CN111545469A - Wisdom commodity circulation parcel letter sorting adjustment system - Google Patents
Wisdom commodity circulation parcel letter sorting adjustment system Download PDFInfo
- Publication number
- CN111545469A CN111545469A CN202010446708.5A CN202010446708A CN111545469A CN 111545469 A CN111545469 A CN 111545469A CN 202010446708 A CN202010446708 A CN 202010446708A CN 111545469 A CN111545469 A CN 111545469A
- Authority
- CN
- China
- Prior art keywords
- coordinate
- universal wheel
- axis
- camera
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- 230000001154 acute effect Effects 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C1/00—Measures preceding sorting according to destination
- B07C1/18—Orientating articles other than in a stream, e.g. turning, deflecting or changing direction
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开一种智慧物流包裹分拣调整系统,系统包括:传送装置、摄像头、红外对管、万向轮、直线传输控制模块、摄像头开启控制模块、图像采集模块、头部与顶点坐标确定模块、数据求解模块、万向轮驱动模块以及直线传输二次启动模块;数据求解模块包括方位角求解单元和距离求解单元;万向轮驱动模块包括万向轮第一驱动单元和万向轮第二驱动单元。通过本发明中的系统,在快递包裹传输过程中实现对快递包裹方向的调整,提高对快递包裹的识别正确率,方便对快递包裹进行打码。
The invention discloses a smart logistics parcel sorting and adjustment system. The system comprises: a transmission device, a camera, an infrared tube alignment, a universal wheel, a linear transmission control module, a camera opening control module, an image acquisition module, and a head and vertex coordinate determination module , data solving module, universal wheel drive module and linear transmission secondary starting module; the data solving module includes an azimuth angle solving unit and a distance solving unit; the universal wheel drive module includes the first drive unit of the universal wheel and the second drive unit of the universal wheel Drive unit. Through the system in the present invention, the direction of the express package can be adjusted during the transmission process of the express package, the correct rate of identification of the express package can be improved, and the coding of the express package can be facilitated.
Description
技术领域technical field
本发明涉及物流技术领域,特别涉及一种智慧物流包裹分拣调整系统。The invention relates to the technical field of logistics, in particular to a smart logistics parcel sorting and adjustment system.
背景技术Background technique
目前,现有的快递公司在分拣快递包裹时,通过传输装置对快递包裹进行分拣分类,传统的分拣分类方法,在传输过程中,快递包裹的位置及方向杂乱无章,这样导致在对快递包裹进行分拣或者打码标记时,提高对快递包裹的识别错误率,容易出错,进而影响分拣或者打码效率,满足不了日益发展的快递行业的需求。At present, when the existing express companies sort express parcels, they use the transmission device to sort and classify express parcels. In the traditional sorting and classification method, during the transmission process, the position and direction of express parcels are disorganized, which leads to the disorganization of express parcels. When parcels are sorted or coded and marked, the identification error rate of express parcels is increased, which is prone to errors, thereby affecting the efficiency of sorting or coding, and cannot meet the needs of the growing express delivery industry.
发明内容SUMMARY OF THE INVENTION
有鉴于现有技术存在的缺陷,本发明所要解决的技术问题是,提供一种智慧物流包裹分拣调整系统,旨在在快递包裹传输过程中实现对快递包裹方向的调整,提高对快递包裹的识别正确率,方便对快递包裹进行打码。In view of the defects of the prior art, the technical problem to be solved by the present invention is to provide a smart logistics parcel sorting and adjustment system, which aims to realize the adjustment of the direction of the express parcel during the transmission of the express parcel, and improve the efficiency of the express parcel. The recognition accuracy rate is convenient for coding express parcels.
为实现上述目的,本发明提供一种智慧物流包裹分拣调整系统,所述系统包括:传送装置、摄像头、红外对管、万向轮、直线传输控制模块、摄像头开启控制模块、图像采集模块、头部与顶点坐标确定模块、数据求解模块、万向轮驱动模块以及直线传输二次启动模块;In order to achieve the above purpose, the present invention provides a smart logistics parcel sorting and adjustment system, the system includes: a transmission device, a camera, an infrared pairing tube, a universal wheel, a linear transmission control module, a camera opening control module, an image acquisition module, Head and vertex coordinate determination module, data solving module, universal wheel drive module and linear transmission secondary start module;
所述直线传输控制模块,用于控制所述传送装置将第一包裹向分拣区域传输;所述传送装置的上方设置有所述摄像头;所述传送装置的两侧安设有所述红外对管;所述传送装置由所述万向轮组成;以所述摄像头在所述传送装置所在的平面内的投影点为坐标原点O,以所述传送装置的传送方向为X轴正方向,以在所述传送装置所在的平面内且垂直所述传送装置的传送方向的直线为Y轴建立第一直角坐标系;The linear transmission control module is used to control the conveying device to transmit the first package to the sorting area; the camera is arranged above the conveying device; the infrared pair is installed on both sides of the conveying device The transmission device is composed of the universal wheel; the projection point of the camera in the plane where the transmission device is located is the coordinate origin O, the transmission direction of the transmission device is the positive direction of the X axis, and the Establishing a first rectangular coordinate system for the Y-axis in a plane where the conveying device is located and perpendicular to the conveying direction of the conveying device;
所述摄像头开启控制模块,用于响应于所述红外对管检测到所述第一包裹,开启所述摄像头;The camera opening control module is configured to turn on the camera in response to the infrared pair tube detecting the first package;
所述图像采集模块,用于控制所述摄像头采集所述第一包裹的轮廓和所述第一包裹的方向标识并形成第一图像;所述方向标识位于所述第一包裹与所述摄像头正对的第一底面上;The image acquisition module is used to control the camera to collect the outline of the first package and the direction mark of the first package and form a first image; the direction mark is located directly between the first package and the camera. on the first bottom surface of the right;
所述头部与顶点坐标确定模块,用于根据所述摄像头所采集的所述第一图像,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标;所述顶点坐标沿逆时针排布的第一坐标A(x1,y1)、第二坐标B(x2,y2)、第三坐标C(x3,y3)、第四坐标D(x4,y4),所述第一坐标A(x1,y1)以及所述第四坐标D(x4,y4)位于所述第一包裹的所述头部的所在边;The head and vertex coordinate determination module is configured to determine the head of the first package and the coordinates of four vertices of the first package according to the first image collected by the camera; the vertex coordinates The first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the fourth coordinate D(x 4 ), the fourth coordinate D(x 4 , y 4 ), the first coordinate A(x 1 , y 1 ) and the fourth coordinate D(x 4 , y 4 ) are located on the side where the head of the first package is located;
所述数据求解模块包括:The data solving module includes:
方位角求解单元,用于根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的方位角其中,所述方位角所述所述第一坐标A(x1,y1)对应的顶点A与所述第四坐标D(x4,y4)对应的顶点D的连线AD的中点为E;所述第二坐标B(x2,y2)对应的顶点B与所述第三坐标C(x3,y3)对应的顶点C的连线BC的中点为F;所述方位角为线段EF所在的直线与所述X轴正方向所成的锐角;an azimuth angle solving unit, configured to calculate the first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), The fourth coordinate D(x 4 , y 4 ), the azimuth angle of the first package is solved where the azimuth angle said The midpoint of the connecting line AD between the vertex A corresponding to the first coordinate A (x 1 , y 1 ) and the vertex D corresponding to the fourth coordinate D (x 4 , y 4 ) is E; the second coordinate The midpoint of the line BC connecting the vertex B corresponding to B(x 2 , y 2 ) and the vertex C corresponding to the third coordinate C(x 3 , y 3 ) is F; the azimuth angle is the acute angle formed by the straight line where the line segment EF is located and the positive direction of the X-axis;
距离求解单元,用于根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的中心到所述坐标原点O的距离L;其中,所述距离 a distance solving unit, configured to calculate the distance according to the first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the For the fourth coordinate D(x 4 , y 4 ), solve the distance L from the center of the first package to the coordinate origin O; wherein, the distance
所述万向轮驱动模块包括:The universal wheel drive module includes:
万向轮第一驱动单元,用于采集所述摄像头实时监测的所述第一包裹的四个顶点坐标,当所述四个顶点坐标中的至少一对对角点的横坐标之和为零且距离L≠0时,控制所述万向轮沿所述Y轴的方向转动带动所述第一包裹沿Y轴平移;根据所述距离L和所述万向轮的转动速度v,求解所述万向轮转动的第一时间t1;其中,所述当y1+y2+y3+y4>0时,所述万向轮的转动方向沿所述Y轴的负方向;当y1+y2+y3+y4<0时,所述万向轮的转动方向沿所述Y轴的正方向;The first drive unit of the universal wheel is used to collect the coordinates of the four vertices of the first package monitored by the camera in real time. When the sum of the abscissas of at least a pair of diagonal points in the coordinates of the four vertices is zero And when the distance L≠0, the universal wheel is controlled to rotate in the direction of the Y axis to drive the first package to translate along the Y axis; according to the distance L and the rotation speed v of the universal wheel, solve the the first time t 1 when the universal wheel rotates; wherein, the When y 1 +y 2 +y 3 +y 4 >0, the rotation direction of the universal wheel is along the negative direction of the Y axis; when y 1 +y 2 +y 3 +y 4 <0, the The rotation direction of the universal wheel is along the positive direction of the Y-axis;
万向轮第二驱动单元,用于控制所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向转动;响应于所述万向轮沿所述Y轴方向的转动结束,获取所述万向轮与坐标原点的距离R,控制所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向转动;根据所述方位角所述距离R、以及所述万向轮的转动速度v,求解所述万向轮转动的第二时间t2;所述万向轮沿所述Y轴方向的转动时间为第一时间t1;其中,所述当所述k>0时,所述万向轮的转动方向与所述述Y轴的负方向所成的角为锐角;当所述k<0时,所述万向轮的转动方向与所述述Y轴的正方向所成的角为锐角;a second drive unit for the universal wheel, used to control the universal wheel to rotate in the tangential direction of a circle formed with the coordinate origin O as the center and the distance R as the radius; in response to the universal wheel The rotation along the Y-axis direction is completed, the distance R between the universal wheel and the coordinate origin is obtained, and the universal wheel is controlled along the circle with the coordinate origin O as the center and the distance R as the radius. Rotation in the tangential direction; according to the azimuth The distance R and the rotation speed v of the universal wheel, the second time t 2 of the rotation of the universal wheel is solved; the rotation time of the universal wheel along the Y-axis direction is the first time t 1 ; wherein, the When the k>0, the angle formed by the rotation direction of the universal wheel and the negative direction of the Y-axis is an acute angle; when the k<0, the rotation direction of the universal wheel and the The angle formed by the positive direction of the Y axis is an acute angle;
所述直线传输二次启动模块,用于二次启动所述直线传输控制模块;响应于所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动结束,控制所述万向轮继续沿所述X轴正方向转动;所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动时间为第二时间t2。The linear transmission secondary starting module is used for secondary starting the linear transmission control module; in response to the rotation of the universal wheel along the circle with the coordinate origin O as the center and the distance R as the radius; The rotation in the tangential direction is completed, and the universal wheel is controlled to continue to rotate in the positive direction of the X-axis; The rotation time in the tangential direction is the second time t 2 .
在该技术方案中,通过将所述摄像头设置在所述传送装置的正上方,使得所述摄像头相对的正对于所述第一包裹,拍摄的角度比较正,所采集的所述第一包裹的所述第一图像比较准确,提高从所述第一图像上获取的数据的准确性;所述方位角求解单元通过所述四个顶点坐标求解所述第一包裹的所述方位角提高所求的所述方位角的精确度;通过所述距离L和所述万向轮的转动速度v,求得所述万向轮转动的第一时间t1,所述万向轮驱动模块通过所述方位角所述距离R、以及所述万向轮的转动速度v,求解所述万向轮转动的第二时间t2,有效提高所述万向轮的转动时间精度,进而提高所述第一包裹方向调整的精度。In this technical solution, by arranging the camera directly above the conveying device, the camera is opposite to the first package, and the shooting angle is relatively positive, and the captured image of the first package is relatively positive. The first image is relatively accurate, which improves the accuracy of the data obtained from the first image; the azimuth angle solving unit solves the azimuth angle of the first package by using the coordinates of the four vertices Raise the desired azimuth The accuracy of the swivel wheel is obtained; through the distance L and the rotational speed v of the swivel wheel, the first time t 1 when the swivel wheel rotates is obtained, and the swivel wheel drive module passes the azimuth angle The distance R and the rotation speed v of the universal wheel are used to solve the second time t 2 of the rotation of the universal wheel, which can effectively improve the rotation time accuracy of the universal wheel, thereby improving the first wrapping direction. Adjustment precision.
在一具体实施方式中,所述方向标识为所述第一包裹上的文字朝向;根据所述文字朝向,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标。In a specific embodiment, the direction identification is the orientation of the text on the first package; according to the orientation of the text, the head of the first package and the coordinates of four vertices of the first package are determined.
在一具体实施方式中,所述系统还包括:In a specific embodiment, the system further includes:
调整不完全标记模块,用于对所述第一包裹进行调整不完全标记;响应于所述万向轮继续沿所述X轴正方向转动,根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),再次求解所述第一包裹的所述方位角 An incomplete marking module for adjusting the adjustment and incomplete marking of the first package; in response to the universal wheel continuing to rotate in the positive direction of the X-axis, according to the first coordinates A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the fourth coordinate D(x 4 , y 4 ), and solve the first the azimuth of the package
当所述方位角时,对所述第一包裹进行调整不完全标记。when the azimuth When the adjustment is made to the first package, the incomplete marking is performed.
在该技术方案中,依据所述方位角对所述第一包裹进行调整不完全标记,在对所述第一包裹进行打码时,对所述第一包裹方向进行再次调整,避免出错。In this technical solution, according to the azimuth angle The adjustment of the first package is not completely marked, and when the first package is coded, the direction of the first package is adjusted again to avoid errors.
在一具体实施方式中,所述系统还包括:In a specific embodiment, the system further includes:
朝向标记模块,用于对所述第一包裹的朝向进行朝向标记;当x1+x4>x2+x3时,对所述第一包裹的朝向标记为沿X轴正方向,当x1+x4<x2+x3时,对所述第一包裹的朝向标记为沿X轴负方向。The orientation marking module is used to mark the orientation of the first package; when x 1 +x 4 >x 2 +x 3 , the orientation of the first package is marked as a positive direction along the X-axis, when x 1 +x 4 >x 2 +x 3 When 1 +x 4 <x 2 +x 3 , the orientation of the first package is marked as a negative direction along the X-axis.
在该技术方案中,通过对所述第一包裹进行朝向标记,便于区分所述第一包裹的朝向。In this technical solution, it is convenient to distinguish the orientation of the first package by marking the orientation of the first package.
在一具体实施方式中,所述红外对管和所述摄像头沿X轴正方向依次排列,且所述红外对管与所述摄像头的间隔大于所述摄像头的成像半径。In a specific implementation manner, the infrared pair tube and the camera are arranged in sequence along the positive direction of the X-axis, and the interval between the infrared pair tube and the camera is greater than the imaging radius of the camera.
在一具体实施方式中,所述万向轮均匀分布。In a specific embodiment, the universal wheels are evenly distributed.
本发明的有益效果是:在本发明中,通过将所述摄像头设置在所述传送装置的正上方,使得所述摄像头相对的正对于所述第一包裹,拍摄的角度比较正,所采集的所述第一包裹的所述第一图像比较准确,提高从所述第一图像上获取的数据的准确性;所述方位角求解单元通过所述四个顶点坐标求解所述第一包裹的所述方位角提高所求的所述方位角的精确度;通过所述距离L和所述万向轮的转动速度v,求得所述万向轮转动的第一时间t1,所述万向轮驱动模块通过所述方位角所述距离R、以及所述万向轮的转动速度v,求解所述万向轮转动的第二时间t2,有效提高所述万向轮的转动时间精度,进而提高所述第一包裹方向调整的精度;通过本发明中的系统,在快递包裹传输过程中实现对快递包裹方向的调整,提高对快递包裹的识别正确率,方便对快递包裹进行打码。The beneficial effects of the present invention are: in the present invention, by arranging the camera directly above the conveying device, the camera is relatively opposite to the first package, the shooting angle is relatively positive, and the captured The first image of the first package is relatively accurate, and the accuracy of the data obtained from the first image is improved; azimuth Raise the desired azimuth The accuracy of the swivel wheel is obtained; through the distance L and the rotational speed v of the swivel wheel, the first time t 1 when the swivel wheel rotates is obtained, and the swivel wheel drive module passes the azimuth angle The distance R and the rotation speed v of the universal wheel are used to solve the second time t 2 of the rotation of the universal wheel, which can effectively improve the rotation time accuracy of the universal wheel, thereby improving the first wrapping direction. Adjustment accuracy; through the system of the present invention, the direction of the express package can be adjusted during the transmission process of the express package, the correct rate of identification of the express package is improved, and the coding of the express package is facilitated.
附图说明Description of drawings
图1是本发明一具体实施方式中一种智慧物流包裹分拣调整系统的系统框图;1 is a system block diagram of a smart logistics parcel sorting and adjustment system in a specific embodiment of the present invention;
图2是本发明一具体实施方式中一种基于物联网的快递包裹调整方法的流程框图;2 is a flowchart of a method for adjusting express parcels based on the Internet of Things in a specific embodiment of the present invention;
图3是本发明一具体实施方式中第一包裹与传送装置的位置关系图。FIG. 3 is a positional relationship diagram of the first package and the conveying device in an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment, the present invention will be further described:
如图1所示,在本发明的第一实施例中,提供一种智慧物流包裹分拣调整系统,所述系统包括:传送装置、摄像头、红外对管、万向轮、直线传输控制模块100、摄像头开启控制模块200、图像采集模块300、头部与顶点坐标确定模块400、数据求解模块500、万向轮驱动模块600以及直线传输二次启动模块700;As shown in FIG. 1 , in the first embodiment of the present invention, a smart logistics parcel sorting and adjustment system is provided. The system includes: a transmission device, a camera, an infrared tube alignment, a universal wheel, and a linear
所述直线传输控制模块100,用于控制所述传送装置将第一包裹向分拣区域传输;所述传送装置的上方设置有所述摄像头;所述传送装置的两侧安设有所述红外对管;所述传送装置由所述万向轮组成;以所述摄像头在所述传送装置所在的平面内的投影点为坐标原点O,以所述传送装置的传送方向为X轴正方向,以在所述传送装置所在的平面内且垂直所述传送装置的传送方向的直线为Y轴建立第一直角坐标系;The linear
所述摄像头开启控制模块200,用于响应于所述红外对管检测到所述第一包裹,开启所述摄像头;The camera
所述图像采集模块300,用于控制所述摄像头采集所述第一包裹的轮廓和所述第一包裹的方向标识并形成第一图像;所述方向标识位于所述第一包裹与所述摄像头正对的第一底面上;The
所述头部与顶点坐标确定模块400,用于根据所述摄像头所采集的所述第一图像,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标;所述顶点坐标沿逆时针排布的第一坐标A(x1,y1)、第二坐标B(x2,y2)、第三坐标C(x3,y3)、第四坐标D(x4,y4),所述第一坐标A(x1,y1)以及所述第四坐标D(x4,y4)位于所述第一包裹的所述头部的所在边;The head and vertex
所述数据求解模块500包括:The
方位角求解单元501,用于根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的方位角其中,所述方位角所述所述第一坐标A(x1,y1)对应的顶点A与所述第四坐标D(x4,y4)对应的顶点D的连线AD的中点为E;所述第二坐标B(x2,y2)对应的顶点B与所述第三坐标C(x3,y3)对应的顶点C的连线BC的中点为F;所述方位角为线段EF所在的直线与所述X轴正方向所成的锐角;The azimuth
距离求解单元502,用于根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的中心到所述坐标原点O的距离L;其中,所述距离 The
所述万向轮驱动模块600包括:The universal
万向轮第一驱动单元601,用于采集所述摄像头实时监测的所述第一包裹的四个顶点坐标,当所述四个顶点坐标中的至少一对对角点的横坐标之和为零且距离L≠0时,控制所述万向轮沿所述Y轴的方向转动带动所述第一包裹沿Y轴平移;根据所述距离L和所述万向轮的转动速度v,求解所述万向轮转动的第一时间t1;其中,所述当y1+y2+y3+y4>0时,所述万向轮的转动方向沿所述Y轴的负方向;当y1+y2+y3+y4<0时,所述万向轮的转动方向沿所述Y轴的正方向;The
万向轮第二驱动单元602,用于控制所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向转动;响应于所述万向轮沿所述Y轴方向的转动结束,获取所述万向轮与坐标原点的距离R,控制所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向转动;根据所述方位角所述距离R、以及所述万向轮的转动速度v,求解所述万向轮转动的第二时间t2;所述万向轮沿所述Y轴方向的转动时间为第一时间t1;其中,所述当所述k>0时,所述万向轮的转动方向与所述述Y轴的负方向所成的角为锐角;当所述k<0时,所述万向轮的转动方向与所述述Y轴的正方向所成的角为锐角;The
所述直线传输二次启动模块700,用于二次启动所述直线传输控制模块100;响应于所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动结束,控制所述万向轮继续沿所述X轴正方向转动;所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动时间为第二时间t2。The linear transmission
在本实施例中,所述方向标识为所述第一包裹上的文字朝向;根据所述文字朝向,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标。In this embodiment, the direction identifier is the orientation of the text on the first package; according to the orientation of the text, the head of the first package and the coordinates of four vertices of the first package are determined.
在本实施例中,所述系统还包括:In this embodiment, the system further includes:
调整不完全标记模块800,用于对所述第一包裹进行调整不完全标记;响应于所述万向轮继续沿所述X轴正方向转动,根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),再次求解所述第一包裹的所述方位角 The adjustment
当所述方位角时,对所述第一包裹进行调整不完全标记。when the azimuth When the adjustment is made to the first package, the incomplete marking is performed.
在本实施例中,所述系统还包括:In this embodiment, the system further includes:
朝向标记模块900,用于对所述第一包裹的朝向进行朝向标记;当x1+x4>x2+x3时,对所述第一包裹的朝向标记为沿X轴正方向,当x1+x4<x2+x3时,对所述第一包裹的朝向标记为沿X轴负方向。The
在本实施例中,所述红外对管和所述摄像头沿X轴正方向依次排列,且所述红外对管与所述摄像头的间隔大于所述摄像头的成像半径。In this embodiment, the infrared pair tube and the camera are arranged in sequence along the positive direction of the X-axis, and the interval between the infrared pair tube and the camera is greater than the imaging radius of the camera.
在本实施例中,所述万向轮均匀分布。In this embodiment, the universal wheels are evenly distributed.
下面对本实施例中涉及到的公式进行推导:The formulas involved in this embodiment are deduced below:
如图3所示,根据所述第一坐标A(x1,y1)和所述第四坐标D(x4,y4)可得AD的中点坐标 As shown in FIG. 3 , according to the first coordinates A(x 1 , y 1 ) and the fourth coordinates D(x 4 , y 4 ), the midpoint coordinates of AD can be obtained
根据所述第二坐标B(x2,y2)和所述第三坐标C(x3,y3)可得BC的中点坐标 According to the second coordinate B(x 2 , y 2 ) and the third coordinate C(x 3 , y 3 ), the midpoint coordinate of BC can be obtained
根据所述AD的中点坐标和所述BC的中点坐标可得EF的中点坐标所述EF的中点坐标即为所述第一包裹的中心的坐标;Coordinates of the midpoint according to the AD and the coordinates of the midpoint of the BC The midpoint coordinates of EF can be obtained The coordinates of the midpoint of the EF are the coordinates of the center of the first package;
则根据两点间距离公式可得所述第一包裹的中心到所述坐标原点O的距离 Then according to the distance formula between two points, the distance from the center of the first package to the coordinate origin O can be obtained
线段EF的斜率为线段EF的倾斜角β跟斜率k的关系为即β=arctank;The slope of line segment EF is The relationship between the inclination angle β of the line segment EF and the slope k is: That is, β=arctank;
则所述方位角 then the azimuth
所述第一包裹与所述万向轮接触的点的转动速度大小等于所述万向轮的转动速度v,转动半径为所述距离R,则该点的转动角速度 The rotation speed of the point where the first package contacts the universal wheel is equal to the rotation speed v of the universal wheel, and the rotation radius is the distance R, then the rotation angular velocity of this point
所述转动角速度ω、所述第二时间t2以及所述方位角满足如下关系式: the rotational angular velocity ω, the second time t 2 and the azimuth angle Satisfy the following relation:
联立(1)(2)得所述万向轮转动的第二时间 Simultaneously (1) (2) obtain the second time for the rotation of the universal wheel
如图2所示,在本发明的第二实施例中,提供一种基于物联网的快递包裹调整方法,所述方法包括:As shown in FIG. 2, in a second embodiment of the present invention, a method for adjusting express parcels based on the Internet of Things is provided, and the method includes:
步骤S1、控制传送装置将第一包裹向调整区域传输;所述传送装置的上方设置有摄像头;所述传送装置的两侧安设有红外对管;所述传送装置由万向轮组成;以所述摄像头在所述传送装置所在的平面内的投影点为坐标原点O,以所述传送装置的传送方向为X轴正方向,以在所述传送装置所在的平面内且垂直所述传送装置的传送方向的直线为Y轴建立第一直角坐标系;Step S1, controlling the transmission device to transmit the first package to the adjustment area; a camera is arranged above the transmission device; infrared pairs are installed on both sides of the transmission device; the transmission device is composed of a universal wheel; The projection point of the camera in the plane where the conveying device is located is the coordinate origin O, and the conveying direction of the conveying device is the positive direction of the X-axis, so as to be in the plane where the conveying device is located and perpendicular to the conveying device The straight line in the transmission direction establishes the first rectangular coordinate system for the Y-axis;
步骤S2、响应于所述红外对管检测到所述第一包裹,开启所述摄像头;控制所述摄像头采集所述第一包裹的轮廓和所述第一包裹的方向标识并形成第一图像;所述方向标识位于所述第一包裹与所述摄像头正对的第一底面上;Step S2, in response to the infrared pair tube detecting the first package, turn on the camera; control the camera to collect the outline of the first package and the direction identification of the first package and form a first image; The direction mark is located on the first bottom surface of the first package facing the camera;
步骤S3、根据所述摄像头所采集的所述第一图像,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标;所述顶点坐标沿逆时针排布的第一坐标A(x1,y1)、第二坐标B(x2,y2)、第三坐标C(x3,y3)、第四坐标D(x4,y4),所述第一坐标A(x1,y1)以及所述第四坐标D(x4,y4)位于所述第一包裹的所述头部的所在边;Step S3, according to the first image collected by the camera, determine the head of the first package and the coordinates of four vertices of the first package; the first coordinates of the vertex coordinates arranged counterclockwise A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the fourth coordinate D(x 4 , y 4 ), the first coordinate A(x 1 , y 1 ) and the fourth coordinate D(x 4 , y 4 ) are located on the side where the head of the first package is located;
步骤S4、根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的方位角其中,所述方位角所述所述第一坐标A(x1,y1)对应的顶点A与所述第四坐标D(x4,y4)对应的顶点D的连线AD的中点为E;所述第二坐标B(x2,y2)对应的顶点B与所述第三坐标C(x3,y3)对应的顶点C的连线BC的中点为F;所述方位角为线段EF所在的直线与所述X轴正方向所成的锐角;Step S4, according to the first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the fourth coordinate Coordinate D(x 4 , y 4 ), solve for the azimuth of the first package where the azimuth angle said The midpoint of the connecting line AD between the vertex A corresponding to the first coordinate A (x 1 , y 1 ) and the vertex D corresponding to the fourth coordinate D (x 4 , y 4 ) is E; the second coordinate The midpoint of the line BC connecting the vertex B corresponding to B(x 2 , y 2 ) and the vertex C corresponding to the third coordinate C(x 3 , y 3 ) is F; the azimuth angle is the acute angle formed by the straight line where the line segment EF is located and the positive direction of the X-axis;
步骤S5、根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),求解所述第一包裹的中心到所述坐标原点O的距离L;其中,所述距离 Step S5, according to the first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate C(x 3 , y 3 ), the fourth coordinate Coordinate D(x 4 , y 4 ), solve the distance L from the center of the first package to the coordinate origin O; wherein, the distance
步骤S6、采集所述摄像头实时监测的所述第一包裹的四个顶点坐标,当所述四个顶点坐标中的至少一对对角点的横坐标之和为零且距离L≠0时,控制所述万向轮沿所述Y轴的方向转动带动所述第一包裹沿Y轴平移;根据所述距离L和所述万向轮的转动速度v,求解所述万向轮转动的第一时间t1;其中,所述当y1+y2+y3+y4>0时,所述万向轮的转动方向沿所述Y轴的负方向;当y1+y2+y3+y4<0时,所述万向轮的转动方向沿所述Y轴的正方向;Step S6, collecting the coordinates of the four vertices of the first package monitored by the camera in real time, when the sum of the abscissas of at least a pair of diagonal points in the coordinates of the four vertices is zero and the distance L≠0, Control the rotation of the universal wheel along the direction of the Y axis to drive the first package to translate along the Y axis; according to the distance L and the rotation speed v of the universal wheel, solve the first rotation of the universal wheel. a time t 1 ; wherein the When y 1 +y 2 +y 3 +y 4 >0, the rotation direction of the universal wheel is along the negative direction of the Y axis; when y 1 +y 2 +y 3 +y 4 <0, the The rotation direction of the universal wheel is along the positive direction of the Y-axis;
步骤S7、响应于所述万向轮沿所述Y轴方向的转动结束,获取所述万向轮与坐标原点的距离R,控制所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向转动;根据所述方位角所述距离R、以及所述万向轮的转动速度v,求解所述万向轮转动的第二时间t2;所述万向轮沿所述Y轴方向的转动时间为第一时间t1;其中,所述当所述k>0时,所述万向轮的转动方向与所述述Y轴的负方向所成的角为锐角;当所述k<0时,所述万向轮的转动方向与所述述Y轴的正方向所成的角为锐角;Step S7, in response to the end of the rotation of the universal wheel along the Y-axis direction, obtain the distance R between the universal wheel and the coordinate origin, and control the universal wheel to take the coordinate origin O as the center of the circle, and take the coordinate origin O as the center. The distance R is the tangential rotation of the circle formed by the radius; according to the azimuth angle The distance R and the rotation speed v of the universal wheel, the second time t 2 of the rotation of the universal wheel is solved; the rotation time of the universal wheel along the Y-axis direction is the first time t 1 ; wherein, the When the k>0, the angle formed by the rotation direction of the universal wheel and the negative direction of the Y-axis is an acute angle; when the k<0, the rotation direction of the universal wheel and the The angle formed by the positive direction of the Y-axis is an acute angle;
步骤S8、响应于所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动结束,控制所述万向轮继续沿所述X轴正方向转动;所述万向轮沿以所述坐标原点O为圆心、以所述距离R为半径所成的圆的切向方向的转动时间为第二时间t2。Step S8, in response to the end of the rotation of the universal wheel along the tangential direction of the circle with the coordinate origin O as the center and the distance R as the radius, control the universal wheel to continue along the X The shaft rotates in the positive direction; the rotation time of the universal wheel along the tangential direction of the circle formed with the coordinate origin O as the center and the distance R as the radius is the second time t 2 .
在本实施例中,所述方向标识为所述第一包裹上的文字朝向;根据所述文字朝向,确定所述第一包裹的头部以及所述第一包裹的四个顶点坐标。In this embodiment, the direction identifier is the orientation of the text on the first package; according to the orientation of the text, the head of the first package and the coordinates of four vertices of the first package are determined.
在本实施例中,所述方法还包括:In this embodiment, the method further includes:
响应于所述万向轮继续沿所述X轴正方向转动,根据所述第一坐标A(x1,y1)、所述第二坐标B(x2,y2)、所述第三坐标C(x3,y3)、所述第四坐标D(x4,y4),再次求解所述第一包裹的方位角 In response to the universal wheel continuing to rotate in the positive direction of the X-axis, according to the first coordinate A(x 1 , y 1 ), the second coordinate B(x 2 , y 2 ), the third coordinate Coordinate C(x 3 , y 3 ), the fourth coordinate D(x 4 , y 4 ), and solve the azimuth angle of the first package again
当所述方位角时,对所述第一包裹进行调整不完全标记。when the azimuth When the adjustment is made to the first package, the incomplete marking is performed.
在本实施例中,所述方法还包括:In this embodiment, the method further includes:
对所述第一包裹的朝向进行朝向标记;当x1+x4>x2+x3时,对所述第一包裹的朝向标记为沿X轴正方向,当x1+x4<x2+x3时,对所述第一包裹的朝向标记为沿X轴负方向。The orientation of the first package is marked; when x 1 +x 4 >x 2 +x 3 , the orientation of the first package is marked as a positive direction along the X axis, and when x 1 +x 4 <x When 2 +x 3 , the orientation of the first package is marked as the negative direction along the X-axis.
在本实施例中,所述红外对管和所述摄像头沿X轴正方向依次排列,且所述红外对管与所述摄像头的间隔大于所述摄像头的成像半径。In this embodiment, the infrared pair tube and the camera are arranged in sequence along the positive direction of the X-axis, and the interval between the infrared pair tube and the camera is greater than the imaging radius of the camera.
在本实施例中,所述万向轮均匀分布。In this embodiment, the universal wheels are evenly distributed.
下面对本实施例中涉及到的公式进行推导:The formulas involved in this embodiment are deduced below:
如图3所示,根据所述第一坐标A(x1,y1)和所述第四坐标D(x4,y4)可得AD的中点坐标 As shown in FIG. 3 , according to the first coordinates A(x 1 , y 1 ) and the fourth coordinates D(x 4 , y 4 ), the midpoint coordinates of AD can be obtained
根据所述第二坐标B(x2,y2)和所述第三坐标C(x3,y3)可得BC的中点坐标 According to the second coordinate B(x 2 , y 2 ) and the third coordinate C(x 3 , y 3 ), the midpoint coordinate of BC can be obtained
根据所述AD的中点坐标和所述BC的中点坐标可得EF的中点坐标所述EF的中点坐标即为所述第一包裹的中心的坐标;Coordinates of the midpoint according to the AD and the coordinates of the midpoint of the BC The midpoint coordinates of EF can be obtained The coordinates of the midpoint of the EF are the coordinates of the center of the first package;
则根据两点间距离公式可得所述第一包裹的中心到所述坐标原点O的距离Then according to the distance formula between two points, the distance from the center of the first package to the coordinate origin O can be obtained
线段EF的斜率为线段EF的倾斜角β跟斜率k的关系为即β=arctank;The slope of line segment EF is The relationship between the inclination angle β of the line segment EF and the slope k is: That is, β=arctank;
则所述方位角 then the azimuth
所述第一包裹与所述万向轮接触的点的转动速度大小等于所述万向轮的转动速度v,转动半径为所述距离R,则该点的转动角速度 The rotation speed of the point where the first package contacts the universal wheel is equal to the rotation speed v of the universal wheel, and the rotation radius is the distance R, then the rotation angular velocity of this point
所述转动角速度ω、所述第二时间t2以及所述方位角满足如下关系式: the rotational angular velocity ω, the second time t 2 and the azimuth angle Satisfy the following relation:
联立(1)(2)得所述万向轮转动的第二时间 Simultaneously (1) (2) obtain the second time for the rotation of the universal wheel
以上详细描述了本发明的具体实施例。应当理解,本发明的具体实施例并不唯一,本领域的普通技术人员可以在权利要求的范围内根据本发明的构思作出诸多修改和变化。因此,凡本领域中的技术人员根据本发明的具体实施例在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。Specific embodiments of the present invention have been described above in detail. It should be understood that the specific embodiments of the present invention are not unique, and those skilled in the art can make many modifications and changes according to the concept of the present invention within the scope of the claims. Therefore, any technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the specific embodiments of the present invention shall be within the protection scope determined by the claims. Inside.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010446708.5A CN111545469B (en) | 2020-05-25 | 2020-05-25 | A smart logistics parcel sorting and adjustment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010446708.5A CN111545469B (en) | 2020-05-25 | 2020-05-25 | A smart logistics parcel sorting and adjustment system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111545469A true CN111545469A (en) | 2020-08-18 |
CN111545469B CN111545469B (en) | 2022-08-02 |
Family
ID=71998901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010446708.5A Active CN111545469B (en) | 2020-05-25 | 2020-05-25 | A smart logistics parcel sorting and adjustment system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111545469B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111921873A (en) * | 2020-07-31 | 2020-11-13 | 杭州海康机器人技术有限公司 | Package sorting method and system |
CN112221987A (en) * | 2020-09-24 | 2021-01-15 | 北京京东振世信息技术有限公司 | Sorting machine piece supply device, sorting machine piece supply method and sorting machine piece supply system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484177A1 (en) * | 1990-11-02 | 1992-05-06 | Pitney Bowes Inc. | Method and apparatus for changing the direction of motion of flat articles |
CN102689032A (en) * | 2012-06-12 | 2012-09-26 | 杭州九博科技有限公司 | Method for controlling automatic perforation of flexible circuit board |
CN207451018U (en) * | 2017-10-23 | 2018-06-05 | 苏州茂立光电科技有限公司 | The contraposition calibration equipment of light guide plate |
CN108438833A (en) * | 2018-04-13 | 2018-08-24 | 上海晨光文具股份有限公司 | The recognition methods of material attitude updating delivery device and cylindrical material characteristic attribute |
CN109625822A (en) * | 2019-01-14 | 2019-04-16 | 齐鲁工业大学 | A four-wheel drive omnidirectional transmission system and working method |
-
2020
- 2020-05-25 CN CN202010446708.5A patent/CN111545469B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484177A1 (en) * | 1990-11-02 | 1992-05-06 | Pitney Bowes Inc. | Method and apparatus for changing the direction of motion of flat articles |
CN102689032A (en) * | 2012-06-12 | 2012-09-26 | 杭州九博科技有限公司 | Method for controlling automatic perforation of flexible circuit board |
CN207451018U (en) * | 2017-10-23 | 2018-06-05 | 苏州茂立光电科技有限公司 | The contraposition calibration equipment of light guide plate |
CN108438833A (en) * | 2018-04-13 | 2018-08-24 | 上海晨光文具股份有限公司 | The recognition methods of material attitude updating delivery device and cylindrical material characteristic attribute |
CN109625822A (en) * | 2019-01-14 | 2019-04-16 | 齐鲁工业大学 | A four-wheel drive omnidirectional transmission system and working method |
Non-Patent Citations (1)
Title |
---|
高井祥: "《数字地形测量学》", 31 August 2018 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111921873A (en) * | 2020-07-31 | 2020-11-13 | 杭州海康机器人技术有限公司 | Package sorting method and system |
CN112221987A (en) * | 2020-09-24 | 2021-01-15 | 北京京东振世信息技术有限公司 | Sorting machine piece supply device, sorting machine piece supply method and sorting machine piece supply system |
Also Published As
Publication number | Publication date |
---|---|
CN111545469B (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111545469B (en) | A smart logistics parcel sorting and adjustment system | |
CN103411553B (en) | The quick calibrating method of multi-linear structured light vision sensors | |
US20220198712A1 (en) | Method for adaptively detecting chessboard sub-pixel level corner points | |
CN104407615B (en) | AGV robot guide deviation correction method | |
CN103226814B (en) | A kind of medicine bottle foreign matter detecting method based on medical visual detection robot image rectification | |
CN110672040A (en) | High-precision rotation angle measuring method based on vision | |
CN202702247U (en) | Rapid and accurate positioning system used for indoor mobile robot | |
CN101621711B (en) | Method for calibrating camera by adopting two same circles | |
CN103063137B (en) | A kind of medicine bottle measuring system based on machine vision and measuring method thereof | |
CN102773862A (en) | Quick and accurate locating system used for indoor mobile robot and working method thereof | |
CN106935683A (en) | A kind of solar battery sheet SPEED VISION positioning and correction system and its method | |
CN106249742A (en) | The method and system that robot ridge row identification guides are realized based on laser radar detection | |
CN107492123A (en) | A kind of road monitoring camera self-calibrating method using information of road surface | |
CN112025727A (en) | Novel patrol and examine track robot device | |
CN117291918B (en) | A method for defect detection of automotive stamping parts based on three-dimensional point cloud | |
CN109297981B (en) | Double detection rejection system | |
CN114581385A (en) | Welding seam defect area mapping algorithm based on circle positioning | |
CN111646164A (en) | Express delivery parcel direction adjustment system of wisdom commodity circulation | |
CN100553349C (en) | Method for Determining the Topological Relationship of Targets and Camera Calibration Targets That Can Be Arbitrarily Placed | |
CN107247057A (en) | A kind of bottle cap surface production date defect inspection method | |
CN111573220B (en) | Express parcel sorting adjustment method based on Internet of things | |
CN108844465B (en) | Online dynamic measurement device and measurement method for geometric parameters of train wheels | |
CN102288134B (en) | Perspective projection-based method for measuring spatial rotary moving parameters of circular object | |
CN110617783A (en) | Turntable eccentric error measuring method based on photoelectric detection modulation period particle swarm optimization | |
CN111689184A (en) | Intelligent logistics express direction adjusting method based on universal wheel sorting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |