CN111547059A - A distributed drive electric vehicle inertial parameter estimation method - Google Patents
A distributed drive electric vehicle inertial parameter estimation method Download PDFInfo
- Publication number
- CN111547059A CN111547059A CN202010325309.3A CN202010325309A CN111547059A CN 111547059 A CN111547059 A CN 111547059A CN 202010325309 A CN202010325309 A CN 202010325309A CN 111547059 A CN111547059 A CN 111547059A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- mass
- parameters
- center
- inertia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/107—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
- B60W40/13—Load or weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
- B60W40/13—Load or weight
- B60W2040/1315—Location of the centre of gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
- B60W40/13—Load or weight
- B60W2040/1323—Moment of inertia of the vehicle body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
- B60W2530/10—Weight
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
技术领域technical field
本发明属于分布式驱动电动汽车主动安全控制领域,具体涉及一种分布式驱动电动汽车惯性参数估计方法。The invention belongs to the field of active safety control of distributed driving electric vehicles, and particularly relates to a method for estimating inertial parameters of distributed driving electric vehicles.
背景技术Background technique
电动汽车由于具有节能和降低排放的巨大潜力,成为当今节能环保汽车技术研发的热点,也使得发展电动汽车成为未来汽车工业的发展方向。但电动汽车保有量的增多带来诸多的交通问题,尤其是车辆的主动安全性备受关注。近几年,随着电子信息技术及智能化控制技术的发展,现代汽车市场出现了许多可以有效提高主动安全性的汽车底盘电控系统:如基于汽车纵向控制的制动防抱死系统(ABS)、牵引力控制系统(TCS),和基于汽车横向控制的电子稳定系统(ESP)、电动助力转向系统(EPS),及基于汽车横摆方向控制的直接横摆力矩控制系统(DYC)。要实现这些主动安全动力学系统的有效可靠控制,就需要准确实时地获得车辆行驶中的一些关键状态参数信息,如车辆侧向速度、车辆质心侧偏角等。Due to the great potential of energy saving and emission reduction, electric vehicles have become a hot spot in the research and development of energy-saving and environmentally friendly vehicle technology, and the development of electric vehicles has also become the development direction of the future automobile industry. However, the increase in the number of electric vehicles has brought many traffic problems, especially the active safety of vehicles. In recent years, with the development of electronic information technology and intelligent control technology, there have been many automotive chassis electronic control systems that can effectively improve active safety in the modern automobile market. ), Traction Control System (TCS), and Electronic Stability System (ESP) based on vehicle lateral control, Electric Power Steering (EPS), and Direct Yaw Moment Control (DYC) based on vehicle yaw direction control. In order to realize the effective and reliable control of these active safety dynamic systems, it is necessary to obtain some key state parameter information, such as vehicle lateral speed, vehicle center of mass slip angle, etc., accurately and in real time.
然而,测量这些状态参数需要安装昂贵的车载传感器,且传感器量测信号的可靠性问题尚未完全解决,这些车辆运行的关键状态难以使用标准的车载传感器直接测量,只能被观测或估计。同时基于实际车辆工程应用视角,如何利用现有车载传感器测量信息,在线准确估计不易直接测量的车辆状态参数信息是车辆工程应用中亟待解决的难题。However, the measurement of these state parameters requires the installation of expensive on-board sensors, and the reliability of sensor measurement signals has not been fully resolved. These key states of vehicle operation are difficult to measure directly using standard on-board sensors, and can only be observed or estimated. At the same time, from the perspective of practical vehicle engineering application, how to use the existing vehicle sensor measurement information to accurately estimate the vehicle state parameter information that is difficult to directly measure online is an urgent problem to be solved in vehicle engineering applications.
在目前的车辆状态估计研究中,大多数集中在车辆运行过程中的状态估计,而对车辆惯性参数估计研究相对较少。事实上,分布式驱动电动汽车簧下质量的增加导致整车质量的重新分布,特别是载荷参数不确定(乘客或货物加载)导致车辆惯性参数包括车辆质量、横摆转动惯量、车辆质心位置的变化,直接影响车辆底盘系统的操纵特性、控制性能以及稳定性如侧向稳定性,实时观测分布式驱动电动汽车惯性参数信息显得尤为重要。In the current research on vehicle state estimation, most of them focus on the state estimation during vehicle operation, while the research on vehicle inertia parameter estimation is relatively rare. In fact, the increase of the unsprung mass of the distributed drive electric vehicle leads to the redistribution of the whole vehicle mass, especially the uncertainty of the load parameters (passenger or cargo loading) leads to the vehicle inertia parameters including the vehicle mass, the yaw moment of inertia, the position of the vehicle center of mass Changes directly affect the handling characteristics, control performance and stability of the vehicle chassis system, such as lateral stability, and it is particularly important to observe the inertial parameter information of distributed drive electric vehicles in real time.
另外,传统车辆非线性卡尔曼滤波状态估计假设噪声统计特性已知且为零均值白噪声,但在实际的车辆工程应用过程中存在外界及环境干扰,噪声的统计特性往往是未知的,假设确定条件下的噪声统计特性会导致车辆状态估计性能下降,甚至会引起估计发散。在车辆状态参数估计过程中如何避免不确定噪的声统计特性导致的估计失效,也是应该考虑到的重要问题。In addition, the traditional vehicle nonlinear Kalman filter state estimation assumes that the statistical characteristics of noise are known and zero-mean white noise, but there are external and environmental disturbances in the actual vehicle engineering application process, and the statistical characteristics of noise are often unknown. The statistical characteristics of noise under the condition can cause the performance of vehicle state estimation to degrade, and even cause the estimation to diverge. In the process of vehicle state parameter estimation, how to avoid estimation failure caused by the acoustic statistical characteristics of uncertain noise is also an important issue that should be considered.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种分布式驱动电动汽车惯性参数估计方法,基于建立的考虑载荷变化的车辆非线性动力学模型,采用双自适应无迹卡尔曼滤波算法,在估计车辆纵向速度、车辆质心侧偏角等状态量的基础上对整车质量、横摆转动惯量、质心到车辆前轴的距离等车辆惯性参数进行实时估计,具有精度高、可靠性强等优点。The purpose of the present invention is to provide a method for estimating inertial parameters of a distributed drive electric vehicle. Based on the established nonlinear dynamic model of the vehicle considering load changes, the dual adaptive unscented Kalman filter algorithm is used to estimate the longitudinal speed of the vehicle, the Based on the state quantities such as the center of mass slip angle, the vehicle inertial parameters such as the mass of the vehicle, the yaw moment of inertia, and the distance from the center of mass to the front axle of the vehicle are estimated in real time, which has the advantages of high accuracy and strong reliability.
为了实现上述目的,本发明提供如下方案:In order to achieve the above object, the present invention provides the following scheme:
一种分布式驱动电动汽车惯性参数估计方法,采用双自适应无迹卡尔曼滤波算法,具体包括如下步骤:A method for estimating inertial parameters of a distributed drive electric vehicle adopts a dual-adaptive unscented Kalman filter algorithm, which specifically includes the following steps:
(1)构建考虑载荷参数不确定如乘客或货物加载的三自由度车辆动力学模型,建立与车辆纵向速度、车辆横摆角速度、车辆质心侧偏角、车辆侧向速度和加速度以及整车质量、横摆转动惯量、质心到车辆前轴的距离相关的包括车辆纵向、侧向、横摆运动在内的三自由度整车动力学模型。(1) Construct a three-degree-of-freedom vehicle dynamics model that considers uncertain load parameters such as passenger or cargo loading, and establish a relationship with the vehicle longitudinal speed, vehicle yaw rate, vehicle center of mass slip angle, vehicle lateral speed and acceleration, and vehicle mass. , yaw moment of inertia, the distance from the center of mass to the front axle of the vehicle, including vehicle longitudinal, lateral, yaw motion, three degrees of freedom vehicle dynamics model.
上述步骤(1)中,所建立的包括车辆纵向、侧向、横摆运动在内的分布式驱动电动汽车整车动力学方程如下:In the above step (1), the established dynamic equation of the distributed drive electric vehicle including the longitudinal, lateral and yaw motions of the vehicle is as follows:
其中, in,
其中, in,
其中, in,
在考虑载荷参数变化的情况下,模型的质心位置将发生变化。当车辆加载的质量质心位置相对于原始坐标系坐标矢量为当载荷mp加载后,车辆总质量为mn=me+mp The position of the center of mass of the model will change taking into account changes in the load parameters. When the position of the mass center of mass loaded by the vehicle is relative to the original coordinate system, the coordinate vector is When the load m p is loaded, the total mass of the vehicle is m n =m e +m p
加载后原质心处的横摆转动惯量为: The yaw moment of inertia at the original center of mass after loading is:
式中Izzo为车辆空载时的横摆转动惯量。where Izzo is the yaw moment of inertia when the vehicle is unloaded.
加载后原质心处的横摆转动惯量: The yaw moment of inertia at the original center of mass after loading:
其中 in
位于原来坐标系下的新的质心位置坐标:The new centroid position coordinates in the original coordinate system:
且 and
加载后横摆转动惯量 Yaw moment of inertia after loading
同时,当载荷变化后,其质心位置相关几何参数也发生相应的改变为:At the same time, when the load changes, the relevant geometric parameters of its centroid position also change accordingly:
上述式中,Vx、Vy分别为车辆质心的纵向和侧向速度;rz为车辆质心的横摆角速度;β为车辆质心侧偏角;me、mp、mn分别表示车辆空载质量、加载的质量、总质量;Fxij、Fyij分别是车辆第i、j轮胎的纵向、侧向力,其中i=f,r;j=l,r。Fw、Ff分别是车辆空气阻力与地面轮胎滚动阻力;Cd为空气阻力系数;ρ为空气密度;Af为汽车正面迎风面积;ax、ay分别为车辆纵向与侧向加速度;μ为已知路面附着系数;δfl、δfr分别为前轮左右轮的转向角;Izz、Mz分别表示车辆横摆转动惯量和车辆横摆力矩;lf、lr分别为质心到车辆前后轴的水平距离;bl、br分别为质心到左右车轮中心的水平距离;mp为车辆的载荷质量;L、B为车辆前后轴的水平距离和车辆左右车轮的水平距离;lf0、lr0分别为未加载时车辆前后轴到质心的水平距离;xp、yp分别为载荷在原车辆坐标系下的坐标值;xn、yn为车辆加载时的质心坐标;bf0、br0分别为车辆未加载时左右轮到质心的水平距离。In the above formula, V x and V y are the longitudinal and lateral velocities of the center of mass of the vehicle, respectively; r z is the yaw rate of the center of mass of the vehicle; β is the sideslip angle of the center of mass of the vehicle; Loaded mass, loaded mass, and total mass; F xij and F yij are the longitudinal and lateral forces of the ith and jth tires of the vehicle, respectively, where i=f,r; j=l,r. F w , F f are the air resistance of the vehicle and the rolling resistance of the ground tires; C d is the air resistance coefficient; ρ is the air density; A f is the front windward area of the vehicle; a x , a y are the longitudinal and lateral accelerations of the vehicle; μ is the known road adhesion coefficient; δ fl , δ fr are the steering angles of the front and left wheels, respectively; I zz , M z represent the vehicle yaw moment of inertia and vehicle yaw moment, respectively; l f , l r are the center of mass to The horizontal distance between the front and rear axles of the vehicle; b l and br are the horizontal distance from the center of mass to the center of the left and right wheels respectively; mp is the load mass of the vehicle; L and B are the horizontal distance between the front and rear axles of the vehicle and the horizontal distance between the left and right wheels of the vehicle; l f0 , l r0 are the horizontal distance from the front and rear axles of the vehicle to the center of mass when the vehicle is not loaded; x p , y p are the coordinate values of the load in the original vehicle coordinate system; x n , y n are the center of mass coordinates when the vehicle is loaded; b f0 , b r0 are the horizontal distances from the left and right wheels to the center of mass when the vehicle is not loaded, respectively.
(2)构建轮胎模型,选择Pacejka模型建立非线性轮胎,其用同一套复合三角函数公式来统一表达轮胎的纵向力、横向力等,具有适应性强、精度高的优点。(2) Build the tire model, select the Pacejka model to build the nonlinear tire, which uses the same set of complex trigonometric function formulas to uniformly express the longitudinal force and lateral force of the tire, which has the advantages of strong adaptability and high precision.
步骤(2)中所述Pacejka模型建立非线性轮胎如下:The Pacejka model described in step (2) establishes the nonlinear tire as follows:
上式中,轮胎模型参数D、B、C、E分别为峰值因子,刚度因子,曲线形状因子,曲线曲率因子;Sh、Sv分别为曲线水平方向漂移和曲线垂直方向漂移。Y为轮胎侧向力、纵向力;X为轮胎侧偏角α或纵向滑移率s。轮胎的侧向力和纵向力计算如下:In the above formula, the tire model parameters D, B, C, and E are the peak factor, stiffness factor, curve shape factor, and curve curvature factor, respectively; Sh and S v are the horizontal drift of the curve and the vertical drift of the curve, respectively. Y is the tire lateral force and longitudinal force; X is the tire side slip angle α or the longitudinal slip rate s. The lateral and longitudinal forces of the tire are calculated as follows:
其中,对于轮胎侧向力 Among them, for tire lateral force
对于轮胎纵向力 For tire longitudinal force
上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.
(3)根据构建的三自由度车辆动力学模型和轮胎模型,设计双自适应无迹卡尔曼滤波器的状态和参数估计系统,同时证明车辆惯性参数的局部可观性。状态估计系统的状态方程和观测方程,离散化后可表示为如下形式:(3) According to the constructed three-degree-of-freedom vehicle dynamics model and tire model, the state and parameter estimation system of dual adaptive unscented Kalman filter is designed, and the local observability of vehicle inertial parameters is proved at the same time. The state equation and observation equation of the state estimation system can be expressed in the following form after discretization:
其中 in
∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r
在上述状态观测系统中,x(k)=[rz,Vx,β,ay,Vy]T、θ(k)=[mn,Izz,lf]T分别为车辆非线性动力学观测器系统的状态矢量和参数矢量,u(k)=[δf,wij,Tij]T和z(k)=[rz,ax,ay]T分别为车辆非线性动力学观测器系统的输入矢量和量测矢量,w(k)、v(k)分别为系统的过程噪音和量测噪音,两者为系统互不相关,Ts为采样时间。In the above state observation system, x(k)=[r z , V x , β, a y , V y ] T , θ(k)=[m n , I zz , l f ] T are the vehicle nonlinearities, respectively The state vector and parameter vector of the dynamic observer system, u(k)=[δ f , w ij , T ij ] T and z(k)=[r z , a x , a y ] T are the vehicle nonlinearities, respectively The input vector and measurement vector of the dynamic observer system, w(k), v(k) are the process noise and measurement noise of the system, respectively, the two are independent of the system, and T s is the sampling time.
相应的参数估计系统可以进一步被构造:The corresponding parameter estimation system can be further constructed:
其中, in,
在上述参数估计系统中,r(k)、e(k)分别为系统的过程噪音和量测噪音,d(k)=[rz,ax,ay]T为量测矢量。In the above parameter estimation system, r(k) and e(k) are the process noise and measurement noise of the system, respectively, and d(k)=[r z , a x , a y ] T is the measurement vector.
通过研究惯性参数的可观性共分布矩阵的秩来证明其局部可观性,如果可观性共分布矩阵具有列全秩,则称惯性参数为局部可观。将车辆惯性参数的输出矢量和输出矢量的导数定义为:The local observability is proved by studying the rank of the observability co-distribution matrix of inertial parameters. If the observability co-distribution matrix has full column rank, the inertial parameters are said to be locally observable. The output vector and the derivative of the output vector of the vehicle inertial parameters are defined as:
其可观性共分布矩阵为: Its observability co-distribution matrix is:
其中,可观性共分布矩阵部分求导为:Among them, the partial derivation of the observability co-distribution matrix is:
在车辆行驶状态下,满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。When the vehicle is running, Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.
(4)分布式驱动电动汽车惯性参数双自适应无迹卡尔曼滤波观测器具体运作包括以下步骤:(4) The specific operation of the dual-adaptive unscented Kalman filter observer for the inertial parameters of the distributed drive electric vehicle includes the following steps:
初始化;需要初始化的值分别为:Pw,Pv,Pr,Pe;Initialization; the values that need to be initialized are: P w , P v , P r , P e ;
时变参数的时间更新,得到和 The time update of the time-varying parameter, we get and
构建状态的sigma点,完成状态的时间更新,得到Xi(k|k-1)、和 Build the sigma point of the state, complete the time update of the state, and obtain X i (k|k-1), and
构建时变参数的sigma点,得到Θj(k-1|k-1);Construct the sigma points of time-varying parameters to get Θ j (k-1|k-1);
根据sigma点计算时变参数的输出估计,得到Dj(k|k-1)和 Calculate the output estimates of the time-varying parameters from the sigma points to obtain D j (k|k-1) and
根据sigma点计算状态的输出估计,得到zi(k|k-1)和 Calculate the output estimate of the state according to the sigma points to get zi (k|k-1) and
计算状态的卡尔曼增益,得到和Lx(k);Calculate the Kalman gain of the state to get and L x (k);
计算时变参数的卡尔曼增益,得到和Lθ(k);Calculate the Kalman gain of the time-varying parameters, and get and L θ (k);
分别完成状态和时变参数的测量更新,得到和 Complete the measurement and update of the state and time-varying parameters, respectively, to obtain and
分别完成状态和时变参数中的噪声的协方差的自适应更新,得到Pw(k-1)、Pv(k)、Pr(k-1)和Pe(k)。An adaptive update of the covariance of noise in the state and time-varying parameters is done, respectively, resulting in Pw (k-1), Pv (k), Pr (k-1), and Pe (k).
(5)对设计双自适应无迹卡尔曼滤波观测器编写S函数在线执行,先在Matlab/Simulink环境中先搭建Simulink-Carsim分布式驱动电动汽车系统状态估计联合仿真平台,由于Carsim软件没有开发针对新能源汽车的动力源系统,因此电动汽车的分布式驱动系统采用外接形式搭建,电动汽车的观测器系统等在Matlab/Simulink建立,然后将CarSim与Simulink通过CarSim-S函数连接接口实现仿真通信,最终实现车辆行驶过程中状态和惯性参数的估计。(5) Write the S-function for the design of the dual-adaptive unscented Kalman filter observer and execute it online. First, build the Simulink-Carsim distributed drive electric vehicle system state estimation co-simulation platform in the Matlab/Simulink environment. Since the Carsim software has not been developed For the power source system of new energy vehicles, the distributed drive system of electric vehicles is built in an external form, and the observer system of electric vehicles is established in Matlab/Simulink, and then CarSim and Simulink are connected through the CarSim-S function connection interface to realize simulation communication , and finally realize the estimation of state and inertia parameters in the process of vehicle driving.
本发明与现有技术比较,具有如下显而易见的突出的实质性特点和显著的技术进步:Compared with the prior art, the present invention has the following obvious outstanding substantive features and remarkable technological progress:
1.本发明在车辆非线性动力学估计模型建立过程中,考虑分布式驱动电动汽车载荷参数不确定例如乘客或货物加载导致车辆惯性参数包括车辆质量、横摆转动惯量、车辆质心位置的变化,构建了分布式驱动电动汽车惯性参数估计动力学模型;1. In the process of establishing the nonlinear dynamic estimation model of the vehicle, the present invention considers that the load parameters of the distributed drive electric vehicle are uncertain, such as the load of passengers or cargo, which causes the vehicle inertia parameters including vehicle mass, yaw moment of inertia, and changes in the position of the center of mass of the vehicle, A dynamic model for the estimation of inertial parameters of a distributed drive electric vehicle is constructed;
2.本发明根据分布式驱动电动汽车惯性参数估计动力学模型轮胎模型,利用分布式驱动电动汽车使用轮毂电机直接驱动四个车轮的轮毂电机转矩感知信息,设计基于双自适应无迹卡尔曼滤波器的惯性参数估计系统,同时证明车辆惯性参数的局部可观性;2. The present invention estimates the dynamic model tire model based on the inertial parameters of the distributed drive electric vehicle, utilizes the in-wheel motor torque perception information of the distributed drive electric vehicle using the in-wheel motor to directly drive the four wheels, and the design is based on the dual adaptive unscented Kalman The inertial parameter estimation system of the filter, while proving the local observability of the vehicle inertial parameters;
3.本发明在车辆惯性参数估计过程中,采用双自适应无迹卡尔曼滤波能够在线估计过程噪声和测量噪声的协方差矩阵,避免了传统卡尔曼滤波器由于假设估计过程中噪声统计特性以导致的滤波估计性能降低,甚至滤波发散偏离真实值等问题,具有估计精度高,可靠性强的优点。3. In the process of estimating the inertial parameters of the vehicle, the present invention adopts the dual adaptive unscented Kalman filter to estimate the covariance matrix of the process noise and the measurement noise online, avoiding the traditional Kalman filter due to the assumption that the statistical characteristics of the noise in the estimation process are The resulting filter estimation performance is reduced, and even the filter divergence deviates from the true value, which has the advantages of high estimation accuracy and strong reliability.
附图说明Description of drawings
图1是本发明一种分布式驱动电动汽车惯性参数估计方法的整体设计框架图。FIG. 1 is an overall design frame diagram of a method for estimating inertial parameters of a distributed drive electric vehicle according to the present invention.
图2是本发明的考虑载荷参数的车辆动力学模型示意图。FIG. 2 is a schematic diagram of a vehicle dynamics model considering load parameters according to the present invention.
图3是本发明的双自适应无迹卡尔曼滤波算法流程图。FIG. 3 is a flow chart of the dual-adaptive unscented Kalman filtering algorithm of the present invention.
具体实施方式Detailed ways
本发明的优选实施例,结合附图详细说明如下:The preferred embodiments of the present invention are described in detail in conjunction with the accompanying drawings as follows:
实施例一Example 1
在本实施例中,参见图1,一种分布式驱动电动汽车惯性参数估计方法,包括以下步骤:In this embodiment, referring to FIG. 1 , a method for estimating inertial parameters of a distributed drive electric vehicle includes the following steps:
S1、建立包括车辆纵向、侧向、横摆运动在内的三自由度整车非线性动力学模型,且考虑载荷参数不确定引起的车辆动力学估计模型系统变化;S1. Establish a three-degree-of-freedom vehicle nonlinear dynamic model including vehicle longitudinal, lateral, and yaw motions, and consider the system changes of the vehicle dynamics estimation model caused by the uncertainty of the load parameters;
S2、构建轮胎模型,选择Pacejka模型建立非线性轮胎;S2. Build a tire model, and select the Pacejka model to build a nonlinear tire;
S3、根据构建的三自由度车辆动力学模型和轮胎模型,设计基于双自适应无迹卡尔曼滤波器惯性参数估计系统框架,证明车辆惯性参数的局部可观性;S3. According to the constructed three-degree-of-freedom vehicle dynamics model and tire model, design an inertial parameter estimation system framework based on dual adaptive unscented Kalman filters, and prove the local observability of vehicle inertial parameters;
S4、基于所述步骤S3中的惯性参数估计系统,确定双自适应无迹卡尔曼滤波观测器具体运作方法及步骤,实现对车辆纵向速度、车辆质心侧偏角等车辆状态以及整车质量、横摆转动惯量、质心到车辆前轴的距离等车辆惯性参数的估计。S4. Based on the inertial parameter estimation system in the step S3, determine the specific operation method and steps of the dual-adaptive unscented Kalman filter observer, so as to realize the vehicle status such as vehicle longitudinal speed, vehicle center of mass sideslip angle, and vehicle mass, Estimation of vehicle inertial parameters such as yaw moment of inertia, the distance from the center of mass to the front axle of the vehicle.
实施例二Embodiment 2
本实施例与实施例一基本相同,特别之处如下:This embodiment is basically the same as the first embodiment, and the special features are as follows:
在本实施例中,所述步骤S1中的三自由度车辆动力学模型的方程为:In this embodiment, the equation of the three-degree-of-freedom vehicle dynamics model in step S1 is:
其中,in,
上述式中,Vx、Vy分别为车辆质心的纵向和侧向速度;rz为车辆质心的横摆角速度;β为车辆质心侧偏角;mn表示车辆总质量;Fxij、Fyij分别是车辆第i、j轮胎的纵向、侧向力,其中i=f,r;j=l,r;Fw、Ff分别是车辆空气阻力与地面轮胎滚动阻力;Cd为空气阻力系数;ρ为空气密度;Af为汽车正面迎风面积;ax、ay分别为车辆纵向与侧向加速度;μ为已知路面附着系数;δfl、δfr分别为前轮左右轮的转向角;Izz、Mz分别表示车辆横摆转动惯量和车辆横摆力矩;lf、lr分别为质心到车辆前后轴的水平距离;bl、br分别为质心到左右车轮中心的水平距离。In the above formula, V x and V y are the longitudinal and lateral velocities of the center of mass of the vehicle, respectively; r z is the yaw rate of the center of mass of the vehicle; β is the sideslip angle of the center of mass of the vehicle; m n represents the total mass of the vehicle; F xij , F yij are the longitudinal and lateral forces of the ith and jth tires of the vehicle, respectively, where i=f, r; j=l, r; F w , F f are the air resistance of the vehicle and the rolling resistance of the ground tires, respectively; C d is the air resistance coefficient ρ is the air density; A f is the front windward area of the vehicle; a x and a y are the longitudinal and lateral accelerations of the vehicle, respectively; μ is the known road adhesion coefficient; δ fl , δ fr are the steering angles of the left and right front wheels, respectively ; I zz , M z represent the vehicle yaw moment of inertia and vehicle yaw moment, respectively; l f , l r are the horizontal distance from the center of mass to the front and rear axles of the vehicle, respectively; b l , br are the horizontal distance from the center of mass to the center of the left and right wheels, respectively .
所述步骤S1中的三自由度车辆动力学模型在考虑载荷参数变化的情况下,模型的质心位置已发生变化;假设车辆加载的质量质心位置相对于原始坐标系坐标矢量为载荷mp加载后,车辆总质量为mn=me+mp,则加载后原质心处的横摆转动惯量为:In the three-degree-of-freedom vehicle dynamics model in the step S1, the position of the center of mass of the model has changed when considering the change of the load parameters; it is assumed that the position of the center of mass of the vehicle loaded with respect to the coordinate vector of the original coordinate system is: After the load m p is loaded, the total mass of the vehicle is m n =m e +m p , then the yaw moment of inertia at the original center of mass after loading is:
式中Izzo为车辆空载时的横摆转动惯量;where Izzo is the yaw moment of inertia when the vehicle is unloaded;
加载后原质心处的横摆转动惯量:其中 The yaw moment of inertia at the original center of mass after loading: in
位于原来坐标系下的新的质心位置坐标:The new centroid position coordinates in the original coordinate system:
且 and
加载后横摆转动惯量Yaw moment of inertia after loading
同时,当载荷后,其相关几何参数也发生相应的改变为:At the same time, when the load is loaded, its related geometric parameters also change accordingly:
上述式中,mp为车辆的载荷质量;Izzo为车辆空载时的横摆转动惯量;L、B为车辆前后轴的水平距离和车辆左右车轮的水平距离;lf0、lr0分别为未加载时车辆前后轴到质心的水平距离;xp、yp分别为载荷在原车辆坐标系下的坐标值;xn、yn为车辆加载时的质心坐标;bf0、br0分别为车辆未加载时左右轮到质心的水平距离。In the above formula, m p is the load mass of the vehicle; I zzo is the yaw moment of inertia when the vehicle is unloaded; L and B are the horizontal distance between the front and rear axles of the vehicle and the horizontal distance between the left and right wheels of the vehicle; l f0 , l r0 are respectively The horizontal distance from the front and rear axles of the vehicle to the center of mass when not loaded; x p , y p are the coordinate values of the load in the original vehicle coordinate system; x n , y n are the center of mass coordinates when the vehicle is loaded; b f0 , b r0 are the vehicle The horizontal distance between the left and right turns to the centroid when not loaded.
在本实施例中,所述步骤S2中的Pacejka模型同一套复合三角函数公式来统一表达轮胎的纵向力、横向力等,其形式为:In the present embodiment, the Pacejka model in the step S2 uses the same set of compound trigonometric function formulas to uniformly express the longitudinal force, lateral force, etc. of the tire, and its form is:
上式中,轮胎模型参数D、B、C、E分别为峰值因子、刚度因子、曲线形状因子、曲线曲率因子;Sh、Sv分别为曲线水平方向漂移和曲线垂直方向漂移;当X为轮胎侧偏角α,Y为轮胎侧向力;当X为轮胎纵向滑移率s,Y为轮胎纵向力;In the above formula, the tire model parameters D, B, C, and E are the peak factor, stiffness factor, curve shape factor, and curve curvature factor, respectively; Sh and S v are the horizontal drift of the curve and the vertical drift of the curve; when X is Tire side slip angle α, Y is the tire lateral force; when X is the tire longitudinal slip rate s, Y is the tire longitudinal force;
轮胎的侧向力和纵向力计算如下:The lateral and longitudinal forces of the tire are calculated as follows:
其中,对于轮胎侧向力 Among them, for tire lateral force
对于轮胎纵向力 For tire longitudinal force
上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.
在本实施例中,所述步骤S3中的双自适应无迹卡尔曼滤波器的状态估计系统为:In this embodiment, the state estimation system of the dual-adaptive unscented Kalman filter in the step S3 is:
其中 in
∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r
在上述状态观测系统中,x(k)=[rz,Vx,β,ay,Vy]T、θ(k)=[mn,Izz,lf]T分别为车辆非线性动力学观测器系统的状态矢量和参数矢量,u(k)=[δf,wij,Tij]T和z(k)=[rz,ax,ay]T分别为车辆非线性动力学观测器系统的输入矢量和量测矢量,w(k)、v(k)分别为系统的过程噪音和量测噪音,两者为系统互不相关,Ts为采样时间;In the above state observation system, x(k)=[r z , V x , β, a y , V y ] T , θ(k)=[m n , I zz , l f ] T are the vehicle nonlinearities, respectively The state vector and parameter vector of the dynamic observer system, u(k)=[δ f , w ij , T ij ] T and z(k)=[r z , a x , a y ] T are the vehicle nonlinearities, respectively Input vector and measurement vector of the dynamic observer system, w(k), v(k) are the process noise and measurement noise of the system, respectively, the two are independent of the system, and T s is the sampling time;
相应的双自适应无迹卡尔曼滤波器参数估计系统可进一步被构造:The corresponding dual adaptive unscented Kalman filter parameter estimation system can be further constructed:
其中, in,
在上述参数估计系统中,r(k)、e(k)分别为系统的过程噪音和量测噪音,d(k)=[rz,ax,ay]T为量测矢量。In the above parameter estimation system, r(k) and e(k) are the process noise and measurement noise of the system, respectively, and d(k)=[r z , a x , a y ] T is the measurement vector.
在本实施例中,所述步骤S3中通过研究惯性参数的可观性共分布矩阵的秩来证明其局部可观性,如果可观性共分布矩阵具有列全秩,则称惯性参数为局部可观;证明车辆惯性参数的局部可观性过程如下:In this embodiment, in the step S3, the local observability is proved by studying the rank of the co-distribution matrix of the observability of the inertia parameter. If the co-distribution matrix of the observability has a full column rank, the inertia parameter is said to be locally observable; The local observability process of the vehicle inertial parameters is as follows:
车辆惯性参数的输出矢量和输出矢量的导数定义为:The output vector of the vehicle inertia parameter and the derivative of the output vector are defined as:
则其可观性共分布矩阵为:其中部分求导结果为:Then its observability co-distribution matrix is: Some of the derivation results are:
由上述求导可得,在车辆行驶状态下,满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。From the above derivation, it can be obtained that when the vehicle is running, Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.
在本实施例中,所述步骤S4中的双自适应无迹卡尔曼滤波观测器具体运作包括以下步骤:In this embodiment, the specific operation of the dual-adaptive unscented Kalman filter observer in the step S4 includes the following steps:
(1)初始化,需要初始化的值分别为:Pw,Pv,Pr,Pe;(1) Initialization, the values that need to be initialized are: P w , P v , P r , P e ;
(2)时变参数的时间更新,得到和 (2) Time update of time-varying parameters, we get and
(3)构建状态的sigma点,完成状态的时间更新,得到Xi(k|k-1)、和 (3) Construct the sigma point of the state, complete the time update of the state, and obtain X i (k|k-1), and
(4)构建时变参数的sigma点,得到Θj(k-1|k-1);(4) Construct the sigma point of time-varying parameters to obtain Θ j (k-1|k-1);
(5)根据sigma点计算时变参数的输出估计,得到Dj(k|k-1)和 (5) Calculate the output estimation of the time-varying parameters according to the sigma point, and obtain D j (k|k-1) and
(6)根据sigma点计算状态的输出估计,得到zi(k|k-1)和 (6) Calculate the output estimation of the state according to the sigma point, and obtain zi (k|k-1) and
(7)计算状态的卡尔曼增益,得到和Lx(k);(7) Calculate the Kalman gain of the state, and get and L x (k);
(8)计算时变参数的卡尔曼增益,得到和Lθ(k);(8) Calculate the Kalman gain of the time-varying parameters, and get and L θ (k);
(9)分别完成状态和时变参数的测量更新,得到和 (9) Complete the measurement and update of the state and time-varying parameters, respectively, and obtain and
(10)分别完成状态和时变参数中的噪声的协方差的自适应更新,得到Pw(k-1)、Pv(k)、Pr(k-1)和Pe(k)。(10) The adaptive update of the covariance of noise in the state and time-varying parameters is completed respectively, and Pw (k-1), Pv (k), Pr (k-1) and Pe (k) are obtained.
实施例三Embodiment 3
本实施例与前述实施例基本相同,特别之处如下:This embodiment is basically the same as the previous embodiment, and the special features are as follows:
在本实施例中,一种分布式驱动电动汽车惯性参数估计方法,如图1所示,通过车载传感器获取的车辆前轮转角δf、车轮轮胎角速度wij、车轮转矩Tij、车辆横摆角速度rz、纵向加速度ax和侧向加速度ay等信息,结合建立的相关自由度的车辆动力学模型设计的双自适应无迹卡尔曼滤波算法,以车辆前轮转角δf、轮胎角速度wij、轮胎转矩Tij为系统输入量,车辆横摆角速度rz、纵向加速度ax和侧向加速度ay为系统观测量,实现对车辆横摆角速度rz、车辆纵向速度Vx、车辆质心侧偏角β、车辆侧向速度Vy和加速度ay以及整车质量mn、横摆转动惯量Izz、质心到车辆前轴的距离lf的估计。In this embodiment, a method for estimating inertial parameters of a distributed driving electric vehicle, as shown in FIG. 1 , includes the vehicle front wheel rotation angle δ f , the wheel tire angular velocity w ij , the wheel torque T ij , the vehicle lateral According to the information such as yaw rate r z , longitudinal acceleration a x and lateral acceleration a y , combined with the established vehicle dynamics model of the relevant degrees of freedom, a double adaptive unscented Kalman filter algorithm is designed to calculate the front wheel rotation angle δ f of the vehicle, tire The angular velocity w ij and the tire torque T ij are the system input quantities, the vehicle yaw angular velocity r z , the longitudinal acceleration a x and the lateral acceleration a y are the system observation quantities . , vehicle center of mass slip angle β, vehicle lateral speed V y and acceleration a y and the vehicle mass m n , yaw moment of inertia I zz , the center of mass to the vehicle front axle distance lf estimates.
该估计方法的具体步骤如下:The specific steps of the estimation method are as follows:
1.构建相关自由度车辆动力学模型:1. Build a vehicle dynamics model with the relevant degrees of freedom:
考虑载荷参数的分布式驱动电动汽车动力学模型如图2所示,定义车辆坐标系的原点位于整车质心(CG)处,建立的包括车辆纵向、侧向、横摆运动在内的分布式驱动电动汽车整车动力学方程如下:The dynamic model of the distributed drive electric vehicle considering the load parameters is shown in Figure 2. The origin of the vehicle coordinate system is defined at the center of mass (CG) of the vehicle. The dynamic equation of driving an electric vehicle is as follows:
其中, in,
其中, in,
其中, in,
在考虑载荷参数变化的情况下,模型的质心位置已发生变化。假设车辆加载的质量质心位置相对于原始坐标系坐标矢量为载荷mp加载后,车辆总质量为mn=me+mp,则加载后原质心处的横摆转动惯量为:The position of the center of mass of the model has changed, taking into account changes in the load parameters. Assume that the position of the mass center of mass loaded by the vehicle is relative to the original coordinate system coordinate vector as After the load m p is loaded, the total mass of the vehicle is m n =m e +m p , then the yaw moment of inertia at the original center of mass after loading is:
式中Izzo为车辆空时的横摆转动惯量。where Izzo is the yaw moment of inertia of the vehicle in empty time.
利用并行轴原理,可得到加载后原质心处的横摆转动惯量:Using the principle of parallel axes, the yaw moment of inertia at the original center of mass after loading can be obtained:
进一步, further,
进一步,假设整车的质心高度不发生变化,利用杠杆原理,计算出位于原来坐标系下的新的质心位置坐标:Further, assuming that the height of the center of mass of the whole vehicle does not change, use the lever principle to calculate the new position coordinates of the center of mass in the original coordinate system:
且 and
综上: In summary:
同时,当加载后,其相关几何参数也发生相应的改变为:At the same time, after loading, its related geometric parameters also change accordingly:
2.构建轮胎模型,选择Pacejka模型建立非线性轮胎,其用同一套复合三角函数公式来统一表达轮胎的纵向力、横向力。2. Build a tire model, select the Pacejka model to build a nonlinear tire, which uses the same set of complex trigonometric function formulas to uniformly express the longitudinal force and lateral force of the tire.
Pacejka模型建立非线性轮胎如下:The Pacejka model builds nonlinear tires as follows:
轮胎的侧向力和纵向力计算如下:The lateral and longitudinal forces of the tire are calculated as follows:
其中,对于轮胎侧向力 Among them, for tire lateral force
对于轮胎纵向力 For tire longitudinal force
上述轮胎侧向力和纵向力参数计算中,a1,a2,b1,b2表示峰值因子计算系数,a3,a4,a5,b3,b4,b5表示BCD计算系数,a6,a7,a8,b6,b7,b8表示曲率因子计算系数。In the above calculation of tire lateral force and longitudinal force parameters, a 1 , a 2 , b 1 , b 2 represent the peak factor calculation coefficients, a 3 , a 4 , a 5 , b 3 , b 4 , b 5 represent the BCD calculation coefficients ,a 6 ,a 7 ,a 8 ,b 6 ,b 7 ,b 8 represent curvature factor calculation coefficients.
车轮垂直载荷Fzij计算如下:The wheel vertical load F zij is calculated as follows:
车轮轮胎侧偏角αij计算如下:The wheel tire slip angle α ij is calculated as follows:
车轮轮胎纵向滑移sij计算如下:The wheel tire longitudinal slip s ij is calculated as follows:
3.建立双自适应无迹卡尔曼滤波器的状态和参数估计系统及证明车辆惯性参数的局部可观性:3. Establish a state and parameter estimation system for dual adaptive unscented Kalman filters and prove the local observability of vehicle inertial parameters:
1)根据上述三自由度车辆动力学模型,状态估计系统可以构造为:1) According to the above three-degree-of-freedom vehicle dynamics model, the state estimation system can be constructed as:
具体为:Specifically:
其中,in,
∑Mzi(k-1)=[Fyfl(k-1)sin(δfl(k-1))-Fxfl(k-1)cos(δfl(k-1))]bl+[Fxfl(k-1)sin(δfl(k-1))+Fyfl(k-1)cos(δfl(k-1))]lf+[Fxfr(k-1)cos(δfr(k-1))-Fyfr(k-1)sin(δfr(k-1))]br+(Fxfr(k-1)sin(δfr(k-1))+Fyfr(k-1)cos(δfr(k-1))]lf+(Fxrr(k-1)br-Fxrl(k-1)bl)-(Fyrr(k-1)+Fyrl(k-1))lr ∑M zi (k-1)=[F yfl (k-1)sin(δ fl (k-1))-F xfl (k-1)cos(δ fl (k-1))]b l +[ F xfl (k-1)sin(δ fl (k-1))+F yfl (k-1)cos(δ fl (k-1))]l f +[F xfr (k-1)cos(δ fr (k-1))-F yfr (k-1)sin(δ fr (k-1))]b r +(F xfr (k-1)sin(δ fr (k-1))+F yfr (k-1)cos(δ fr (k-1))]l f +(F xrr (k-1)b r -F xrl (k-1)b l )-(F yrr (k-1)+ F yrl (k-1))l r
上述式是中Ts采样时间。The above formula is the sampling time in T s .
相应的参数估计系统可以进一步被构造:The corresponding parameter estimation system can be further constructed:
具体为:Specifically:
2)车辆惯性参数的输出矢量和输出矢量的导数定义为:2) The output vector of the vehicle inertia parameter and the derivative of the output vector are defined as:
则其可观性共分布矩阵为: Then its observability co-distribution matrix is:
其中,部分求导结果为:Among them, part of the derivation results are:
由上述求导可得,在车辆行驶状态下,满秩,则车辆惯性参数θ(k)=[mn,Izz,lf]T局部可观。From the above derivation, it can be obtained that when the vehicle is running, Full rank, the vehicle inertia parameter θ(k)=[m n , I zz , l f ] T is locally considerable.
4.设计双自适应无迹卡尔曼滤波观测器如图3所示,具体的算法步骤如下:4. Design a dual-adaptive unscented Kalman filter observer as shown in Figure 3. The specific algorithm steps are as follows:
1)初始化;这里需要初始化的值分别为:Pw,Pv,Pr,Pe 1) Initialization; the values that need to be initialized here are: P w ,P v ,P r ,P e
2)车辆参数时间更新2) Vehicle parameter time update
计算车辆参数向量的一步预测值:Compute a one-step prediction for a vector of vehicle parameters:
计算一步车辆参数预测误差协方差矩阵:Compute the one-step vehicle parameter prediction error covariance matrix:
3)构建状态的sigma点及车辆状态时间更新3) The sigma point of the build state and the vehicle state time update
根据系统状态的状态均值和协方差建立初始化的2L+1个sigma点集为:According to the state mean and covariance of the system state, the initialized 2L+1 sigma point set is established as:
其中, in,
上式中L为状态向量的维数,λs为比例参数,是矩阵的第i列。In the above formula, L is the dimension of the state vector, λ s is the scale parameter, is the matrix the i-th column of .
相应的权为:The corresponding rights are:
上式中,分别为对应均值和方差的权重,αs为尺度标量,用来控制每个点到均值的距离且满足0.0001≤αs≤1,βs涉及高斯情况下状态的先验分布信息,s为标准参数,通常为0或3-L。In the above formula, are the weights corresponding to the mean and variance, respectively, α s is the scale scalar, used to control the distance from each point to the mean and satisfies 0.0001≤α s ≤1, β s involves the prior distribution information of the state in the Gaussian case, s is the standard parameter, usually 0 or 3-L.
计算车辆状态的sigma点集与传导sigma点集:Calculate the sigma point set and conduction sigma point set of the vehicle state:
Xi(k|k-1)=f(Xi(k-1|k-1),u(k-1))X i (k|k-1)=f(X i (k-1|k-1),u(k-1))
计算车辆状态向量的一步预测值:Compute the one-step prediction of the vehicle state vector:
计算一步车辆状态预测误差协方差矩阵:Compute the one-step vehicle state prediction error covariance matrix:
4)构建时变参数的sigma点4) Construct sigma points of time-varying parameters
根据车辆参数信息构建参数的2l+1个sigma点集为:The 2l+1 sigma point set for constructing parameters according to the vehicle parameter information is:
其中, in,
上式中l为估计参数向量的维数,λθ为比例参数,是矩阵的第j列。In the above formula, l is the dimension of the estimated parameter vector, λ θ is the scale parameter, is the matrix the jth column of .
相应的权为:The corresponding rights are:
上式中,分别为对应均值和方差的权重,αθ为尺度标量,用来控制每个点到均值的距离且满足0.0001≤αθ≤1,βθ涉及高斯情况下状态的先验分布信息,sθ为标准参数,通常为0或3-l。In the above formula, are the weights corresponding to the mean and variance, respectively, α θ is a scale scalar, which is used to control the distance from each point to the mean and satisfies 0.0001≤α θ ≤1, β θ relates to the prior distribution information of the state in the Gaussian case, s θ is Standard parameter, usually 0 or 3-l.
5)车辆参数量测更新5) Vehicle parameter measurement update
进一步计算车辆参数量测sigma点集与新传导sigma点集:Further calculate the vehicle parameter measurement sigma point set and the new conduction sigma point set:
6)车辆状态量测更新6) Vehicle state measurement update
进一步计算车辆状态量测容积点集与传导容积点集:Further calculate the vehicle state measurement volume point set and conduction volume point set:
7)计算状态的卡尔曼增益7) Calculate the Kalman gain of the state
计算新息协方差矩阵:Compute the innovation covariance matrix:
计算交叉协方差矩阵:Compute the cross-covariance matrix:
计算卡尔曼滤波非线性状态观测器增益:Compute the Kalman filter nonlinear state observer gain:
8)计算时变参数的卡尔曼增益8) Calculate the Kalman gain of time-varying parameters
计算参数新息协方差矩阵:Compute the parameter innovation covariance matrix:
计算参数交叉协方差矩阵:Compute the parametric cross-covariance matrix:
计算卡尔曼滤波非线性参数观测器增益:Compute the Kalman filter nonlinear parameter observer gain:
9)分别完成状态和时变参数的测量更新9) Complete the measurement update of the state and time-varying parameters respectively
更新当前时刻的状态向量,得到当前时刻非线性车辆状态的最优估计值:Update the state vector at the current moment to obtain the optimal estimate of the nonlinear vehicle state at the current moment:
同时更新误差协方差矩阵:Also update the error covariance matrix:
再更新当前时刻的参数向量,得到当前时刻车辆参数的最优估计值:Then update the parameter vector at the current moment to obtain the optimal estimated value of the vehicle parameters at the current moment:
同时更新参数误差协方差矩阵:Also update the parameter error covariance matrix:
10)完成状态和时变参数中的噪声的协方差的自适应更新10) Complete the adaptive update of the covariance of the noise in the state and time-varying parameters
状态噪声协方差的自适应更新:Adaptive update of state noise covariance:
其中, in,
上式中,n为采样时间个数。In the above formula, n is the number of sampling times.
参数噪声协方差的自适应更新:Adaptive update of parameter noise covariance:
5.在Matlab/Simulink中先搭建Simulink-Carsim分布式驱动电动汽车估计惯性参数仿真平台,其中电动汽车的分布式驱动系统采用外接形式搭建,然后在CarSim软件中设置仿真条件,再通过CarSim-S函数的连接接口来与Simulink进行联合仿真通信,最终实现一种分布式驱动电动汽车惯性参数估计。5. In Matlab/Simulink, first build the Simulink-Carsim distributed drive electric vehicle estimation inertial parameter simulation platform, in which the distributed drive system of the electric vehicle is built in an external form, and then set the simulation conditions in the CarSim software, and then pass the CarSim-S The connection interface of the function is used to perform co-simulation communication with Simulink, and finally realize a distributed drive electric vehicle inertial parameter estimation.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010325309.3A CN111547059A (en) | 2020-04-23 | 2020-04-23 | A distributed drive electric vehicle inertial parameter estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010325309.3A CN111547059A (en) | 2020-04-23 | 2020-04-23 | A distributed drive electric vehicle inertial parameter estimation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111547059A true CN111547059A (en) | 2020-08-18 |
Family
ID=71996464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010325309.3A Pending CN111547059A (en) | 2020-04-23 | 2020-04-23 | A distributed drive electric vehicle inertial parameter estimation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111547059A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111959516A (en) * | 2020-09-02 | 2020-11-20 | 上海智驾汽车科技有限公司 | Method for jointly estimating vehicle state and road adhesion coefficient |
CN112660135A (en) * | 2020-12-25 | 2021-04-16 | 浙江吉利控股集团有限公司 | Road surface adhesion coefficient estimation method and device |
CN112668093A (en) * | 2020-12-21 | 2021-04-16 | 西南交通大学 | Optimal distribution control method for all-wheel longitudinal force of distributed driving automobile |
CN113063414A (en) * | 2021-03-27 | 2021-07-02 | 上海智能新能源汽车科创功能平台有限公司 | Vehicle dynamics pre-integration construction method for visual inertia SLAM |
CN113203422A (en) * | 2021-04-14 | 2021-08-03 | 武汉理工大学 | A Joint Estimation Method of Freight State Inertial Parameters Based on Dimension Measuring Device |
CN113609586A (en) * | 2021-07-30 | 2021-11-05 | 东风商用车有限公司 | A method and system for joint identification of cornering stiffness and moment of inertia parameters |
CN113886957A (en) * | 2021-09-30 | 2022-01-04 | 中科测试(深圳)有限责任公司 | Vehicle dynamic parameter estimation method |
CN114329917A (en) * | 2021-12-09 | 2022-04-12 | 上海大学 | A Sensitivity Analysis Method for Load Parameters of Light Electric Vehicles |
CN115879332A (en) * | 2023-03-01 | 2023-03-31 | 北京千种幻影科技有限公司 | Driving simulator motion platform control method and device, electronic equipment and storage medium |
CN116552548A (en) * | 2023-07-06 | 2023-08-08 | 华东交通大学 | Four-wheel distributed electric drive automobile state estimation method |
CN116588119A (en) * | 2023-05-30 | 2023-08-15 | 同济大学 | A Vehicle State Estimation Method Based on Adaptive Tire Model Parameters |
CN117807703A (en) * | 2023-12-15 | 2024-04-02 | 南京航空航天大学 | Method for estimating key parameters of scooter chassis vehicle with mutually corrected dynamic and static parameters |
CN118182495A (en) * | 2024-05-20 | 2024-06-14 | 北京理工大学 | A vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle lateral dynamics model |
CN118606615A (en) * | 2024-05-31 | 2024-09-06 | 哈尔滨工业大学 | Method, system, device and storage medium for obtaining vehicle center of mass inertia matrix |
CN119378399A (en) * | 2024-11-07 | 2025-01-28 | 开沃新能源汽车集团股份有限公司 | Method, device and electronic equipment for estimating state parameters of electric four-wheel drive passenger car |
CN120057024A (en) * | 2025-04-30 | 2025-05-30 | 南京航空航天大学 | A method for actively enhancing perception of vehicle-road state parameters in a drive-by-wire chassis system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019164A (en) * | 2016-07-07 | 2016-10-12 | 武汉理工大学 | Lithium battery SOC estimation algorithm based on dual adaptive unscented Kalman filter |
CN106515740A (en) * | 2016-11-14 | 2017-03-22 | 江苏大学 | Distributed electrically driven automobile travelling status parameter estimation algorithm based on ICDKF |
CN108128308A (en) * | 2017-12-27 | 2018-06-08 | 长沙理工大学 | A kind of vehicle state estimation system and method for distributed-driving electric automobile |
CN108189705A (en) * | 2017-12-11 | 2018-06-22 | 江苏大学 | A Control Method for Distributed Drive Electric Vehicles Considering Energy Saving and Stability |
CN108284841A (en) * | 2017-12-11 | 2018-07-17 | 江苏大学 | A self-adaptive iterative estimation method for distributed drive electric vehicle driving state |
CN108597058A (en) * | 2017-12-11 | 2018-09-28 | 江苏大学 | State Cascade Estimation Method for Distributed Drive Electric Vehicle Based on Pseudo-Measurement Information |
-
2020
- 2020-04-23 CN CN202010325309.3A patent/CN111547059A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019164A (en) * | 2016-07-07 | 2016-10-12 | 武汉理工大学 | Lithium battery SOC estimation algorithm based on dual adaptive unscented Kalman filter |
CN106515740A (en) * | 2016-11-14 | 2017-03-22 | 江苏大学 | Distributed electrically driven automobile travelling status parameter estimation algorithm based on ICDKF |
CN108189705A (en) * | 2017-12-11 | 2018-06-22 | 江苏大学 | A Control Method for Distributed Drive Electric Vehicles Considering Energy Saving and Stability |
CN108284841A (en) * | 2017-12-11 | 2018-07-17 | 江苏大学 | A self-adaptive iterative estimation method for distributed drive electric vehicle driving state |
CN108597058A (en) * | 2017-12-11 | 2018-09-28 | 江苏大学 | State Cascade Estimation Method for Distributed Drive Electric Vehicle Based on Pseudo-Measurement Information |
CN108128308A (en) * | 2017-12-27 | 2018-06-08 | 长沙理工大学 | A kind of vehicle state estimation system and method for distributed-driving electric automobile |
Non-Patent Citations (2)
Title |
---|
SANGHYUN HONG等: "A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》 * |
金贤建等: "分布式驱动电动汽车双无迹卡尔曼滤波状态参数联合观测", 《机械工程学报》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111959516B (en) * | 2020-09-02 | 2023-08-01 | 上海智驾汽车科技有限公司 | Method for jointly estimating vehicle state and road adhesion coefficient |
CN111959516A (en) * | 2020-09-02 | 2020-11-20 | 上海智驾汽车科技有限公司 | Method for jointly estimating vehicle state and road adhesion coefficient |
CN112668093A (en) * | 2020-12-21 | 2021-04-16 | 西南交通大学 | Optimal distribution control method for all-wheel longitudinal force of distributed driving automobile |
CN112660135A (en) * | 2020-12-25 | 2021-04-16 | 浙江吉利控股集团有限公司 | Road surface adhesion coefficient estimation method and device |
CN113063414A (en) * | 2021-03-27 | 2021-07-02 | 上海智能新能源汽车科创功能平台有限公司 | Vehicle dynamics pre-integration construction method for visual inertia SLAM |
CN113203422A (en) * | 2021-04-14 | 2021-08-03 | 武汉理工大学 | A Joint Estimation Method of Freight State Inertial Parameters Based on Dimension Measuring Device |
CN113609586A (en) * | 2021-07-30 | 2021-11-05 | 东风商用车有限公司 | A method and system for joint identification of cornering stiffness and moment of inertia parameters |
CN113886957A (en) * | 2021-09-30 | 2022-01-04 | 中科测试(深圳)有限责任公司 | Vehicle dynamic parameter estimation method |
CN114329917A (en) * | 2021-12-09 | 2022-04-12 | 上海大学 | A Sensitivity Analysis Method for Load Parameters of Light Electric Vehicles |
CN114329917B (en) * | 2021-12-09 | 2025-01-07 | 上海大学 | A method for sensitivity analysis of load parameters of light electric vehicles |
CN115879332A (en) * | 2023-03-01 | 2023-03-31 | 北京千种幻影科技有限公司 | Driving simulator motion platform control method and device, electronic equipment and storage medium |
CN116588119B (en) * | 2023-05-30 | 2024-06-28 | 同济大学 | A vehicle state estimation method based on tire model parameter adaptation |
CN116588119A (en) * | 2023-05-30 | 2023-08-15 | 同济大学 | A Vehicle State Estimation Method Based on Adaptive Tire Model Parameters |
CN116552548A (en) * | 2023-07-06 | 2023-08-08 | 华东交通大学 | Four-wheel distributed electric drive automobile state estimation method |
CN116552548B (en) * | 2023-07-06 | 2023-09-12 | 华东交通大学 | A state estimation method for four-wheel distributed electric drive vehicles |
CN117807703B (en) * | 2023-12-15 | 2024-06-04 | 南京航空航天大学 | A method for estimating key parameters of skateboard chassis vehicles with mutual correction of dynamic and static parameters |
CN117807703A (en) * | 2023-12-15 | 2024-04-02 | 南京航空航天大学 | Method for estimating key parameters of scooter chassis vehicle with mutually corrected dynamic and static parameters |
CN118182495A (en) * | 2024-05-20 | 2024-06-14 | 北京理工大学 | A vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle lateral dynamics model |
CN118182495B (en) * | 2024-05-20 | 2024-07-19 | 北京理工大学 | Vehicle dynamics parameter estimation method, device, medium and product based on nonlinear tire and vehicle transverse dynamics model |
CN118606615A (en) * | 2024-05-31 | 2024-09-06 | 哈尔滨工业大学 | Method, system, device and storage medium for obtaining vehicle center of mass inertia matrix |
CN119378399A (en) * | 2024-11-07 | 2025-01-28 | 开沃新能源汽车集团股份有限公司 | Method, device and electronic equipment for estimating state parameters of electric four-wheel drive passenger car |
CN120057024A (en) * | 2025-04-30 | 2025-05-30 | 南京航空航天大学 | A method for actively enhancing perception of vehicle-road state parameters in a drive-by-wire chassis system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111547059A (en) | A distributed drive electric vehicle inertial parameter estimation method | |
Guo et al. | Vehicle dynamic state estimation: State of the art schemes and perspectives | |
CN103434511B (en) | The combined estimation method of a kind of speed of a motor vehicle and road-adhesion coefficient | |
CN103407451B (en) | A kind of road longitudinal and additional forces method of estimation | |
CN109606378B (en) | A Vehicle Driving State Estimation Method for Non-Gaussian Noise Environment | |
Nam et al. | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches | |
CN106515740B (en) | Distributed electrical based on ICDKF drives vehicle driving state parameter estimation algorithm | |
CN108594652A (en) | A kind of vehicle-state fusion method of estimation based on observer information iteration | |
CN111845775A (en) | A Joint Estimation Method of Driving State and Inertial Parameters of Distributed Drive Electric Vehicles | |
CN107247824A (en) | Consider the car mass road grade combined estimation method of brake and influence of turning | |
Wang et al. | An integrated scheme for coefficient estimation of tire–road friction with mass parameter mismatch under complex driving scenarios | |
CN106394561A (en) | Estimation method and device for longitudinal vehicle speed of vehicle | |
Hsu et al. | Vehicle full-state estimation and prediction system using state observers | |
CN113203422B (en) | Freight car state inertia parameter joint estimation method based on size measurement device | |
CN103625475B (en) | A kind of vehicle side inclination angle based on recurrence least square and pitch angle method of estimation | |
US20230077259A1 (en) | Virtual Validation and Verification Model Structure for Motion Control | |
CN108241773A (en) | An Improved Vehicle Driving State Estimation Method | |
CN110884499A (en) | Method and system for determining vehicle mass center slip angle | |
CN111796522A (en) | Vehicle state estimation method | |
Cheng et al. | A hierarchical estimation scheme of tire-force based on random-walk SCKF for vehicle dynamics control | |
CN111959516A (en) | Method for jointly estimating vehicle state and road adhesion coefficient | |
CN114537346B (en) | Electric wheel slip rate determination method and device, computer equipment and storage medium | |
Huang et al. | Robust sideslip angle estimation for lightweight vehicles using smooth variable structure filter | |
Wang et al. | Estimation of road adhesion coefficient for four-wheel independent drive electric vehicle | |
Xia et al. | State estimation and application of the hitch angle of a semitrailer train under full working conditions based on multimodel information fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |