CN111545245A - Iron ion doped metal organic framework material and preparation method thereof - Google Patents

Iron ion doped metal organic framework material and preparation method thereof Download PDF

Info

Publication number
CN111545245A
CN111545245A CN202010398912.4A CN202010398912A CN111545245A CN 111545245 A CN111545245 A CN 111545245A CN 202010398912 A CN202010398912 A CN 202010398912A CN 111545245 A CN111545245 A CN 111545245A
Authority
CN
China
Prior art keywords
metal organic
organic framework
framework material
iron ion
doped metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010398912.4A
Other languages
Chinese (zh)
Inventor
彭诗阳
李威
吴岸松
朱娟
蔡红春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Yaoheng Environmental Technology Co ltd
Original Assignee
Hunan Yaoheng Environmental Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Yaoheng Environmental Technology Co ltd filed Critical Hunan Yaoheng Environmental Technology Co ltd
Priority to CN202010398912.4A priority Critical patent/CN111545245A/en
Publication of CN111545245A publication Critical patent/CN111545245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

The invention discloses an iron ion doped metal organic framework material and a preparation method thereof, wherein the iron ion doped metal organic framework material comprises iron ions and ZIF-67, and the iron ions are doped in the ZIF-67. The preparation method comprises the following steps: slowly stirring cobalt nitrate hexahydrate and urea in a conical flask using water as a solvent by heating with constant-temperature water bath to obtain cobalt hydroxide, and then adding ferric nitrate nonahydrate for ultrasonic oscillation to obtain a precursor solution of iron ion intercalation cobalt hydroxideWill be dimethyl imidazole
Figure DDA0002488571210000011
And mixing the precursor solution and the organic solvent, stirring, and realizing coprecipitation to obtain the iron ion doped metal organic framework material. The iron ion doped metal organic framework material has the advantages of good dispersibility, obvious advanced oxidation effect, quick reaction time, difficult interference from external conditions and the like, can realize high-efficiency degradation of antibiotics, and has better application prospect. The preparation method of the iron ion doped metal organic framework material has the advantages of convenient operation, simple synthesis, less raw material types, low cost and the like, and is suitable for large-scale preparation.

Description

Iron ion doped metal organic framework material and preparation method thereof
Technical Field
The invention relates to a metal organic framework material, belongs to the field of composite materials, and particularly relates to an iron ion doped metal organic framework material and a preparation method thereof.
Background
Metal-organic frameworks (MOFs), as a class of emerging porous materials, have a wide application prospect due to the advantages of high specific surface area, controllable porous structure, ordered frameworks, etc., have attracted great interest due to their wide application in adsorption and catalysis, and have become a research hotspot in the field of material science. Of the various metal organic frameworks, Zeolitic Imidazole Frameworks (ZIFs) having large specific surface areas and periodically ordered TM-N4 ligand structures are considered promising precursors for the synthesis of efficient TM-N-C catalysts. However, it should be noted that the existing preparation method of the metal organic framework material has the problems of complicated steps, various raw materials, long time consumption, and the like, and is not favorable for low-cost mass production of the metal organic framework material. Therefore, in recent years, many studies on MOFs derivatives have been made, wherein the studies on conversion of MOFs into LDH are relatively mature, and at present, the idea of converting LDH into MOFs has also entered the research field, and the discovery of reversible conversion can greatly reduce production cost and raw material consumption in practical application, and has a great significance for realizing industrial production, but so far, there are few studies on this aspect. Therefore, how to comprehensively improve the problems and the defects existing in the existing metal organic framework and obtain a metal organic framework material with good stability and good catalytic degradation performance and a preparation method of the metal organic framework material with simple operation, few raw material types and low cost has important significance for expanding the application range of the metal organic framework material in urban wastewater treatment.
Disclosure of Invention
The invention aims to overcome the defects of the prior art, provides the iron ion doped metal organic framework material with good stability, good catalytic degradation performance and small influence by external conditions, and also provides the preparation method of the iron ion doped metal organic framework material with convenient operation, simple synthesis, less raw material types, low cost and high degradation efficiency.
In order to solve the technical problems, the invention adopts the following technical scheme:
an iron ion doped metal organic framework material comprises iron ions and ZIF-67; the iron ions are doped in ZIF-67.
As a general technical concept, the present invention also provides a preparation method of the above iron ion doped metal organic framework material, comprising the steps of:
s1, mixing cobalt nitrate hexahydrate, urea and a water solvent, heating in a water bath at a constant temperature, and continuously stirring to obtain cobalt hydroxide;
s2, adding the cobalt hydroxide obtained in the step S1 into ferric nitrate nonahydrate for ultrasonic oscillation to obtain the iron ion doped cobalt hydroxide precursor material.
S3, adding the precursor material obtained in the step S2 into dimethyl imidazole
Figure BDA0002488571190000011
And carrying out coprecipitation reaction in a mixed solvent to obtain the iron ion doped metal organic framework material.
In the preparation method, the molar ratio of the cobalt chloride hexahydrate to the urea is further improved to be 1: 2.
In the preparation method, the molar ratio of the ferric nitrate nonahydrate to the cobalt hydroxide is 0, 0.1, 0.3 and 0.5.
In the preparation method, the solvent mixture of the aqueous solvent and the organic solvent is further improved, wherein the product obtained in the S1 and S2 steps is the aqueous solvent, and the solvent in the S3 step is the aqueous solvent and the absolute ethyl alcohol solvent, and the volume ratio of the solvent to the absolute ethyl alcohol solvent is 1: 1.
In the above preparation method, further improvement is provided, in step S1, the rotation speed of the stirring is 150r/min to 200 r/min; the water bath temperature is 90 ℃; the magnetic stirring time is 4 h.
In a further improvement of the above preparation method, in step S2, the ultrasonic oscillation time is 0.5 h.
In the above preparation method, further improvement is provided, in step S3, the rotation speed of the stirring is 250r/min to 300 r/min; the temperature is 90 ℃; the magnetic stirring time is 4 h.
In a further improvement of the above preparation method, in steps S1 and S3, the reaction further comprises the following steps: the resulting reaction product was centrifuged, washed and dried.
The preparation method is further improved, and the rotating speed of the centrifugation is 4000 r/min-5000 r/min;
in the preparation method, the washing solution used in the step S1 is an aqueous solution, and the number of washing is 6 to 8; the washing solution used in the step S3 is an aqueous solution and an absolute ethyl alcohol solution; the washing times are respectively 3-4 times;
in the preparation method, the drying is carried out under vacuum condition; the drying temperature is 60 ℃; the drying time is 8-12 h.
Compared with the prior art, the invention has the advantages that:
(1) the invention provides an iron ion doped metal organic framework material, which comprises iron ions and ZIF-67, wherein the iron ions are doped in the ZIF-67. In the invention, iron ions are doped in the metal organic framework material ZIF-67, the doping of the iron ions can change the pore structure and the specific surface area of the metal organic framework material ZIF-67, and the iron ions doped in the ZIF-67 can more effectively activate the Peroxymonosulfate (PMS), thereby enhancing the Co-ZIF-Fe of the obtained metal organic framework material(x)High level of (2)Oxidation performance. Meanwhile, the peroxymonosulfate is fully activated under the action of iron ions to generate active factors with the main degradation effects of singlet oxygen, sulfate radicals and hydroxyl radicals, so that the catalytic degradation performance of the material is greatly enhanced. Compared with the prior art, the iron ion doped metal organic framework material has the advantages of good dispersibility, obvious advanced oxidative degradation effect, quick reaction time, difficulty in being interfered by external conditions and the like, can realize high-efficiency degradation of antibiotics, and has better application prospect.
(2) The iron ion doped metal organic framework material can be used for efficiently treating antibiotic wastewater, the iron ion doped metal organic framework material and the antibiotic wastewater are stirred, adsorbed and subjected to advanced oxidation degradation, antibiotics in the wastewater can be efficiently degraded, substances needed for synthesis are simple, the cost is low, the degradation efficiency is high, the repeated utilization rate is high, the method is clean and pollution-free, the method is an advanced oxidation method which can be widely adopted and can efficiently remove the antibiotics in water, and the method has high application value and development potential.
(3) The invention also provides a complete and detailed preparation method, which synthesizes the iron ion doped metal organic framework material which has good catalytic degradation effect and good photocatalytic performance and is not easily influenced by external conditions for the first time, and has the advantages of operation basis, simple synthesis principle, less raw material types, low cost and the like.
(4) In the preparation method of the iron ion doped metal organic framework material, the molar ratio of the cobalt nitrate hexahydrate to the urea is optimized, and the molar ratio of the iron nitrate nonahydrate to the cobalt hydroxide is 0, 0.1, 0.3 and 0.5 through the optimized addition molar ratio of the cobalt nitrate hexahydrate to the urea of 1: 2. The prepared iron ion doped metal organic framework material contains iron ions with proper doping amount, so that the iron ions and the metal organic framework material generate stronger catalytic activity, and the method is particularly applied to the activation of peroxymonosulfate for advanced oxidation treatment of tetracycline pollutants. In particular, the molar ratios of iron ions provided by ferric nitrate nonahydrate and cobalt ions provided by cobalt hydroxide were 0, 0.1, 0.3, 0.5, respectively, wherein the most optimal degradation removal effect was achieved when the ratio was 0.5. Therefore, the invention optimizes the molar ratio of the iron ions and the cobalt hydroxide provided by the ferric nitrate nonahydrate to obtain the proper iron ion doping amount, and has important significance for improving the advanced oxidation catalysis performance of the iron ion doped metal organic framework material.
Drawings
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
FIG. 1 shows a Fe ion-doped metal organic framework Co-ZIF- (Fe) prepared in example 1 of the present invention0.5Co-ZIF as a metal-organic framework material obtained in comparative example 1 and Co (OH) as a material obtained in comparative example 22In which (a) is Co (OH)2(b) is Co-ZIF, (c) is Co-ZIF- (Fe)0.5
FIG. 2 shows the Fe ion-doped metal organic frameworks (Co-ZIF- (Fe) prepared in examples 1 to 3 of the present invention0.1、 Co-ZIF-(Fe)0.3、Co-ZIF-(Fe)0.5) And the metal organic framework material Co-ZIF prepared in comparative example 1 and Co (OH) prepared in comparative example 22X-ray diffraction pattern of (a).
FIG. 3 shows a Fe ion-doped metal organic framework Co-ZIF- (Fe) prepared in example 1 of the present invention0.5Co-ZIF as a metal-organic framework material obtained in comparative example 1 and Co (OH) as a material obtained in comparative example 22An X-ray photoelectron spectrum of (a).
FIG. 4 shows the Fe ion-doped metal organic frameworks (Co-ZIF- (Fe) prepared in examples 1 to 3 of the present invention0.1、 Co-ZIF-(Fe)0.3、Co-ZIF-(Fe)0.5) And the metal organic framework material Co-ZIF prepared in comparative example 1 and Co (OH) prepared in comparative example 22The effect of adsorption and advanced oxidation on tetracycline is shown.
FIG. 5 shows an iron ion-doped metal organic framework material (Co-ZIF- (Fe))0.5) The adsorption effect diagram of the tetracycline hydrochloride wastewater with different pH values and the corresponding Zeta potential diagram.
Detailed Description
The invention is further described below with reference to the drawings of the specification and to specific preferred embodiments, without thereby limiting the scope of protection of the invention.
The starting materials and equipment used in the following examples are commercially available. In the following examples, unless otherwise specified, the data obtained are the average of three or more repeated experiments.
Example 1
Iron ion doped metal organic framework material (Co-ZIF- (Fe)0.5) And contains iron ions and ZIF-67, wherein the iron ions are doped in the ZIF-67.
The preparation method of the iron ion doped metal organic framework material comprises the steps of using urea, ferric nitrate nonahydrate and dimethylimidazole
Figure BDA0002488571190000041
And cobalt nitrate hexahydrate is used as a raw material, and the iron ion doped metal organic framework material is prepared by a water bath method and a coprecipitation method, and comprises the following steps:
(1) mixing cobalt nitrate hexahydrate and urea in a water solvent, heating in a water bath at constant temperature, wherein the molar ratio of the cobalt nitrate hexahydrate to the urea is 1:2, stirring for 4 hours at a rotating speed of 150 r/min-200 r/min by a magnetic stirrer, washing and centrifuging a reaction product obtained after the water bath reaction for 6-8 times at a rotating speed of 5000r/min, and drying the obtained sample for 8-12 hours at a temperature of 60 ℃ by arranging a vacuum drying oven to obtain cobalt hydroxide;
(2) and (2) adding the cobalt hydroxide obtained in the step (1) into ferric nitrate nonahydrate for ultrasonic oscillation for 0.5h, wherein the molar ratio of the ferric nitrate nonahydrate to the cobalt hydroxide is 1:2, and obtaining the iron ion-doped cobalt hydroxide precursor material with the ratio of 1: 2.
(3) Adding the precursor material obtained in the step (2) in the ratio of 1:2 into dimethylimidazole
Figure BDA0002488571190000042
Carrying out coprecipitation reaction in the mixed solvent, and keeping the rotating speed of a magnetic stirrer between 250r/min and 300r/minStirring for 4h, washing with a water solvent and an absolute ethyl alcohol solvent for 3-4 times respectively, centrifuging the washed reaction product at the rotating speed of 5000r/min, drying the obtained sample for 8-12 h at the temperature of 60 ℃ by arranging a vacuum drying oven to obtain the iron ion doped metal organic framework material named as Co-ZIF- (Fe)0.5
Example 2
A method for preparing an iron ion doped metal organic framework material, which is substantially the same as the preparation method in the example 1, except that: the molar ratio of ferric nitrate nonahydrate to cobalt hydroxide in example 3 was 1: 3.3.
The iron ion-doped metal organic framework material prepared in example 2 was named Co-ZIF- (Fe)0.3
Example 3
A method for preparing an iron ion doped metal organic framework material, which is substantially the same as the preparation method in the example 1, except that: the molar ratio of ferric nitrate nonahydrate to cobalt hydroxide in example 3 was 1: 10.
The iron ion-doped metal organic framework material prepared in example 3 was named Co-ZIF- (Fe)0.1
Comparative example 1
A preparation method of ZIF-67, which is substantially the same as the preparation method of example 1 except that: in comparative example 1, no ferric nitrate nonahydrate was added, and since the obtained material was ZIF-67, but the description refers to uniform material nomenclature, the obtained iron ion-doped metal organic framework material is represented by Co-ZIF.
Comparative example 2
An intermediate substance for preparing an iron ion doped metal organic framework material is a whole source of cobalt element of the iron ion doped metal organic framework material.
The method comprises the following specific steps: mixing cobalt nitrate hexahydrate and urea in a water solvent, heating in a water bath at constant temperature, wherein the molar ratio of the cobalt nitrate hexahydrate to the urea is 1:2, stirring for 4 hours at the rotating speed of 150 r/min-200 r/min by using a magnetic stirrer, washing, centrifuging for 6-8 times at the rotating speed of 5000r/min for a reaction product obtained after the water bath reaction, and setting trueDrying the obtained sample for 8-12 h at 60 ℃ in an air drying oven to obtain cobalt hydroxide, which is recorded as Co (OH)2
FIG. 1 shows a Fe ion-doped metal organic framework Co-ZIF- (Fe) prepared in example 1 of the present invention 05, Co-ZIF as a metal organic framework material obtained in comparative example 1 and Co (OH) as obtained in comparative example 22In which (a) is Co (OH)2(b) is Co-ZIF, (c) is Co-ZIF- (Fe)0.5. As can be seen from the transformation of the morphologies of fig. 1(a) to fig. 1(b), the desired metal organic framework material was successfully prepared by the present invention, the crystal morphology was changed from the radioactive ray to the typical cubic shape of ZIF-67, and fig. 1(c) shows that the iron ion doped metal organic framework material is prepared, and has a flaky irregular network structure, which indicates that the doping of iron changes the intrinsic crystal structure of Co-ZIF. This is probably because the doped iron element may enter the Co-ZIF crystal lattice, and the excessive iron ion and dimethyl imidazole
Figure BDA0002488571190000051
The coordination of (a) is unfavorable, and incomplete coordination makes the structure appear like exfoliated sheet packing. Although the crystal structure is changed due to the higher Fe/Co ratio, the existence of the iron ions has a more obvious trend towards the application of the prepared iron ion doped metal organic framework material in the advanced oxidation high-efficiency degradation of tetracycline wastewater.
FIG. 2 shows the Fe ion-doped metal organic frameworks (Co-ZIF- (Fe) prepared in examples 1 to 3 of the present invention0.1、 Co-ZIF-(Fe)0.3、Co-ZIF-(Fe)0.5) And the metal organic framework material Co-ZIF prepared in comparative example 1 and Co (OH) prepared in comparative example 22X-ray diffraction pattern of (a). As shown in fig. 2, all samples have sharp and prominent peaks, indicating that the crystallinity of the samples is better. Iron ion doped metal organic framework material (Co-ZIF, Co-ZIF- (Fe) doped with iron ions of different proportions0.1、 Co-ZIF-(Fe)0.3、Co-ZIF-(Fe)0.5) Similar to the X-ray diffraction pattern of the standard ZIF-67, the iron ion doped metal organic framework material prepared by the invention is proved to be successful.
FIG. 3 shows an iron ion-doped metal organic framework material (Co-ZIF- (Fe) prepared in example 1 of the present invention0.5) An X-ray photoelectron spectrum of (a). The peaks of the spectrum shown in fig. 3(a) correspond to C1s (286.01eV), N1s (401.01eV), O1 s (533.01), Fe2p (712.01eV), and Co2p (780.01eV), respectively. Wherein, FIG. 3(b) is the spectrum of Co2 p. As can be seen from FIG. 3(b), the peak shape of the spectrum of Co2p still appears in Co2p3/2And Co2p1/2Two peaks indicating Co-ZIF- (Fe)0.5Is preferably bonded to Co-O, and, in addition, Co-NxAnd CoCyNzThe presence of peaks indicates that there is chemical coupling between the Co, C and N species, which is beneficial for improving catalytic activity. The two peaks fitted by Co indicate that Co is in Co-ZIF- (Fe)0.5In the presence of Co2+ and Co3+ two states, in which Co is3+ is dominant.
Example 4
The method is used for investigating the treatment effect of the iron ion doped metal organic framework material on the antibiotic wastewater, and specifically is used for treating the tetracycline wastewater by adopting the iron ion doped metal organic framework material with different iron ion doping amounts, and comprises the following steps:
weighing Co-ZIF- (Fe)0.5Example 1 Co-ZIF- (Fe)0.3Example 2 Co-ZIF- (Fe)0.1Example 3, Co-ZIF (comparative example 1), Co (OH)2(comparative example 1) 20mg of the solution is respectively added into 100mL of tetracycline hydrochloride wastewater with the concentration of 30mg/L (the pH value of the antibiotic wastewater is 4.01), the solution is subjected to oscillation adsorption for 1h under the conditions of normal temperature and the rotation speed of an oscillation box of 180r/min, then 30mg of PMS is added, the advanced oxidative degradation reaction is continuously carried out for 30min, and the treatment of the tetracycline hydrochloride is finished.
After the oscillation adsorption is finished, taking 4mL of sample, marking as zero point, immediately adding PMS, respectively taking 4mL of sample and marking at 1min, 3min, 5min, 10min, 20min and 30min, centrifuging all samples, taking supernatant obtained by centrifuging, measuring absorbance through an ultraviolet-visible spectrophotometer, and determining the concentration of tetracycline hydrochloride after oxidative degradation, thereby obtaining the advanced oxidative degradation effect of the iron ion doped metal organic framework material with different iron contents on tetracycline hydrochloride wastewater, wherein the result is shown in figure 4.
FIG. 4 shows the Fe ion-doped metal organic frameworks (Co-ZIF- (Fe) prepared in examples 1 to 3 of the present invention0.1、 Co-ZIF-(Fe)0.3、Co-ZIF-(Fe)0.5) And the metal organic framework material Co-ZIF prepared in comparative example 1 and Co (OH) prepared in comparative example 22The effect of the tetracycline on advanced oxidative degradation is shown. As shown in the figure, the iron ion doped metal organic framework material has a remarkable effect on the advanced oxidative degradation of tetracycline. The degradation rate of the tetracycline by only using PMS alone is only 42.1%, which shows that the degradation capability of the single PMS to the tetracycline is weak, the degradation capability is improved by 55.47% under the same condition after adding the catalyst, in addition, the degradation efficiency is greatly improved after Co (OH)2 is converted into Co-ZIF, and the iron ion doping has obvious influence on the degradation efficiency of the tetracycline hydrochloride. With the increase of iron doping, the degradation efficiency also shows a growing trend, and the degradation efficiency reaches 96.67% within 5min after the doping ratio reaches 0.5, and the degradation effect is best when the doping ratio of Fe is 0.5.
Example 5
A method for treating antibiotic wastewater by using an iron ion doped metal organic framework material, in particular to a method for adsorbing tetracycline hydrochloride in a water body by using the iron ion doped metal organic framework material, which comprises the following steps:
6 parts of the iron ion-doped metal organic framework material (Co-ZIF- (Fe)) in example 1 were weighed0.5) And adding 20mg of each part into tetracycline hydrochloride wastewater with pH values of 2, 4, 6, 8, 10 and 12 respectively, wherein the volume of the tetracycline hydrochloride wastewater is 100mL, the concentration of the tetracycline hydrochloride wastewater is 30mg/L, oscillating and adsorbing for 1h at normal temperature under the condition that the rotating speed of an oscillating box is 180r/min, then adding 30mg of PMS respectively, and continuing to perform advanced oxidative degradation reaction for 30min to finish the treatment of the tetracycline hydrochloride.
After the oscillation adsorption is finished, taking 4mL of sample, marking as zero point, immediately adding PMS, respectively taking 4mL of sample and marking at 1min, 3min, 5min, 10min, 20min and 30min, centrifuging all samples, taking supernatant obtained by centrifuging, measuring absorbance through an ultraviolet-visible spectrophotometer, and determining the concentration of tetracycline hydrochloride after reaction, thereby obtaining the advanced oxidative degradation effect of the iron ion doped metal organic framework material on tetracycline hydrochloride wastewater with different pH values and the surface Zeta potential of the prepared iron ion doped metal organic framework material, wherein the result is shown in figure 5.
FIG. 5 shows an iron ion-doped metal organic framework material (Co-ZIF- (Fe))0.5) The adsorption effect diagram of the tetracycline hydrochloride wastewater with different pH values and the corresponding Zeta potential diagram. As can be seen from FIG. 5, as the pH value of 4 is increased to 10, the tetracycline removal rate is kept around 97%, no obvious difference exists, and the maximum removal rate of 98.2% is achieved at the pH value of 10. However, at pH 2 and 12, i.e., strong acid and strong base, the removal rate of tetracycline hydrochloride by the system decreased to 81.7% and 79.8%, although it was shown that Co-ZIF- (Fe)0.5the/PMS system exhibits a better degradation capacity for the tetracycline as a whole in the pH range of 2 to 12. The removal is not obviously different when the pH value is within the range of 4-10, but the removal effect of the alkaline environment is better than that of the acidic environment, which indicates that the Fe is removed after PMS is added2+Under activation, SO is rapidly generated in the solution4 2-And OH, SO4 2-The tetracycline is degraded by oxidative degradation under the synergistic effect of strong oxidation factors such as singlet oxygen, sulfate radicals and hydroxyl radicals. When the pH is higher<2, the tetracycline hydrochloride molecule removal mainly takes adsorption effect as the main part, the adsorption process takes electrostatic repulsion as the main part, and Co-ZIF- (Fe)0.5The surface is positively charged. Pair Co-ZIF- (Fe)0.5Zeta potential measurement of (2) shows that Co-ZIF- (Fe)0.5A point of zero charge (pHpzc) (about 8.53) was obtained in water. When the pH is higher>The degradation efficiency at 10 ℃ is reduced, which is probably because OH in the reaction system is in a strong alkaline environment-With reaction to form SO4 -、HSO-And the like, and the production of these intermediates lowers the concentration of active species, thereby lowering the reaction efficiency.
The above examples are merely preferred embodiments of the present invention, and the scope of the present invention is not limited to the above examples. All technical schemes belonging to the idea of the invention belong to the protection scope of the invention. It should be noted that modifications and embellishments within the scope of the invention may be made by those skilled in the art without departing from the principle of the invention, and such modifications and embellishments should also be considered as within the scope of the invention.
Therefore, the method for treating the antibiotic wastewater by using the iron ion doped metal organic framework material can efficiently oxidize and degrade the antibiotic in the wastewater by mixing the iron ion doped metal organic framework material with the tetracycline hydrochloride wastewater to remove pollutants, and can realize efficient degradation of the antibiotic by performing high-level oxidation reaction after adsorption balance is achieved.

Claims (10)

1. An iron ion doped metal organic framework material is characterized by comprising iron ions and ZIF-67; the iron ions are doped in ZIF-67.
2. A method for preparing an iron ion doped metal organic framework material according to claim 1 or 2, comprising the steps of:
s1, mixing cobalt nitrate hexahydrate, urea and a water solvent, heating in a water bath at a constant temperature, and continuously stirring to obtain cobalt hydroxide;
s2, adding the cobalt hydroxide obtained in the step S1 into ferric nitrate nonahydrate for ultrasonic oscillation to obtain the iron ion doped cobalt hydroxide precursor material.
S3, adding the precursor material obtained in the step S2 into dimethyl imidazole
Figure FDA0002488571180000011
And carrying out coprecipitation reaction in a mixed solvent to obtain the iron ion doped metal organic framework material.
3. The method according to claim 3, wherein the molar ratio of cobalt chloride hexahydrate to urea is 1: 2.
4. The method according to claim 3, wherein the molar ratio of the iron nitrate nonahydrate to the cobalt hydroxide is 0, 0.1, 0.3, 0.5.
5. The method according to claim 5, wherein the solvent is a water solvent, the product obtained in the S1 and S2 steps is a mixed solvent of a water solvent and an organic solvent, and the solvent in the S3 step is a water solvent and an absolute ethanol solvent, and the volume ratio of the solvent to the absolute ethanol solvent is 1: 1.
6. The method according to any one of claims 3 to 6, wherein in step S1, the rotation speed of the stirring is 150 to 200 r/min; the water bath temperature is 90 ℃; the magnetic stirring time is 4 h.
7. The method according to any one of claims 3 to 6, wherein in step S2, the ultrasonic oscillation time is 0.5 h.
8. The method according to any one of claims 3 to 6, wherein in step S3, the rotation speed of the stirring is 250 to 300 r/min; the temperature is 90 ℃; the magnetic stirring time is 4 h.
9. The method according to any one of claims 3 to 6, wherein the steps S1 and S3 further comprise the following steps after the reaction is completed: the resulting reaction product was centrifuged, washed and dried.
10. The method of claim 9, wherein the centrifugation is performed at a speed of 4000 to 5000 r/min;
the washing solution used in the step S1 is an aqueous solution, and the washing times are 6-8 times;
the washing solution used in the step S3 is an aqueous solution and an absolute ethyl alcohol solution; the washing times are respectively 3-4 times;
the drying is carried out under vacuum conditions; the drying temperature is 60 ℃; the drying time is 8-12 h.
CN202010398912.4A 2020-05-12 2020-05-12 Iron ion doped metal organic framework material and preparation method thereof Pending CN111545245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010398912.4A CN111545245A (en) 2020-05-12 2020-05-12 Iron ion doped metal organic framework material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010398912.4A CN111545245A (en) 2020-05-12 2020-05-12 Iron ion doped metal organic framework material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN111545245A true CN111545245A (en) 2020-08-18

Family

ID=71999150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010398912.4A Pending CN111545245A (en) 2020-05-12 2020-05-12 Iron ion doped metal organic framework material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111545245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062257A (en) * 2020-09-08 2020-12-11 湖南鑫恒环境科技有限公司 Method for treating antibiotic wastewater by using iron ion doped metal organic framework material
CN114618330A (en) * 2022-04-02 2022-06-14 东莞理工学院 Preparation method of zeolite imidazole metal organic framework membrane and method for degrading antibiotics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911009A (en) * 2018-07-24 2018-11-30 湖南大学 Utilize the method for antibiotic in nickel doping metals organic framework material removal water body
CN108905976A (en) * 2018-07-24 2018-11-30 湖南大学 Manganese ion doping metal-organic framework materials and its preparation method and application
CN108905975A (en) * 2018-07-24 2018-11-30 湖南大学 Nickel doping metals organic framework material and preparation method thereof
CN110961159A (en) * 2019-12-31 2020-04-07 五邑大学 Supported Fe-Co/ZIF-67 bimetallic catalyst and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911009A (en) * 2018-07-24 2018-11-30 湖南大学 Utilize the method for antibiotic in nickel doping metals organic framework material removal water body
CN108905976A (en) * 2018-07-24 2018-11-30 湖南大学 Manganese ion doping metal-organic framework materials and its preparation method and application
CN108905975A (en) * 2018-07-24 2018-11-30 湖南大学 Nickel doping metals organic framework material and preparation method thereof
CN110961159A (en) * 2019-12-31 2020-04-07 五邑大学 Supported Fe-Co/ZIF-67 bimetallic catalyst and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENXIN HOU ET AL.,: "Highly Efficient and Recyclable ZIF‑67 Catalyst for the Degradation of Tetracycline" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062257A (en) * 2020-09-08 2020-12-11 湖南鑫恒环境科技有限公司 Method for treating antibiotic wastewater by using iron ion doped metal organic framework material
CN114618330A (en) * 2022-04-02 2022-06-14 东莞理工学院 Preparation method of zeolite imidazole metal organic framework membrane and method for degrading antibiotics

Similar Documents

Publication Publication Date Title
CN110961159B (en) Supported Fe-Co/ZIF-67 bimetallic catalyst and preparation method and application thereof
CN110918126B (en) Preparation method of flower-shaped molybdenum disulfide combined UiO-66 photocatalyst
CN111617731A (en) Method for treating antibiotics in water body by coupling magnetic nano material with persulfate
CN112892593B (en) MOFs/water hyacinth derived material, preparation method thereof and degradation method of organic pollutants
CN112844484B (en) Boron nitride quantum dot/porous metal organic framework composite photocatalytic material and preparation method and application thereof
CN103172030A (en) Oxide powder and preparation method thereof as well as catalyst and carrier thereof
CN103041800B (en) Preparation method of WO3/ZrO2 solid super acidic catalyst
CN111533313A (en) Method for treating antibiotic wastewater by using iron-cobalt layered double metal hydroxide material with ZIF-67 as template
CN111545245A (en) Iron ion doped metal organic framework material and preparation method thereof
CN111533237A (en) Method for treating antibiotic wastewater by using manganese ion doped metal organic framework material
CN112023882A (en) Method for treating and adsorbing water antibiotics by using two-dimensional nitrogen-doped nano porous carbon material
CN111547701A (en) Magnetic cobalt nanoparticle confinement nitrogen-doped porous carbon material and preparation method thereof
CN108686658B (en) C-QDs-Fe2O3/TiO2Composite photocatalyst and preparation method thereof
CN111569944A (en) Manganese ion doped metal organic framework material and preparation method thereof
CN112958061A (en) Oxygen vacancy promoted direct Z mechanism mesoporous Cu2O/TiO2Photocatalyst and preparation method thereof
CN111185152A (en) Multifunctional coupled PAC/Bi2O3/TiO2Method for preparing composite material
CN111821967B (en) Heterojunction titanium dioxide composite photocatalyst and preparation method thereof
CN113600133A (en) Phosphorus removal adsorbent and preparation method and application thereof
CN112047388A (en) Iron-cobalt layered double-metal hydroxide material with ZIF-67 as template and preparation method thereof
CN109078644B (en) Graphene-loaded Bi-BiOCl-TiO2Photocatalyst and preparation method thereof
CN111318260A (en) TiO22(B) Preparation method and application of/MIL-100 (Fe) composite material
CN112062257A (en) Method for treating antibiotic wastewater by using iron ion doped metal organic framework material
CN115999613A (en) Nitrogen and transition metal doped titanium dioxide particles, method for the production and use thereof
CN112871183B (en) Preparation method of bismuth/bismuth tungstate/ferroferric oxide composite photocatalyst
CN113398946A (en) Cobalt tungstate/bismuth composite acoustic catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200818