDA0002462993050000175

其中,

Figure BDA0002462993050000176
in,
Figure BDA0002462993050000176

上式中L为状态向量的维数,λs为比例参数,

Figure BDA0002462993050000177
是矩阵
Figure BDA0002462993050000178
的第i列。In the above formula, L is the dimension of the state vector, λ s is the scale parameter,
Figure BDA0002462993050000177
is the matrix
Figure BDA0002462993050000178
the i-th column of .

相应的权为:The corresponding rights are:

Figure BDA0002462993050000179
Figure BDA0002462993050000179

上式中,

Figure BDA00024629930500001710
分别为对应均值和方差的权重,αs为尺度标量,用来控制每个点到均值的距离且满足0.0001≤αs≤1,βs涉及高斯情况下状态的先验分布信息,s为标准参数,通常为0或3-L。In the above formula,
Figure BDA00024629930500001710
are the weights corresponding to the mean and variance, respectively, α s is the scale scalar, used to control the distance from each point to the mean and satisfies 0.0001≤α s ≤1, β s involves the prior distribution information of the state in the Gaussian case, s is the standard parameter, usually 0 or 3-L.

计算车辆状态的sigma点集与传导sigma点集:Calculate the sigma point set and conduction sigma point set of the vehicle state:

Xi(k|k-1)=f(Xi(k-1|k-1),u(k-1))X i (k|k-1)=f(X i (k-1|k-1),u(k-1))

计算车辆状态向量的一步预测值:Compute the one-step prediction of the vehicle state vector:

Figure BDA0002462993050000181
Figure BDA0002462993050000181

计算一步车辆状态预测误差协方差矩阵:Compute the one-step vehicle state prediction error covariance matrix:

Figure BDA0002462993050000182
Figure BDA0002462993050000182

4)构建时变参数的sigma点4) Construct sigma points of time-varying parameters

根据车辆参数信息构建参数的2l+1个sigma点集为:The 2l+1 sigma point set for constructing parameters according to the vehicle parameter information is:

Figure BDA0002462993050000183
Figure BDA0002462993050000183

其中,

Figure BDA0002462993050000184
in,
Figure BDA0002462993050000184

上式中l为估计参数向量的维数,λθ为比例参数,

Figure BDA0002462993050000185
是矩阵
Figure BDA0002462993050000186
的第j列。In the above formula, l is the dimension of the estimated parameter vector, λ θ is the scale parameter,
Figure BDA0002462993050000185
is the matrix
Figure BDA0002462993050000186
the jth column of .

相应的权为:The corresponding rights are:

Figure BDA0002462993050000187
Figure BDA0002462993050000187

上式中,

Figure BDA0002462993050000188
分别为对应均值和方差的权重,αθ为尺度标量,用来控制每个点到均值的距离且满足0.0001≤αθ≤1,βθ涉及高斯情况下状态的先验分布信息,sθ为标准参数,通常为0或3-l。In the above formula,
Figure BDA0002462993050000188
are the weights corresponding to the mean and variance, respectively, α θ is a scale scalar, which is used to control the distance from each point to the mean and satisfies 0.0001≤α θ ≤1, β θ relates to the prior distribution information of the state in the Gaussian case, s θ is Standard parameter, usually 0 or 3-l.

5)车辆参数量测更新5) Vehicle parameter measurement update

进一步计算车辆参数量测sigma点集与新传导sigma点集:Further calculate the vehicle parameter measurement sigma point set and the new conduction sigma point set:

Figure BDA0002462993050000189
Figure BDA0002462993050000189

6)车辆状态量测更新6) Vehicle state measurement update

进一步计算车辆状态量测容积点集与传导容积点集:Further calculate the vehicle state measurement volume point set and conduction volume point set:

Figure BDA0002462993050000191
Figure BDA0002462993050000191

7)计算状态的卡尔曼增益7) Calculate the Kalman gain of the state

计算新息协方差矩阵:Compute the innovation covariance matrix:

Figure BDA0002462993050000192
Figure BDA0002462993050000192

计算交叉协方差矩阵:Compute the cross-covariance matrix:

Figure BDA0002462993050000193
Figure BDA0002462993050000193

计算卡尔曼滤波非线性状态观测器增益:Compute the Kalman filter nonlinear state observer gain:

Figure BDA0002462993050000194
Figure BDA0002462993050000194

8)计算时变参数的卡尔曼增益8) Calculate the Kalman gain of time-varying parameters

计算参数新息协方差矩阵:Compute the parameter innovation covariance matrix:

Figure BDA0002462993050000195
Figure BDA0002462993050000195

计算参数交叉协方差矩阵:Compute the parametric cross-covariance matrix:

Figure BDA0002462993050000196
Figure BDA0002462993050000196

计算卡尔曼滤波非线性参数观测器增益:Compute the Kalman filter nonlinear parameter observer gain:

Figure BDA0002462993050000197
Figure BDA0002462993050000197

9)分别完成状态和时变参数的测量更新9) Complete the measurement update of the state and time-varying parameters respectively

更新当前时刻的状态向量,得到当前时刻非线性车辆状态的最优估计值:Update the state vector at the current moment to obtain the optimal estimate of the nonlinear vehicle state at the current moment:

Figure BDA0002462993050000198
Figure BDA0002462993050000198

同时更新误差协方差矩阵:Also update the error covariance matrix:

Figure BDA0002462993050000199
Figure BDA0002462993050000199

再更新当前时刻的参数向量,得到当前时刻车辆参数的最优估计值:Then update the parameter vector at the current moment to obtain the optimal estimated value of the vehicle parameters at the current moment:

Figure BDA00024629930500001910
Figure BDA00024629930500001910

同时更新参数误差协方差矩阵:Also update the parameter error covariance matrix:

Figure BDA00024629930500001911
Figure BDA00024629930500001911

10)完成状态和时变参数中的噪声的协方差的自适应更新10) Complete the adaptive update of the covariance of the noise in the state and time-varying parameters

状态噪声协方差的自适应更新:Adaptive update of state noise covariance:

Figure BDA0002462993050000201
Figure BDA0002462993050000201

其中,

Figure BDA0002462993050000202
in,
Figure BDA0002462993050000202

Figure BDA0002462993050000203
Figure BDA0002462993050000203

上式中,n为采样时间个数。In the above formula, n is the number of sampling times.

参数噪声协方差的自适应更新:Adaptive update of parameter noise covariance:

Figure BDA0002462993050000204
Figure BDA0002462993050000204

5.在Matlab/Simulink中先搭建Simulink-Carsim分布式驱动电动汽车估计惯性参数仿真平台,其中电动汽车的分布式驱动系统采用外接形式搭建,然后在CarSim软件中设置仿真条件,再通过CarSim-S函数的连接接口来与Simulink进行联合仿真通信,最终实现一种分布式驱动电动汽车惯性参数估计。5. In Matlab/Simulink, first build the Simulink-Carsim distributed drive electric vehicle estimation inertial parameter simulation platform, in which the distributed drive system of the electric vehicle is built in an external form, and then set the simulation conditions in the CarSim software, and then pass the CarSim-S The connection interface of the function is used to perform co-simulation communication with Simulink, and finally realize a distributed drive electric vehicle inertial parameter estimation.

Claims (7)

1.一种分布式驱动电动汽车惯性参数估计方法,其特征在于,包括以下步骤:1. a distributed drive electric vehicle inertial parameter estimation method, is characterized in that, comprises the following steps: S1、建立包括车辆纵向、侧向、横摆运动在内的三自由度整车非线性动力学模型,且考虑载荷参数不确定引起的车辆动力学估计模型系统变化;S1. Establish a three-degree-of-freedom vehicle nonlinear dynamic model including vehicle longitudinal, lateral, and yaw motions, and consider the system changes of the vehicle dynamics estimation model caused by the uncertainty of the load parameters; S2、构建轮胎模型,选择Pacejka模型建立非线性轮胎;S2. Build a tire model, and select the Pacejka model to build a nonlinear tire; S3、根据构建的三自由度车辆动力学模型和轮胎模型,设计基于双自适应无迹卡尔曼滤波器惯性参数估计系统框架,证明车辆惯性参数的局部可观性;S3. According to the constructed three-degree-of-freedom vehicle dynamics model and tire model, design an inertial parameter estimation system framework based on dual adaptive unscented Kalman filters, and prove the local observability of vehicle inertial parameters; S4、基于所述步骤S3中的惯性参数估计系统,确定双自适应无迹卡尔曼滤波观测器具体运作方法及步骤,实现对车辆纵向速度、车辆质心侧偏角等车辆状态以及整车质量、横摆转动惯量、质心到车辆前轴的距离等车辆惯性参数的估计。S4. Based on the inertial parameter estimation system in the step S3, determine the specific operation method and steps of the dual-adaptive unscented Kalman filter observer, so as to realize the vehicle status such as vehicle longitudinal speed, vehicle center of mass sideslip angle, and vehicle mass, Estimation of vehicle inertial parameters such as yaw moment of inertia, the distance from the center of mass to the front axle of the vehicle. 2.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤S1中的三自由度车辆动力学模型的方程为:2. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein the equation of the three-degree-of-freedom vehicle dynamics model in the step S1 is:
Figure FDA0002462993040000011
Figure FDA0002462993040000011
其中,in,
Figure FDA0002462993040000012
Figure FDA0002462993040000012
Figure FDA0002462993040000013
Figure FDA0002462993040000013
Figure FDA0002462993040000014
Figure FDA0002462993040000014
上述式中,Vx、Vy分别为车辆质心的纵向和侧向速度;rz为车辆质心的横摆角速度;β为车辆质心侧偏角;mn表示车辆总质量;Fxij、Fyij分别是车辆第i、j轮胎的纵向、侧向力,其中i=f,r;j=l,r;Fw、Ff分别是车辆空气阻力与地面轮胎滚动阻力;Cd为空气阻力系数;ρ为空气密度;Af为汽车正面迎风面积;ax、ay分别为车辆纵向与侧向加速度;μ为已知路面附着系数;δfl、δfr分别为前轮左右轮的转向角;Izz、Mz分别表示车辆横摆转动惯量和车辆横摆力矩;lf、lr分别为质心到车辆前后轴的水平距离;bl、br分别为质心到左右车轮中心的水平距离。In the above formula, V x and V y are the longitudinal and lateral velocities of the center of mass of the vehicle, respectively; r z is the yaw rate of the center of mass of the vehicle; β is the sideslip angle of the center of mass of the vehicle; m n represents the total mass of the vehicle; F xij , F yij are the longitudinal and lateral forces of the ith and jth tires of the vehicle, respectively, where i=f, r; j=l, r; F w , F f are the air resistance of the vehicle and the rolling resistance of the ground tires, respectively; C d is the air resistance coefficient ρ is the air density; A f is the front windward area of the vehicle; a x and a y are the longitudinal and lateral accelerations of the vehicle, respectively; μ is the known road adhesion coefficient; δ fl , δ fr are the steering angles of the left and right front wheels, respectively ; I zz , M z represent the vehicle yaw moment of inertia and vehicle yaw moment, respectively; l f , l r are the horizontal distance from the center of mass to the front and rear axles of the vehicle, respectively; b l , br are the horizontal distance from the center of mass to the center of the left and right wheels, respectively .
3.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤S1中的三自由度车辆动力学模型在考虑载荷参数变化的情况下,模型的质心位置已发生变化;假设车辆加载的质量质心位置相对于原始坐标系坐标矢量为
Figure FDA0002462993040000021
载荷mp加载后,车辆总质量为mn=me+mp,则加载后原质心处的横摆转动惯量为:
3. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein the three-degree-of-freedom vehicle dynamics model in the step S1 considers the change of the load parameter, and the position of the center of mass of the model has occurred. change; it is assumed that the position of the center of mass of the vehicle loaded relative to the original coordinate system coordinate vector is
Figure FDA0002462993040000021
After the load m p is loaded, the total mass of the vehicle is m n =m e +m p , then the yaw moment of inertia at the original center of mass after loading is:
Figure FDA0002462993040000028
Figure FDA0002462993040000028
式中Izzo为车辆空载时的横摆转动惯量;where Izzo is the yaw moment of inertia when the vehicle is unloaded; 加载后原质心处的横摆转动惯量:
Figure FDA0002462993040000022
The yaw moment of inertia at the original center of mass after loading:
Figure FDA0002462993040000022
其中
Figure FDA0002462993040000023
in
Figure FDA0002462993040000023
位于原来坐标系下的新的质心位置坐标:The new centroid position coordinates in the original coordinate system:
Figure FDA0002462993040000024
Figure FDA0002462993040000025
Figure FDA0002462993040000024
and
Figure FDA0002462993040000025
加载后横摆转动惯量Yaw moment of inertia after loading
Figure FDA0002462993040000026
Figure FDA0002462993040000026
同时,当载荷后,其相关几何参数也发生相应的改变为:At the same time, when the load is loaded, its related geometric parameters also change accordingly:
Figure FDA0002462993040000027
Figure FDA0002462993040000027
上述式中,mp为车辆的载荷质量;Izzo为车辆空载时的横摆转动惯量;L、B为车辆前后轴的水平距离和车辆左右车轮的水平距离;lf0、lr0分别为未加载时车辆前后轴到质心的水平距离;xp、yp分别为载荷在原车辆坐标系下的坐标值;xn、yn为车辆加载时的质心坐标;bf0、br0分别为车辆未加载时左右轮到质心的水平距离。In the above formula, m p is the load mass of the vehicle; I zzo is the yaw moment of inertia when the vehicle is unloaded; L and B are the horizontal distance between the front and rear axles of the vehicle and the horizontal distance between the left and right wheels of the vehicle; l f0 , l r0 are respectively The horizontal distance from the front and rear axles of the vehicle to the center of mass when not loaded; x p , y p are the coordinate values of the load in the original vehicle coordinate system; x n , y n are the center of mass coordinates when the vehicle is loaded; b f0 , b r0 are the vehicle The horizontal distance between the left and right turns to the centroid when not loaded.
4.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤4. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein the step S2中的Pacejka模型同一套复合三角函数公式来统一表达轮胎的纵向力、横向力等,其形式为:The Pacejka model in S2 uses the same set of complex trigonometric function formulas to uniformly express the longitudinal force and lateral force of the tire, and its form is:
Figure FDA0002462993040000031
Figure FDA0002462993040000031
上式中,轮胎模型参数D、B、C、E分别为峰值因子、刚度因子、曲线形状因子、曲线曲率因子;Sh、Sv分别为曲线水平方向漂移和曲线垂直方向漂移;当X为轮胎侧偏角α,Y为轮胎侧向力;当X为轮胎纵向滑移率s,Y为轮胎纵向力;In the above formula, the tire model parameters D, B, C, and E are the peak factor, stiffness factor, curve shape factor, and curve curvature factor, respectively; Sh and S v are the horizontal drift of the curve and the vertical drift of the curve; when X is Tire side slip angle α, Y is the tire lateral force; when X is the tire longitudinal slip rate s, Y is the tire longitudinal force; 轮胎的侧向力和纵向力计算如下:The lateral and longitudinal forces of the tire are calculated as follows:
Figure FDA0002462993040000032
Figure FDA0002462993040000032
其中,对于轮胎侧向力Fyij,
Figure FDA0002462993040000033
Among them, for tire lateral force F yij ,
Figure FDA0002462993040000033
对于轮胎纵向力Fxij,
Figure FDA0002462993040000034
For tire longitudinal force F xij ,
Figure FDA0002462993040000034
上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.
5.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤S3中的双自适应无迹卡尔曼滤波器的状态估计系统为:5. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein the state estimation system of the dual adaptive unscented Kalman filter in the step S3 is:
Figure FDA0002462993040000035
Figure FDA0002462993040000035
其中
Figure FDA0002462993040000036
in
Figure FDA0002462993040000036
Figure FDA0002462993040000041
Figure FDA0002462993040000041
Figure FDA0002462993040000042
Figure FDA0002462993040000042
Figure FDA0002462993040000043
Figure FDA0002462993040000043
∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r 在上述状态观测系统中,x(k)=[rz,Vx,β,ay,Vy]T、θ(k)=[mn,Izz,lf]T分别为车辆非线性动力学观测器系统的状态矢量和参数矢量,u(k)=[δf,wij,Tij]T和z(k)=[rz,ax,ay]T分别为车辆非线性动力学观测器系统的输入矢量和量测矢量,w(k)、v(k)分别为系统的过程噪音和量测噪音,两者为系统互不相关,Ts为采样时间;In the above state observation system, x(k)=[r z , V x , β, a y , V y ] T , θ(k)=[m n , I zz , l f ] T are the vehicle nonlinearities, respectively The state vector and parameter vector of the dynamic observer system, u(k)=[δ f , w ij , T ij ] T and z(k)=[r z , a x , a y ] T are the vehicle nonlinearities, respectively Input vector and measurement vector of the dynamic observer system, w(k), v(k) are the process noise and measurement noise of the system, respectively, the two are independent of the system, and T s is the sampling time; 相应的双自适应无迹卡尔曼滤波器参数估计系统可进一步被构造:The corresponding dual adaptive unscented Kalman filter parameter estimation system can be further constructed:
Figure FDA0002462993040000044
Figure FDA0002462993040000044
其中,
Figure FDA0002462993040000045
in,
Figure FDA0002462993040000045
在上述参数估计系统中,r(k)、e(k)分别为系统的过程噪音和量测噪音,d(k)=[rz,ax,ay]T为量测矢量。In the above parameter estimation system, r(k) and e(k) are the process noise and measurement noise of the system, respectively, and d(k)=[r z , a x , a y ] T is the measurement vector.
6.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤S3中通过研究惯性参数的可观性共分布矩阵的秩来证明其局部可观性,如果可观性共分布矩阵具有列全秩,则称惯性参数为局部可观;证明车辆惯性参数的局部可观性过程如下:6. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein in the step S3, its local observability is proved by studying the rank of the co-distribution matrix of the observability of the inertia parameters. If the distribution matrix has full column rank, the inertial parameters are said to be locally observable; the process of proving the local observability of vehicle inertial parameters is as follows: 车辆惯性参数的输出矢量和输出矢量的导数定义为:The output vector of the vehicle inertia parameter and the derivative of the output vector are defined as:
Figure FDA0002462993040000051
Figure FDA0002462993040000051
则其可观性共分布矩阵为:
Figure FDA0002462993040000052
其中部分求导结果为:
Then its observability co-distribution matrix is:
Figure FDA0002462993040000052
Some of the derivation results are:
Figure FDA0002462993040000053
Figure FDA0002462993040000053
由上述求导可得,在车辆行驶状态下,
Figure FDA0002462993040000054
满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。
From the above derivation, it can be obtained that when the vehicle is running,
Figure FDA0002462993040000054
Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.
7.根据权利要求1所述分布式驱动电动汽车惯性参数估计方法,其特征在于,所述步骤S4中的双自适应无迹卡尔曼滤波观测器具体运作包括以下步骤:7. The method for estimating inertial parameters of a distributed drive electric vehicle according to claim 1, wherein the specific operation of the dual-adaptive unscented Kalman filter observer in the step S4 comprises the following steps: (1)初始化,需要初始化的值分别为:
Figure FDA0002462993040000055
Pw,Pv,Pr,Pe
(1) Initialization, the values that need to be initialized are:
Figure FDA0002462993040000055
P w , P v , P r , P e ;
(2)时变参数的时间更新,得到
Figure FDA0002462993040000056
Figure FDA0002462993040000057
(2) Time update of time-varying parameters, we get
Figure FDA0002462993040000056
and
Figure FDA0002462993040000057
(3)构建状态的sigma点,完成状态的时间更新,得到Xi(k|k-1)、
Figure FDA0002462993040000058
Figure FDA0002462993040000059
(3) Construct the sigma point of the state, complete the time update of the state, and obtain X i (k|k-1),
Figure FDA0002462993040000058
and
Figure FDA0002462993040000059
(4)构建时变参数的sigma点,得到Θj(k-1|k-1);(4) Construct the sigma point of time-varying parameters to obtain Θ j (k-1|k-1); (5)根据sigma点计算时变参数的输出估计,得到Dj(k|k-1)和
Figure FDA00024629930400000510
(5) Calculate the output estimation of the time-varying parameters according to the sigma point, and obtain D j (k|k-1) and
Figure FDA00024629930400000510
(6)根据sigma点计算状态的输出估计,得到zi(k|k-1)和
Figure FDA00024629930400000511
(6) Calculate the output estimation of the state according to the sigma point, and obtain zi (k|k-1) and
Figure FDA00024629930400000511
(7)计算状态的卡尔曼增益,得到
Figure FDA00024629930400000512
和Lx(k);
(7) Calculate the Kalman gain of the state, and get
Figure FDA00024629930400000512
and L x (k);
(8)计算时变参数的卡尔曼增益,得到
Figure FDA00024629930400000513
和Lθ(k);
(8) Calculate the Kalman gain of the time-varying parameters, and get
Figure FDA00024629930400000513
and L θ (k);
(9)分别完成状态和时变参数的测量更新,得到
Figure FDA00024629930400000514
Figure FDA00024629930400000515
(9) Complete the measurement and update of the state and time-varying parameters, respectively, and obtain
Figure FDA00024629930400000514
and
Figure FDA00024629930400000515
(10)分别完成状态和时变参数中的噪声的协方差的自适应更新,得到Pw(k-1)、Pv(k)、Pr(k-1)和Pe(k)。(10) The adaptive update of the covariance of noise in the state and time-varying parameters is completed respectively, and Pw (k-1), Pv (k), Pr (k-1) and Pe (k) are obtained.
CN202010325309.3A 2020-04-23 2020-04-23 A distributed drive electric vehicle inertial parameter estimation method Pending CN111547059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010325309.3A CN111547059A (en) 2020-04-23 2020-04-23 A distributed drive electric vehicle inertial parameter estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010325309.3A CN111547059A (en) 2020-04-23 2020-04-23 A distributed drive electric vehicle inertial parameter estimation method

Publications (1)

Publication Number Publication Date
CN111547059A true CN111547059A (en) 2020-08-18

Family

ID=71996464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010325309.3A Pending CN111547059A (en) 2020-04-23 2020-04-23 A distributed drive electric vehicle inertial parameter estimation method

Country Status (1)

Country Link
CN (1) CN111547059A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959516A (en) * 2020-09-02 2020-11-20 上海智驾汽车科技有限公司 Method for jointly estimating vehicle state and road adhesion coefficient
CN112660135A (en) * 2020-12-25 2021-04-16 浙江吉利控股集团有限公司 Road surface adhesion coefficient estimation method and device
CN112668093A (en) * 2020-12-21 2021-04-16 西南交通大学 Optimal distribution control method for all-wheel longitudinal force of distributed driving automobile
CN113063414A (en) * 2021-03-27 2021-07-02 上海智能新能源汽车科创功能平台有限公司 Vehicle dynamics pre-integration construction method for visual inertia SLAM
CN113203422A (en) * 2021-04-14 2021-08-03 武汉理工大学 A Joint Estimation Method of Freight State Inertial Parameters Based on Dimension Measuring Device
CN113609586A (en) * 2021-07-30 2021-11-05 东风商用车有限公司 A method and system for joint identification of cornering stiffness and moment of inertia parameters
CN113886957A (en) * 2021-09-30 2022-01-04 中科测试(深圳)有限责任公司 Vehicle dynamic parameter estimation method
CN114329917A (en) * 2021-12-09 2022-04-12 上海大学 A Sensitivity Analysis Method for Load Parameters of Light Electric Vehicles
CN115879332A (en) * 2023-03-01 2023-03-31 北京千种幻影科技有限公司 Driving simulator motion platform control method and device, electronic equipment and storage medium
CN116552548A (en) * 2023-07-06 2023-08-08 华东交通大学 Four-wheel distributed electric drive automobile state estimation method
CN116588119A (en) * 2023-05-30 2023-08-15 同济大学 A Vehicle State Estimation Method Based on Adaptive Tire Model Parameters
CN117807703A (en) * 2023-12-15 2024-04-02 南京航空航天大学 Method for estimating key parameters of scooter chassis vehicle with mutually corrected dynamic and static parameters
CN118182495A (en) * 2024-05-20 2024-06-14 北京理工大学 A vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle lateral dynamics model
CN118606615A (en) * 2024-05-31 2024-09-06 哈尔滨工业大学 Method, system, device and storage medium for obtaining vehicle center of mass inertia matrix
CN119378399A (en) * 2024-11-07 2025-01-28 开沃新能源汽车集团股份有限公司 Method, device and electronic equipment for estimating state parameters of electric four-wheel drive passenger car
CN120057024A (en) * 2025-04-30 2025-05-30 南京航空航天大学 A method for actively enhancing perception of vehicle-road state parameters in a drive-by-wire chassis system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019164A (en) * 2016-07-07 2016-10-12 武汉理工大学 Lithium battery SOC estimation algorithm based on dual adaptive unscented Kalman filter
CN106515740A (en) * 2016-11-14 2017-03-22 江苏大学 Distributed electrically driven automobile travelling status parameter estimation algorithm based on ICDKF
CN108128308A (en) * 2017-12-27 2018-06-08 长沙理工大学 A kind of vehicle state estimation system and method for distributed-driving electric automobile
CN108189705A (en) * 2017-12-11 2018-06-22 江苏大学 A Control Method for Distributed Drive Electric Vehicles Considering Energy Saving and Stability
CN108284841A (en) * 2017-12-11 2018-07-17 江苏大学 A self-adaptive iterative estimation method for distributed drive electric vehicle driving state
CN108597058A (en) * 2017-12-11 2018-09-28 江苏大学 State Cascade Estimation Method for Distributed Drive Electric Vehicle Based on Pseudo-Measurement Information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019164A (en) * 2016-07-07 2016-10-12 武汉理工大学 Lithium battery SOC estimation algorithm based on dual adaptive unscented Kalman filter
CN106515740A (en) * 2016-11-14 2017-03-22 江苏大学 Distributed electrically driven automobile travelling status parameter estimation algorithm based on ICDKF
CN108189705A (en) * 2017-12-11 2018-06-22 江苏大学 A Control Method for Distributed Drive Electric Vehicles Considering Energy Saving and Stability
CN108284841A (en) * 2017-12-11 2018-07-17 江苏大学 A self-adaptive iterative estimation method for distributed drive electric vehicle driving state
CN108597058A (en) * 2017-12-11 2018-09-28 江苏大学 State Cascade Estimation Method for Distributed Drive Electric Vehicle Based on Pseudo-Measurement Information
CN108128308A (en) * 2017-12-27 2018-06-08 长沙理工大学 A kind of vehicle state estimation system and method for distributed-driving electric automobile

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANGHYUN HONG等: "A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》 *
金贤建等: "分布式驱动电动汽车双无迹卡尔曼滤波状态参数联合观测", 《机械工程学报》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959516B (en) * 2020-09-02 2023-08-01 上海智驾汽车科技有限公司 Method for jointly estimating vehicle state and road adhesion coefficient
CN111959516A (en) * 2020-09-02 2020-11-20 上海智驾汽车科技有限公司 Method for jointly estimating vehicle state and road adhesion coefficient
CN112668093A (en) * 2020-12-21 2021-04-16 西南交通大学 Optimal distribution control method for all-wheel longitudinal force of distributed driving automobile
CN112660135A (en) * 2020-12-25 2021-04-16 浙江吉利控股集团有限公司 Road surface adhesion coefficient estimation method and device
CN113063414A (en) * 2021-03-27 2021-07-02 上海智能新能源汽车科创功能平台有限公司 Vehicle dynamics pre-integration construction method for visual inertia SLAM
CN113203422A (en) * 2021-04-14 2021-08-03 武汉理工大学 A Joint Estimation Method of Freight State Inertial Parameters Based on Dimension Measuring Device
CN113609586A (en) * 2021-07-30 2021-11-05 东风商用车有限公司 A method and system for joint identification of cornering stiffness and moment of inertia parameters
CN113886957A (en) * 2021-09-30 2022-01-04 中科测试(深圳)有限责任公司 Vehicle dynamic parameter estimation method
CN114329917A (en) * 2021-12-09 2022-04-12 上海大学 A Sensitivity Analysis Method for Load Parameters of Light Electric Vehicles
CN114329917B (en) * 2021-12-09 2025-01-07 上海大学 A method for sensitivity analysis of load parameters of light electric vehicles
CN115879332A (en) * 2023-03-01 2023-03-31 北京千种幻影科技有限公司 Driving simulator motion platform control method and device, electronic equipment and storage medium
CN116588119B (en) * 2023-05-30 2024-06-28 同济大学 A vehicle state estimation method based on tire model parameter adaptation
CN116588119A (en) * 2023-05-30 2023-08-15 同济大学 A Vehicle State Estimation Method Based on Adaptive Tire Model Parameters
CN116552548A (en) * 2023-07-06 2023-08-08 华东交通大学 Four-wheel distributed electric drive automobile state estimation method
CN116552548B (en) * 2023-07-06 2023-09-12 华东交通大学 A state estimation method for four-wheel distributed electric drive vehicles
CN117807703B (en) * 2023-12-15 2024-06-04 南京航空航天大学 A method for estimating key parameters of skateboard chassis vehicles with mutual correction of dynamic and static parameters
CN117807703A (en) * 2023-12-15 2024-04-02 南京航空航天大学 Method for estimating key parameters of scooter chassis vehicle with mutually corrected dynamic and static parameters
CN118182495A (en) * 2024-05-20 2024-06-14 北京理工大学 A vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle lateral dynamics model
CN118182495B (en) * 2024-05-20 2024-07-19 北京理工大学 Vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle transverse dynamics model
CN118606615A (en) * 2024-05-31 2024-09-06 哈尔滨工业大学 Method, system, device and storage medium for obtaining vehicle center of mass inertia matrix
CN119378399A (en) * 2024-11-07 2025-01-28 开沃新能源汽车集团股份有限公司 Method, device and electronic equipment for estimating state parameters of electric four-wheel drive passenger car
CN120057024A (en) * 2025-04-30 2025-05-30 南京航空航天大学 A method for actively enhancing perception of vehicle-road state parameters in a drive-by-wire chassis system

Similar Documents

Publication Publication Date Title
CN111547059A (en) A distributed drive electric vehicle inertial parameter estimation method
Guo et al. Vehicle dynamic state estimation: State of the art schemes and perspectives
CN103434511B (en) The combined estimation method of a kind of speed of a motor vehicle and road-adhesion coefficient
CN103407451B (en) A kind of road longitudinal and additional forces method of estimation
CN109606378B (en) A Vehicle Driving State Estimation Method for Non-Gaussian Noise Environment
Nam et al. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches
CN106515740B (en) Distributed electrical based on ICDKF drives vehicle driving state parameter estimation algorithm
CN108594652A (en) A kind of vehicle-state fusion method of estimation based on observer information iteration
CN111845775A (en) A Joint Estimation Method of Driving State and Inertial Parameters of Distributed Drive Electric Vehicles
CN107247824A (en) Consider the car mass road grade combined estimation method of brake and influence of turning
Wang et al. An integrated scheme for coefficient estimation of tire–road friction with mass parameter mismatch under complex driving scenarios
CN106394561A (en) Estimation method and device for longitudinal vehicle speed of vehicle
Hsu et al. Vehicle full-state estimation and prediction system using state observers
CN113203422B (en) Freight car state inertia parameter joint estimation method based on size measurement device
CN103625475B (en) A kind of vehicle side inclination angle based on recurrence least square and pitch angle method of estimation
US20230077259A1 (en) Virtual Validation and Verification Model Structure for Motion Control
CN108241773A (en) An Improved Vehicle Driving State Estimation Method
CN110884499A (en) Method and system for determining vehicle mass center slip angle
CN111796522A (en) Vehicle state estimation method
Cheng et al. A hierarchical estimation scheme of tire-force based on random-walk SCKF for vehicle dynamics control
CN111959516A (en) Method for jointly estimating vehicle state and road adhesion coefficient
CN114537346B (en) Electric wheel slip rate determination method and device, computer equipment and storage medium
Huang et al. Robust sideslip angle estimation for lightweight vehicles using smooth variable structure filter
Wang et al. Estimation of road adhesion coefficient for four-wheel independent drive electric vehicle
Xia et al. State estimation and application of the hitch angle of a semitrailer train under full working conditions based on multimodel information fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination