CN111542332A - 对癌症治疗中的正常组织的保护 - Google Patents

对癌症治疗中的正常组织的保护 Download PDF

Info

Publication number
CN111542332A
CN111542332A CN201880067966.3A CN201880067966A CN111542332A CN 111542332 A CN111542332 A CN 111542332A CN 201880067966 A CN201880067966 A CN 201880067966A CN 111542332 A CN111542332 A CN 111542332A
Authority
CN
China
Prior art keywords
guanylate cyclase
cancer
cells
individual
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880067966.3A
Other languages
English (en)
Inventor
S·A·沃尔德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomas Jefferson University
Original Assignee
Thomas Jefferson University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Jefferson University filed Critical Thomas Jefferson University
Publication of CN111542332A publication Critical patent/CN111542332A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/005Enzyme inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

公开了治疗患有癌症的个体的方法。在一些方法中,所述癌症可缺乏功能性鸟苷酸环化酶C和/或p53。在一些方法中,所述方法包括通过施用足以使胃肠细胞中的细胞内cGMP升高的一种或多种化合物来保护胃肠细胞免受遗传毒性损伤,且然后施用化学疗法和/或放射疗法以杀伤癌细胞。在一些方法中,所述方法包括向所述个体的肠干细胞施用足以激活所述肠干细胞的鸟苷酸环化酶C并使所述肠干细胞中的细胞内cGMP升高的量的一种或多种鸟苷酸环化酶C激动剂化合物,且然后施用化学疗法和/或放射疗法以杀伤癌细胞。

Description

对癌症治疗中的正常组织的保护
技术领域
本发明涉及用于保护个体免受与癌症化学疗法和放射疗法相关的严重且可能致命的副作用的组合物和方法。
发明背景
癌症是全球主要的死亡原因;自2004年以来,它每年导致7-8 百万人死亡(大约占所有死亡数的13%)。全世界因癌症所致的死亡预计继续上升,到2030年估计有1200万人死亡。肺癌、胃癌、肝癌、结肠癌和乳腺癌每年导致最多的癌症死亡数。在美国,癌症是成人的第二大死亡原因,并且每年导致超过五十万例死亡。肺癌、前列腺癌、乳腺癌和结肠癌是癌症相关死亡的主要原因。
化学疗法和放射疗法(两种最常见类型的癌症治疗)通过破坏快速生长的细胞如癌细胞而起作用。化学疗法和放射疗法是极强毒性的治疗,因为它们杀伤快速分裂的细胞,包括正常的非癌性分裂细胞。因此,由于化学疗法和放射的不想要的副作用,体内其他类型的快速生长的正常细胞,如造血细胞、毛细胞和胃肠道(GI)细胞也被破坏并杀伤。化学疗法和放射疗法的严重副作用使人们不愿继续进行治疗,限制治疗的功效并且有时甚至杀伤患者。这些副作用所表现出的毒性限制可向患者施用的化学治疗剂和放射的剂量。
在临床实践中,胃肠道毒性作为用放射和一些化疗治疗剂进行的治疗的副作用发生。此外,在这一和许多其他大型III期临床试验中,已经观察到1%-3%治疗相关的死亡率。尽管副作用可能是致命的,但大多数急性副作用随时间推移而改善。然而,癌症治疗的一些慢性副作用可导致终身发病。使化学疗法和放射的副作用最小化仍然是患者和医生喜欢的最优先考虑事项之一。
用>15Gy的放射辐照的小鼠在治疗后7与12天之间在发展造血细胞的致死作用之前死于对小肠的损伤(胃肠道(GI)综合征)的并发症。在致死剂量的放射后观察到大量p53依赖性细胞凋亡,从而表明 p53是放射诱导的死亡的决定因素。然而,尽管已经在病理形态学水平上良好地检查了小肠对γ放射的反应,但尚未完全阐明GI致命性的确切原因。死亡可作为上皮隐窝细胞损伤并且随后是绒毛剥落,从而导致体液和电解质失衡、菌血症和内毒素血症的直接后果。除炎症和基质响应外,内皮功能障碍也可导致致死性。
Garin-Laflam,等人Am.J Physiol Gastrointest liver Physiol 2009 296G740-9报告GCC和cGMP参与放射诱导的肠上皮细胞凋亡的预防。进行了这些研究以解决GCC激活在涉及表达GCC的细胞的细胞凋亡模型中是具有促凋亡作用、抗凋亡作用还是所述两种作用都没有,所述研究涉及经历细胞凋亡的肠细胞的相对数量,而不是从GI 综合征存活。在这些研究中,从小鼠中除去肠组织,并且测量切除的组织中经历细胞凋亡的细胞数量。从各种野生型和经遗传修饰的小鼠以及注射了cGMP类似物的小鼠获得组织。实验表明,与来自未受辐照的动物的组织中观察到的水平相比,从经辐照的小鼠除去的组织包含大量经历细胞凋亡的细胞。此外,数据显示,与来自经辐照的野生型小鼠的组织中观察到的水平相比,从缺乏编码GCC或尿鸟苷素的基因的经辐照的小鼠除去的组织包含大量经历细胞凋亡的细胞。实验还表明,cGMP补充改善了缺乏编码GCC或尿鸟苷素的基因的小鼠的经辐照的肠组织中的细胞凋亡水平,而在野生型小鼠则没有。
Hendry等人Radiation Research 1997148(3):254-9报告,放射诱导的肠细胞的细胞凋亡与负责肠上皮细胞恢复的促克隆形成细胞的存活率不相关。
Komarova等人Oncogene(2004)23,3265-3271使用p53缺陷型小鼠来表明,辐照后的细胞周期停滞通过延迟隐窝细胞进入有丝分裂灾难以及在通过放射损伤后快速死亡而延长存活。辐照后停滞隐窝细胞增殖增强了小肠上皮的存活。周期停滞归因于p53通过其生长停滞而不是细胞凋亡功能进行的保护作用。
Kirsch等人,Science 2010 327:593-6报告,放射诱导的胃肠综合征不依赖于细胞凋亡。使用具有细胞凋亡必需基因的组织特异性抑制的经遗传修饰的小鼠,作者表明,放射诱导的胃肠综合征可在不存在经历细胞凋亡所需的蛋白质的完整补体的情况下进行,并且因此放射诱导的胃肠综合征不依赖于内在细胞凋亡途径。上皮细胞中p53表达的缺失使经辐照的小鼠对放射诱导的胃肠综合征敏感,而p53的过表达具有保护性。数据表明,即使在缺乏内在细胞凋亡途径所必需的其他蛋白质的动物中,p53表达也与高剂量的电离放射后的存活有关;放射诱导的胃肠综合征不依赖于细胞凋亡。
以引用的方式整体并入本文的美国序列号14/114,272涉及用于保护个体免受与暴露于放射和一些毒性化合物相关的严重且可能致命的作用的组合物和方法,用于保护个体免受与癌症化学疗法和放射疗法相关的严重且可能致命的副作用的组合物和方法,以及对保护胃肠(GI)道免受由放射引起的GI综合征特别有用的组合物和方法。
仍然需要使化学疗法和放射疗法的副作用最小化以增加患者舒适度并允许剂量增加的治疗,所述剂量增加否则由于不可接受水平的副作用而被阻止。通过预防化学疗法和放射疗法的副作用并增加对癌细胞的易感性来增强癌症治疗的治疗功效代表癌症治疗的重大进展。仍然需要鉴定在暴露于毒性化学疗法或放射后预防GI综合征并降低胃肠副作用的严重程度的组合物和方法。仍然需要保护胃肠细胞免受由于暴露于导致GI综合征的毒性化学疗法或放射所致的损伤。仍然需要降低放射和化学疗法的由于对胃肠细胞的损伤而引起的致死作用,并增加毒性化学疗法和放射的可耐受水平以便提供更有效的疗法。
发明内容
提供了治疗患有癌症的个体的方法,所述癌症被鉴定为缺乏功能性鸟苷酸环化酶C。所述方法包括向已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的个体的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C 激动剂化合物。胃肠细胞中鸟苷酸环化酶C的激活使得胃肠细胞中的细胞内cGMP升高,这引起胃肠细胞的细胞增殖停滞和/或DNA合成的抑制,和通过施加G1-S延迟而延长胃肠细胞的细胞周期,和/或通过增强的DNA损伤感测和修复来维持胃肠细胞的基因组完整性,并且由此引起保护胃肠细胞免受由化学疗法和/或放射引起的遗传毒性损伤。因此,提及胃肠细胞中保护胃肠细胞的细胞内cGMP水平是指引起胃肠细胞的细胞增殖停滞和/或DNA合成的抑制,和通过施加 G1-S延迟而延长胃肠细胞的细胞周期,和/或通过增强的DNA损伤感测和修复来维持胃肠细胞的基因组完整性、从而使胃肠细胞保护免受由化学疗法和/或放射引起的遗传毒性损伤的水平。所述方法另外提供了施用化学疗法和/或放射疗法以杀伤缺乏功能性鸟苷酸环化酶C的癌细胞的步骤。当通过胃肠细胞中细胞内cGMP升高的作用使正常胃肠细胞保护免受遗传毒性损伤细胞时施用所述化学疗法和/或放射疗法。
提供了治疗患有在个体中缺乏功能性p53的原发性结肠直肠癌的个体的方法。方法可包括鉴定这种个体的步骤。所述方法包括以下步骤:向已被鉴定为患有缺乏功能性p53的原发性结肠直肠癌的个体的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物。所述方法进一步提供施用化学疗法和/或放射疗法以杀伤缺乏功能性p53的原发性结肠直肠癌细胞。当通过胃肠细胞中细胞内cGMP升高的作用使正常胃肠细胞保护免受遗传毒性损伤细胞时进行所述化学疗法和/或放射。
提供了治疗患有癌症的个体的方法。所述方法包括向所述个体的肠干细胞施用足以激活所述肠干细胞的鸟苷酸环化酶C并使所述肠干细胞中的细胞内cGMP升高至引起肠干细胞数量增加和肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有 Bmi1+储备表型的肠干细胞的水平的量的一种或多种鸟苷酸环化酶C 激动剂化合物。所述方法还提供施用化学疗法和/或放射疗法,以在肠干细胞数量增加且肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有Bmi1+储备表型的肠干细胞时杀伤癌细胞。在施用化学疗法和/或放射时当肠干细胞数量增加且肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有 Bmi1+储备表型的肠干细胞时,发生较少且不太严重的胃肠副作用。
提供了治疗已被鉴定为患有缺乏功能性p53的癌症的个体的方法。在所述方法中,鉴定了患有缺乏功能性p53的癌症的个体。一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂 (ANP、BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、 PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物以足以升高正常细胞中的细胞内cGMP并保护正常细胞免受化学疗法和/或放射的遗传毒性作用的量施用至个体的胃肠细胞。施用化学疗法和/或放射疗法以杀伤癌细胞。在保护正常细胞免受化学疗法和/或放射的遗传毒性作用时施用所述化学疗法和/或放射。
公开了包含有效保护肠组织免受放射或化学疗法的量的鸟苷酸环化酶C激动剂的组合物,以及预防GI综合征或RIGS的方法和减轻正在经历放射或化学疗法的癌症患者中的副作用的方法。
本发明的一些实施方案涉及减轻正在经历化学疗法或放射疗法以治疗癌症的个体中的胃肠副作用的方法。所述个体可能患有鸟苷酸环化酶C缺陷型、p53缺陷型或两者的癌症。提供了治疗p53缺陷型原发性结肠直肠癌的方法。所述方法包括以下步骤:在向所述个体施用化学疗法或放射之前,向所述个体施用一定量的使胃肠细胞中的细胞内cGMP水平升高至足以使胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的一种或多种化合物持续足以增加胃肠细胞的存活并降低化学疗法或放射疗法副作用的严重程度的时间段。在一些实施方案中,副作用的减轻通过肠干细胞中鸟苷酸环化酶C的激活而发生。
附图说明
图1A、1B、1C、1D、1E、1F、1G、1H和1I公开来自实验的数据,从而表明GUCY2C沉默使RIGS扩增。(1A)与Gucy2c+/+小鼠相比,Gucy2c-/-小鼠更易于由高剂量(15Gy)全身辐照诱导的死亡(TBI,卡普兰-迈耶分析,***p<0.001;n=34只Gucy2c+/+小鼠,n=39只Gucy2c-/-小鼠)。(1B)来自低剂量(8Gy)TBI的死亡率反映了造血毒性,所述造血毒性通过骨髓移植(BMT)而消除。相比之下,来自高剂量 TBI(15Gy)的死亡率反映了不能通过BMT拯救的造血毒性和GI毒性两者[卡普兰-迈耶分析,***在低剂量(8Gy)TBI后,在Gucy2c+/+ 小鼠(n=11)与具有BMT的Gucy2c+/+小鼠(n=5)之间p<0.001;在高剂量TBI后,在Gucy2c+/+小鼠(n=21)与具有BMT的Gucy2c+/+小鼠 (n=15)之间p<0.05(无显著性)]。在18Gy STBI之后,Gucy2c-/-小鼠更易于腹泻(1C,卡方检验,双侧,*p<0.05)、死亡(1D,卡普兰-迈耶分析,**p<0.01)、体重减轻(1E,脆弱模型分析,*p<0.05)、肠出血 (1F,粪便潜血;FOB;科克伦-曼特尔-亨塞尔检验 (Cochran-Mantel-Haenszel test),*p<0.05)、虚弱(1G,不整洁皮毛;科克伦-曼特尔-亨塞尔检验,*p<0.05)和粪便积水[1H,具有95%置信带和曲线下面积(AUC)比较的勒斯(Loess)平滑曲线,*p<0.05;虚线表示辐照前的粪便含水量]。(I-L)与Gucy2c+/+小鼠相比,Gucy2c-/- 小鼠在小肠(I-J)和大肠(1K-1L)中更易于放射诱导的GI损伤(通过辐照(15Gy TBI)后隐窝计数定量)(ANOVA,在每个时间点分别* p<0.05,**p<0.01,n>3只Gucy2c+/+小鼠和Gncy2c-/-小鼠)。在1I 和1K中,低倍图像中的比例尺表示500μm,并且高倍图像中的比例尺表示50μm。在1C-1E和1G中,n=34只Gucy2c+/+小鼠,n=35 只Gucy2c-/-小鼠;在1F中,n=13只Gucy2+/+小鼠,n=13只Gucy2c-/- 小鼠;在1H中,n=26只Gucy2c+/+小鼠和n=28只Gucy2c-/-小鼠。
图2A、2B、2C、2D、2E和2F公开来自实验的数据,从而表明 GUCY2C激素轴保留在RIGS中。(2A-2F)TBI(15Gy)不会随时间推移显著改变空肠中(2A)GUCY2C、(2B)鸟苷素(GUCA2A)或(2C)尿鸟苷素(GUCA2B)mRNA或(2D)GUCY2G、(2E)GUCA2A或(2F) GUCA2B蛋白的相对表达[n=4-8每个时间点;通过ANOVA对于 mRNA或蛋白质,p>0.05(无显著性)]。(2G-2I)在15Gy TBI之前和之后第48小时GUCY2C、GUCA2A和GUCA2B的表达的代表性免疫荧光图像[绿色,GUCY2C;红色,激素(GUA2A,GUCA2B);蓝色, DAPI]。比例尺表示50μm。
图3A、3B、3C、3D、3E、3F、3G、3H、3I、3J和3K公开来自实验的数据,从而表明口服ST选择性地对抗RIGS。(3A-3F)与用对照肽(CP)处理的小鼠相比,在18Gy STBI(第0天之前和之后)用口服ST预调节14天的Gucy2c+/+小鼠表现出通过STBI诱导的腹泻(3A) 的较低发生率(Fisher精确检验,双侧,*p<0.05)。类似地,在18Gy STBI后,ST改善了(3B)无腹泻存活(卡普兰-迈耶存活分析,** p<0.01);(3C)体重减轻和体重恢复(脆弱模型分析,*p<0.05);(3D) FOB和(3E)不整洁皮毛(科克伦-曼特尔-亨塞尔检验,*p<0.05);和(3F) 粪便水含量[具有95%置信带和曲线下面积(AUC)比较的勒斯平滑曲线,***p<0.001;虚线,辐照前的粪便水含量]。(3G-3H)ST减轻STBI 后第15天照射诱导的肠损伤,由(3G)总体形态,充血、浮肿和粪便未成形和(3H)组织学,无通过隐窝深度定量的正常隐窝-绒毛结构的破坏、通过肠透壁厚度和淋巴细胞浸润所反映的间质肥大所反映(在3G中Fisher精确检验,双侧,*p<0.05;在3H中t检验,双侧,*** p<0.001;n=4只CP处理的小鼠,n=5只ST处理的小鼠)。3H中的比例尺表示100μm。(3I)口服ST不会改变皮下胸腺瘤或黑素瘤的放射响应(t检验,双侧,p>0.05;虚线,原始肿瘤大小)。(3J-3K)慢性(>2 周)口服ST没有产生腹泻(3J)或生长迟缓(3K)(p>0.05,ANOVA)。在 3A-3F和3I-3K中,n=9只CP处理的小鼠,n=9只ST处理的小鼠。
图4A、4B、4C、4D、4E、4F、4G和4H公开来自实验的数据,从而表明GUCY2C信号传导通过破坏p53-Mdm2相互作用而增强对 RIGS的p53响应。(4A)使GUCY2C沉默不会影响小肠和结肠中由15 Gy TBI诱导的细胞凋亡(t检验,两侧,*p<0.05;在每个时间点 Gucy2c-/-小鼠,n≥3和Gucy2c+/+小鼠,n≥3)。在p53int+/+小鼠中 18Gy STBI后、但p53int-/-小鼠无,口服ST改善了(4B)无腹泻存活[卡普兰-迈耶分析,**在用CP(n=17)或ST(n=16)处理的p53int+/+小鼠之间p<0.01;在用CP(n=11)或ST(n=11)处理的p53int-/-小鼠之间, p>0.05];(4C)重量[脆弱模型分析,*在用CP(n=17)或ST(n=l6)处理的p53int+/+小鼠之间p<0.05;在用CP(n=11)或ST(n=11)处理的 p53int-/-小鼠之间p>0.05];以及(4D)FOB和(4E)不整洁的毛发[科克伦-曼特尔-亨塞尔检验,*在用CP(n=17)或ST(n=16)处理的p53int+/+ 小鼠之间p<0.05;用CP(n=11)或ST(n=11)处理的p53int-/-小鼠之间 p>0.05。(4F)在18GySTBI后第7天,口服ST促进小肠中的p53磷酸化(t检验,两侧,*p<0.05,在CP处理的小鼠中n=6并且在ST处理的小鼠中n=6)。比例尺表示50μm。(4G)8-Br-cGMP在HCT116 人结肠癌细胞中响应于5Gy放射增加了总p53和磷酸化的p53(在每个处理组中n≥3;*p<0.05,**p<0.01,ANOVA)。(4H)8-Br-cGMP 在HCT116细胞中通过破坏p53-Mdm2相互作用响应于5Gy放射增加了p53激活,通过使用针对p53或Mdm2的抗体的免疫沉淀(IP)和蛋白质印迹(WB)所定量(在每组中n≥3);*p<0.05,**p<0.01, ANOVA)。在(4H)中,小鼠和兔IgG用作同种型对照。
图5A、5B、5C、5D、5E、5F、5G和5H公开来自实验的数据,从而表明GUCY2C信号传导要求p53对抗有丝分裂灾难。(5A)在18 Gy STBI后口服ST减少DNA双链断裂(γ-H2AX;t检验,两侧,*** p<0.001,n=4只用CP处理的小鼠,n=5只用ST治疗的小鼠;每只小鼠检查了>200个隐窝)和(5B)异常有丝分裂取向[非垂直于隐窝表面轴定向的中期板的(%))](t检验,两侧,*p<0.05;n=4只用CP处理的小鼠,n=5只用ST处理的小鼠;在每只小鼠肠中评价了>50个有丝分裂图)(红色,β-连环蛋白;绿色,γ-H2AX;蓝色,DAPI)。比例尺表示50μm。(5C)通过用cGMP的细胞渗透性类似物以p53依赖性方式预处理而减轻野生型(亲本)和p53无效(p53-/-)HCT116人结肠癌细胞中放射(5Gy)诱导的后期桥接(通过后期桥索引(ABI)定量的异常有丝分裂的标志物)。ABI的代表性图像:i,无后期桥的正常有丝分裂,ii-iii,带有后期桥的异常有丝分裂(卡方检验,两侧,*p<0.05;在每组中检查了后期的>100个细胞)。(5D)通过用8-Br-cGMP预处理以p53依赖性方式减轻了亲本和p53无效HCT116细胞中通过中心体计数量化的放射(5Gy)诱导的非整倍性。倍性的代表性图像:i,正常二倍性,ii,异常二倍性,iii,三倍性,iv,四倍性。(红色,α/β-微管蛋白;绿色,γ-微管蛋白;紫色,DAPI)(卡方检验,两侧,***p<0.001,在每组中检查了>200个有丝分裂细胞)。(5E)通过用8-Br-cGMP预处理以p53依赖性方式降低了亲本和p53无效HCT116细胞中通过增加剂量的放射诱导的细胞遗传学毒性(通过集落形成量化)[等温线斜率的逐对比较,*p<0.05:用cGMP处理的HCT116细胞与其他三个组(包括用PBS处理的HCT116细胞、用PBS或cGMP处理的HCT116 p53 无效细胞)相比;这些后三个组中的任何两个之间p>0.05(不显著)]。
图6图A-L示出来自实施例2的数据。Gucy2c在隐窝中维持Lgr5+和Bmi1+细胞的平衡。(A-B)使用透射电子显微术对小肠切片中的 CBC ISC的计数(n=3只小鼠,>30个隐窝/小鼠)。(C)相对于Gucy2c+/+小鼠,来自Gucy2c-/-小鼠的隐窝的离体肠状形成能力。(D)通过流式细胞术对来自Lgr5-EGFP-Cre-Gucy2c+/+和Gucy2c-/-小鼠的隐窝中的 Lgr5+(GFP)细胞进行定量。(E-F)通过EGFP IF对肠隐窝中的Lgr5+ GFP+细胞进行计数(≥4个切片/小鼠)。(G-H)隐窝Lgr5+细胞谱系追踪事件,表示为每个切片总隐窝的百分比(≥4个切片/小鼠)。(I-J)每个肠切片的Bmi1+细胞(≥4个切片/小鼠)。(K-L)相对于β-肌动蛋白,在分离的隐窝裂解物中表达的Bmi1的定量(n=5Gucy2c+/+,4Gucy2c-/-)。 *,p<0.05;***,p<0.001。E和G中的比例尺表示50μm;I中的比例尺表示20μm。
图7图A-G。功能性GUCY2C在Lgr5+细胞中表达。(A)对来自 Lgr5-EGFP-Cre-Gucy2c+/+小鼠的隐窝的GFP+和GFP-细胞进行流式分选产生了活性干细胞(Lgr5/SI)和分化细胞(Lgr5/SI)(n=3)。(B) 在Lgr5/SI和Lgr5/SI细胞中比较了通过RT-PCR定量的GUCY2C mRNA表达。(C)GUCY2C(绿色),GFP+(红色)细胞中的免疫荧光。β-连环蛋白(青色)突出显示单个细胞,并且DAPI(蓝色)突出显示细胞核。(D)ST激活Gucy2c+/+而非Gncy2c-/-小鼠中的GFP+(绿色) 细胞中的GUCY2C和下游VASP丝氨酸239磷酸化(P-VASP-239)(白色)。β-连环蛋白(红色)突出显示单个细胞,并且DAPI(蓝色)突出显示细胞核。(E-F)8Br-cGMP重建Gucy2c-/-小鼠隐窝中与Gucy2c+/+小鼠中的那些可比较的(E)Lgr5+GFP+和(F)Bmi1+细胞的水平。(G)相对于Gucy2c+/+小鼠,利那洛肽增强Gncy2c-/-小鼠中隐窝的肠状形成能力。*,p<0.05;ns,不显著。C中的比例尺表示50μm;D中的比例尺表示20μm。
图8图A-F。GUCY2C对抗ER应激平衡活性和储备ISC。(A, B)在Gucy2c+/+和Gucy2c-/-小鼠(n=3)中相对于微管蛋白,隐窝ER应激标志物表达的定量。(C,D)在用TUDCA或8Br-cGMP处理之前和之后,Gucy2c+/+小鼠和Gucy2c-/-小鼠的隐窝(*)中Grp78(BiP)表达。(E, F)在口服TUDCA 3天后,Gucy2c+/+和Gucy2c-/-小鼠中隐窝Lgr5+GFP+和Bmi1+细胞的定量。*,p<0.05;***,p<0.001;ns,不显著。C中的比例尺表示20μm。
图9图A-D。通过GUCY2C维持ISC有助于放射诱导的肠损伤后的再生响应。Lgr5-EGFP-Cre-Gucy2c+/+和Gucy2c-/-小鼠接受了10 Gy的辐照,并且(A-B)活隐窝、(C)GFP+Lgr5+活性干细胞和(D)Bmi1+储备干细胞的动力学在接下来的3天内进行量化。B中的比例尺表示100μm。
图10在Lgr5-EGFP-Cre-Gucy2c+/+和Lgr5-EGFP-Cre-Gucy2c-/-小鼠中含有Lgr5+GFP+细胞(≥4个切片/小鼠)的肠隐窝的计数。
图11在Gucy2c+/+和Gucy2c-/-小鼠中含有Bmi1+细胞(≥4个切片/ 小鼠)的肠隐窝的计数。
具体实施方式
细胞信号传导分子环状GMP可通过p53依赖性机制预防对细胞的遗传毒性损伤。因此,可施用促进或以其他方式导致cGMP累积的化合物以保护个体的细胞免受化学疗法或放射引起的遗传毒性损伤。在用化学疗法和/或放射治疗个体的癌症的情况下,如果癌细胞缺乏功能性p53,则促进或以其他方式导致cGMP累积的化合物是特别有用的。在此类情况下,施用此类化合物保护个体的细胞免受化学疗法或放射引起的遗传毒性损伤,而不保护癌细胞免受遗传毒性损伤。在此类方法中,个体被鉴定为患有缺乏功能性p53的肿瘤,并且然后施用所述化合物以保护正常细胞。
GCC激动剂是众所周知的。当GCC激动剂与具有细胞受体GCC (也称为GUCY2C)的细胞相互作用时,GCC的激活导致cGMP在细胞中累积。因此,可施用GCC激动剂以保护个体的表达GCC的细胞免受化学疗法或放射引起的遗传毒性损伤。在用化学疗法和/或放射线治疗个体癌症的情况下,GCC激动剂对治疗缺乏GCC的癌细胞特别有用。在此类情况下,施用GCC激动剂保护个体的细胞免受化学疗法或放射引起的遗传毒性损伤,而不保护GCC缺陷型癌细胞免受遗传毒性损伤。在此类方法中,个体被鉴定为患有缺乏功能性GCC 的肿瘤,并且然后施用所述GCC激动剂以保护正常细胞。
在GCC缺陷型肿瘤和GCC激动剂的情况下,这种方法特别有用。 GCC主要在正常肠细胞中表达。在此类肠细胞中,蛋白质的GCC细胞外部分存在于构成肠内部的细胞侧。口服施用GCC激动剂将GCC 激动剂递送至肠细胞的GCC,并且肠细胞累积cGMP。由此保护肠细胞免受放射和化学疗法。这种方法在治疗非表达GCC的癌症中特别有用。
大多数结肠直肠癌与其他消化道器官和组织的一些癌症(如胃癌、食道癌和胰腺癌)一样也表达GCC。尽管大多数结肠直肠癌细胞表达GCC,但一些结肠直肠癌细胞缺乏GCC。这种GCC缺陷型表型可能与特别侵袭性且难以治疗的结肠直肠癌有关。在具有已知通常或有时表达GCC的癌细胞的器官或组织的癌症(如表达GCC的结肠直肠癌、其他消化道器官和组织的癌症如胃癌、食道癌和胰腺癌)的情况下,方法可包括以下步骤:测试肿瘤的GCC表达以鉴定所述癌症为GCC缺陷,且然后向正常表达GCC的肠细胞施用GCC激动剂以激活此类正常肠细胞中的GCC,从而引起cGMP累积。在用GCC激动剂进行这种治疗后,个体可经历放射和/或化学疗法以治疗GCC缺陷型癌症,同时保护正常肠细胞免受损伤。
在使用GCC激动剂保护正常肠组织的情况下,保护正常肠免受通过遗传毒性机制操作的化学疗法以及放射疗法。经历腹腔骨盆放射的患者特别容易通过这种放射疗法对那里的肠产生遗传毒性损伤,并且使用GCC激动剂保护正常肠组织在治疗此类患者中特别有用。
正常细胞的保护允许使用较高剂量的放射和/或使放射疗法的由于在针对腹部盆腔区域的放射治疗期间对暴露于这种放射的正常肠组织的损伤所致的令人不愉快且可能致命的副作用最小化。
在一些实施方案中,除了使用GCC激动剂保护外,还可另外用其他促进GCC累积的化合物治疗患者,条件是如果此类化合物是全身递送的,则癌症是p53缺陷型的。
在已知的GCC激动剂中,热稳定性肠毒素ST和美国FDA批准的药物利那洛肽(SEQID NO:59)和普卡那肽(SEQ ID NO:60)特别适用于在经历采用遗传毒性剂(例如放射、化学疗法)的癌症疗法的患者中保护正常肠上皮,尤其是在癌症为GCC缺陷型的情况下,即不表达 GCC的癌症,如大多数结肠直肠癌以及其他消化道器官和组织的一些癌症,如胃癌、食道癌和胰腺癌。检测肿瘤样品中GCC表达的方法是众所周知的,并且在用口服施用或通过其他方式直接施用至肠以保护肠的GCC激动剂治疗患者之前,可首先通过分析肿瘤样品以确认不存在GCC表达来将患者鉴定为患有GCC缺陷型(缺乏GCC功能) 癌症。如果肿瘤也被鉴定为p53缺陷型(缺乏p53功能),则可使用其他化合物单独或与GCC激动剂联合诱导正常组织中的GCC累积,以保护正常肠。
为了使用GCC激动剂保护正常肠,优选使正常肠暴露于GCC激动剂持续足以使cGMP累积至保护水平的时间段,在一些实施方案中,这种累积可能需要1-14天、3-10天、4、5、6、78或9天。GCC 激动剂,例如像热稳定肠毒素ST、鸟苷素、尿鸟苷素和美国FDA批准的药物利那洛肽(SEQ ID NO:59)和普卡那肽(SEQ ID NO:60)可能无法有效地诱导足以保护正常肠细胞的cGMP累积。当治疗患者时,可通过监测施用GCC激动剂的患者的肠活动的变化来评估GCC激动剂的有效性。在开始GCC激动剂施用后肠活动发生变化的患者可能受到保护。那些没有经历肠蠕动变化的人很可能没有是无响应者并且将不受到保护。一些实施方案包括以下步骤:将患者鉴定为患有GCC 缺陷型癌症如非消化道癌症和一些结肠直肠癌以及其他消化道器官和组织的一些癌症如胃癌、食道癌和胰腺癌的患者。其治疗可能涉及腹部盆腔放射的癌症包括胰腺癌、肝癌、胃癌、胆道系统癌症、腹膜癌、膀胱癌、肾癌、输尿管癌、前列腺癌、卵巢癌、子宫癌以及子宫的软组织和骨盆癌,如肉瘤。使用GCC激动剂保护正常肠免受照射是特别有用的。如果癌症有可能与GCC激动剂接触,则将所述癌症鉴定为不表达GCC可能有用。可通过测试肿瘤样品以确定是否存在GCC或GCC表达的其他证据如GCC mRNA来进行确定。所述方法还包括以有效保护经历采用遗传毒性剂(例如放射、化学疗法)的癌症疗法的患者的正常肠上皮的量施用GCC激动剂,如热稳定肠毒素ST 或美国FDA批准的药物利那洛肽(SEQ ID NO:59)或美国FDA批准的普卡那肽(SEQ ID NO:60)。GCC激动剂优选经口递送。继续GCC激动剂递送,条件是观察到肠蠕动变化表明患者可能受到保护。在一些实施方案中,在放射之前通过手术除去癌症。在此类情况下,如果在用腹腔骨盆放射治疗之前通过手术切除肿瘤,则所述方法可包括治疗患有GCC+癌症的患者。
在一些实施方案中,提供了用于治疗已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的个体的方法。在一些实施方案中,缺乏功能性鸟苷酸环化酶C的癌症选自由以下组成的组:缺乏功能性鸟苷酸环化酶C的结肠直肠癌、缺乏功能性鸟苷酸环化酶C的食道癌、缺乏功能性鸟苷酸环化酶C的胰腺癌、缺乏功能性鸟苷酸环化酶C的的肝癌、缺乏功能性鸟苷酸环化酶C的胃癌、缺乏功能性鸟苷酸环化酶 C的胆道系统癌症、缺乏功能性鸟苷酸环化酶C的腹膜癌、缺乏功能性鸟苷酸环化酶C的膀胱癌、缺乏功能性鸟苷酸环化酶C的肾癌、缺乏功能性鸟苷酸环化酶C的输尿管癌、缺乏功能性鸟苷酸环化酶C 的前列腺癌、缺乏功能性鸟苷酸环化酶C的卵巢癌、缺乏功能性鸟苷酸环化酶C的子宫癌以及缺乏功能性鸟苷酸环化酶C的腹部和骨盆的软组织癌(如肉瘤)。在一些实施方案中,所述方法提供以下步骤:向已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的个体的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物。保护免受由化学疗法和放射引起的遗传毒性损伤和胃肠副作用由胃肠细胞中细胞内 cGMP升高对细胞产生的作用引起。由于鸟苷酸环化酶C的激活,发生升高的cGMP。结果,胃肠细胞的细胞增殖停滞和/或DMA合成受到抑制,并且通过施加G1-S胃肠细胞的细胞周期延长,和/或通过增强的DNA损伤感测和修复维持胃肠细胞的基因组完整性。
在一些实施方案中,所述方法包括以下步骤:将个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症。在一些实施方案中,通过检测来自个体的癌细胞样品中不存在鸟苷酸环化酶C或编码鸟苷酸环化酶 C的RNA来确定功能性鸟苷酸环化酶C的缺乏。在一些实施方案中,所述方法包括以下步骤:通过检测来自个体的癌细胞样品中不存在鸟苷酸环化酶C而将个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症,所述检测通过使所述癌细胞样品与结合至鸟苷酸环化酶C的试剂接触并检测所述试剂与所述样品癌细胞的结合的不存在来进行。在一些实施方案中,所述方法包括以下步骤:通过检测来自个体的癌细胞样品中不存在鸟苷酸环化酶C而将个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症,所述检测通过使所述癌细胞样品与结合至鸟苷酸环化酶C的试剂接触并检测所述试剂与所述样品癌细胞的结合的不存在来进行,其中所述试剂是抗鸟苷酸环化酶C或鸟苷酸环化酶C 配体。在一些实施方案中,所述方法包括以下步骤:通过检测来自个体的癌细胞样品中不存在编码鸟苷酸环化酶C的RNA而将个体鉴定为缺乏功能性鸟苷酸环化酶C,所述检测通过以下方式来进行:使用使编码鸟苷酸环化酶C的RNA扩增的PCR引物对来自所述癌细胞样品的mRNA进行PCR并检测所述样品癌细胞中不存在扩增的RNA;或通过使寡核苷酸与来自所述癌细胞样品的mRNA接触,其中所述寡核苷酸具有与编码鸟苷酸环化酶C的RNA杂交的序列,并且检测不存在与来自所述癌细胞样品的mRNA杂交的寡核苷酸。
在一些实施方案中,所述方法还包括将缺乏鸟苷酸环化酶C的癌症鉴定为也缺乏功能性p53。在此类实施方案中,一种或多种选自由以下组成的组的活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、 MRP抑制剂、环状GMP和cGMP类似物可施用至个体以通过增加细胞内cGMP来保护正常细胞。在一些此类实施方案中,通过检测来自个体的癌细胞样品中不存在p53或编码p53的RNA而将癌症鉴定为缺乏功能性p53。
在一些实施方案中,提供了用于治疗患有缺乏功能性p53的原发性结肠直肠癌的个体的方法。所述方法可包括向已被鉴定为患有缺乏功能性p53的原发性结肠直肠癌的个体的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP 升高至保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物。所述方法进一步提供施用化学疗法和/ 或放射疗法以杀伤缺乏功能性p53的原发性结肠直肠癌细胞。当通过胃肠细胞中细胞内cGMP升高的作用保护正常胃肠细胞免受遗传毒性损伤细胞时进行化学疗法和/或放射施用。一些实施方案提供了将个体鉴定为患有缺乏功能性p53的原发性结肠直肠癌的步骤。
提供了通过向个体的肠干细胞施用一种或多种鸟苷酸环化酶C 激动剂化合物来治疗患有癌症的个体的一些方法。以足以激活所述肠干细胞的鸟苷酸环化酶C并使所述肠干细胞中的细胞内cGMP升高至引起肠干细胞数量增加和肠干细胞的相对平衡转变以增加具有 Lgr5+活性表型的肠干细胞并且减少具有Bmi1+储备表型的肠干细胞的水平的量施用鸟苷酸环化酶C激动剂化合物。施用化学疗法和/或放射疗法以杀伤癌细胞。通过增加肠干细胞的数量并从活性表型转变为储备表型且然后在干细胞本身如此的情况下用化学疗法或放射治疗,胃肠道可更有效地再生并愈合。
一些方法提供施用化学疗法。一些方法提供施用放射。一些方法提供施用腹腔骨盆放射。
在一些实施方案中,一种或多种GCC激动剂化合物是GCC激动剂肽。在一些实施方案中,一种或多种GCC激动剂化合物选自由以下组成的组:SEQ ID NO:2、3和5-60。在一些实施方案中,一种或多种GCC激动剂化合物选自鸟苷素、尿鸟苷素、SEQ ID NO:59、SEQ ID NO:60以及它们的组合。在一些实施方案中,通过向个体口服施用一种或多种GCC激动剂化合物来将GCC激动剂化合物施用至胃肠细胞或肠干细胞。在一些实施方案中,通过以控制释放组合物的形式口服施用来施用GCC激动剂化合物。
在一些实施方案中,在向个体施用足以治疗癌症的量的化学疗法或放射之前24小时至48小时至72小时至96小时向所述个体施用 GCC激动剂化合物。在一些实施方案中,向个体每天施用GCC激动剂化合物持续2、3、4、5、6、7、8、9、10、11、12、13或14天。在一些实施方案中,以多个剂量施用GCC激动剂化合物。
在一些实施方案中,在施用鸟苷酸环化酶C激动剂之前,通过手术从个体除去肿瘤。
由于并非每个人都将通过创造保护胃肠细胞的条件来对GCC激动剂化合物有响应,因此可通过检测鸟苷酸环化酶C激动剂施用后个体肠蠕动的变化来将个体鉴定为对鸟苷酸环化酶C激动剂化合物的保护作用有响应。如果施用了鸟苷酸环化酶C激动剂的个体响应于鸟苷酸环化酶C激动剂而经历肠蠕动的变化,则所述方法可如所描述继续。未能作出响应表明个体不太可能受益并且所述方法可中断。
提供了用于治疗已被鉴定为患有缺乏功能性p53的癌症的个体的一些方法。此类方法可包括以下步骤:将个体鉴定为患有缺乏功能性53的癌症的步骤。此类方法可提供以足以升高正常细胞中的细胞内cGMP并保护正常细胞免受化学疗法和/或放射的遗传毒性作用的量向个体的胃肠细胞施用一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP、BNP)、鸟苷酸环化酶B(GCB) 激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP 和cGMP类似物。在此类实施方案中,可施用化学疗法和/或放射疗法以杀伤癌细胞。在一些实施方案中,所述方法包括以下步骤:通过检测来自个体的癌细胞样品中不存在p53或编码p53的RNA来将所述个体鉴定为患有缺乏功能性p53的癌症。在一些实施方案中,所述方法包括在向所述个体施用足以治疗癌症的量的化学疗法或放射之前24小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前48小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前72小时;或者在向所述个体施用足以治疗癌症的量的化学疗法或放射之前96小时向所述个体施用一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP、BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物;和/或每天施用一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、 MRP抑制剂、环状GMP和cGMP类似物持续2、3、4、5、6、7、8、 9、10、11、12、13或14天。在一些实施方案中,以多个剂量施用选自由以下组成的组的一种或多种化合物:鸟苷酸环化酶A(GCA) 激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。在一些实施方案中,在施用选自由以下组成的组的一种或多种化合物之前通过手术从个体切除肿瘤:鸟苷酸环化酶A(GCA)激动剂(ANP, BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE 抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
定义
如本文所用,术语“鸟苷酸环化酶A激动剂”和“GCA激动剂”可互换使用,并且是指与细胞表面上的鸟苷酸环化酶A结合并由此诱导其活性、从而在细胞内产生cGMP累积的分子。
如本文所用,术语“鸟苷酸环化酶B激动剂”和“GCB激动剂”可互换使用,并且是指与细胞表面上的鸟苷酸环化酶B结合并由此诱导其活性、从而在细胞内产生cGMP累积的分子。
如本文所用,术语“鸟苷酸环化酶C激动剂”和“GCC激动剂”可互换使用,并且是指与细胞表面上的鸟苷酸环化酶C结合并由此诱导其活性、从而在细胞内产生cGMP累积的分子。
如本文所用,术语“可溶性鸟苷酸环化酶激活剂”和“sGC激活剂”可互换使用,并且是指与可溶性鸟苷酸环化酶结合并由此诱导其活性、从而在细胞内产生cGMP积累的分子。
如本文所用,术语“磷酸二酯酶抑制剂”和“PDE抑制剂”可互换使用,并且是指抑制cGMP水解磷酸二酯酶的一种或多种形式或亚型的活性且由此引起cGMP在细胞内累积的分子。
如本文所用,术语“多药耐药性相关的蛋白质抑制剂”和“MRP抑制剂”可互换使用,并且是指抑制cGMP转运MRP的一种或多种形式或亚型的活性且由此引起cGMP在细胞内累积的分子。
如本文所用,术语“有效量”是指有效导致细胞内cGMP水平的累积以使胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复来阻止和/或维持基因组完整性持续足以减轻由化学疗法或放射引起的细胞损伤、足以降低副作用的严重程度或预防GUI综合征和/ 或放射病的时间段的量的化合物。
检测p53的GCC和突变形式
可使用原位成像或体外筛选和诊断组合物、方法以及药盒来确定肿瘤是否表达鸟苷酸环化酶C(GCC)。体内成像公开于美国专利号 6,268,158中,所述专利以引用的方式整体并入本文。
用于检测GCC蛋白或编码GCC蛋白的RNA的体外筛选和诊断组合物、药盒和方法公开于美国专利号6,060,037中,所述专利以引用的方式整体并入本文。
用于检测含有p53的突变形式的细胞的体外筛选和诊断组合物、药盒和方法公开于美国专利号5,552,283中,所述专利以引用的方式整体并入本文。
cGMP
cGMP的细胞内累积通过增强的DNA损伤感测和修复持续足以减轻由化学疗法或放射引起的细胞损伤的时间段来帮助细胞维持基因组完整性。p53通过介导细胞增殖的停滞以允许在细胞分裂之前进行修复且由此防止因有丝分裂灾难所致的细胞死亡而保护经辐照的细胞免于有丝分裂灾难。
p53介导的细胞停滞可减轻由放射和化学疗法引起的副作用(包括GI综合征)。当此类细胞暴露于致命的毒性化学疗法或电离放射损害后,细胞内cGMP水平升高导致增强的p53介导的细胞停滞。细胞内cGMP增加可通过增加其产生和/或抑制其降解或从细胞中排出而实现。可促进DNA损伤修复,这进而预防正常肠上皮细胞响应于化学疗法和电离放射损害而死亡。
因此,与向个体施用化学疗法或放射结合,向个体施用一定量的使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的一种或多种化合物持续足以预防GI综合征的时间段。可在向个体施用化学疗法或放射之前和/或同时和/或之后施用使细胞内cGMP 水平升高的一种或多种化合物,尽管通常用使细胞内cGMP水平升高的一种或多种化合物进行预先治疗以确保在暴露于毒性化学品或放射之前起始p53介导的细胞保护。
cGMP水平升高在毒性损害后保护肠细胞,而cGMP可增强其他癌细胞(如人乳腺癌、肝癌和前列腺癌)的细胞死亡。通过在施用化学疗法或放射疗法之前以及与施用化学疗法或放射疗法结合将肠上皮细胞中的cGMP水平诱导至足以维持p53介导的细胞停滞的水平,可减轻致命的副作用,可利用增加剂量的化学疗法或放射疗法,并且可使这种疗法针对癌症更有效。当肠上皮细胞中的cGMP水平增加至足以保护此类细胞免受毒素和放射时,化学疗法和放射疗法可在降低的副作用和风险的情况下进行,即使在一些情况下,在缺乏肠上皮细胞中cGMP水平升高所提供的保护作用情况下不能耐受的较高剂量。此外,患者癌细胞中cGMP的同时增加可对化学疗法和放射疗法提供协同作用。用导致细胞内cGMP累积的治疗对GI道和所靶向器官进行预调节可通过扩大治疗窗和提高治疗指数来显著提高化学疗法或放射疗法的功效。
细胞内cGMP水平的提高增强肠中p53介导的细胞存活,从而限制癌症患者中化学疗法和放射疗法的副作用。因此,提高肠细胞中的细胞内cGMP水平特别地可在化学疗法和放射疗法之前在某一时间实现,使得在所述时间期间在患者经历化学疗法或和放射疗法时,通过p53保护肠细胞,从而降低化学疗法和放射疗法的典型副作用。为了在化学疗法和放射疗法期间保护肠上皮细胞,必须将cGMP水平提高至可有效增强p53介导的细胞存活的量。由于在接受放射的患者中导致严重且有时致命副作用的放射损伤和GI综合征通过p53减轻并且与细胞凋亡无关,因此提高的cGMP水平必须足以增强p53介导的细胞存活。
在另一方面,细胞内cGMP的增加也可通过促进肺癌、前列腺癌、乳腺癌、结肠直肠癌和肝癌细胞中的细胞凋亡而响应于化学疗法或电离放射所致的遗传损害增强癌细胞死亡。数据表明,在靶器官和GI 道中用cGMP或使得cGMP水平提高的剂进行细胞预调节增强靶器官中的化学疗法和放射疗法(杀伤癌细胞),同时预防GI道(正常肠细胞)损伤。
使用增加cGMP产生的化合物和/或抑制cGMP降解或从细胞中输出的化合物使得cGMP水平提高。当施用至正常GI道时,cGMP 水平的升高用于保护细胞免受与化学疗法和放射疗法相关的副作用有关的细胞死亡,从而提高这些疗法的安全性。另外,副作用的减轻允许耐受增加且更有效的剂量。当递送至诸如肺癌、乳腺癌、前列腺癌、结肠直肠癌和肝癌的癌细胞以提高cGMP水平时,所述癌细胞可变得对化学疗法和放射疗法更敏感,从而提高治疗的功效。
增加cGMP产生的化合物包括鸟苷酸环化酶的激活剂,包括三种细胞受体形式鸟苷酸环化酶A(GCA)、鸟苷酸环化酶B(GCB)和鸟苷酸环化酶C(GCC)以及可溶性鸟苷酸环化酶(sGC)。
抑制cGMP降解和/或从细胞输出的化合物包括磷酸二酯酶(PDE) 抑制剂,所述抑制剂抑制参与转化cGMP的PDE形式和亚型。
抑制cGMP从细胞输出的化合物包括多药耐药性蛋白(MRP)抑制剂,所述抑制剂抑制参与cGMP转运的MRP形式和亚型。
这些化合物可单独使用或以两种或更多种的组合使用,以提高细胞内cGMP水平来保护肠细胞免受与化学疗法和放射疗法副作用相关的细胞死亡,并且可使癌细胞更易于细胞死亡。
GCC
GCC是GI道中的主要鸟苷酸环化酶。因此,使用GCC激活剂或激动剂对增加GI道中的细胞内cGMP特别有效。GCC激活剂包括内源性肽鸟苷素和尿鸟苷素,以及由细菌(如大肠埃希氏菌ST)产生的热稳定性肠毒素。PDE抑制剂和MRP抑制剂也是已知的。在一些实施方案中,使用一种或多种GCC激动剂。在一些实施方案中,使用一种或多种PDE抑制剂。在一些实施方案中,使用一种或多种MRP 抑制剂。在一些实施方案中,使用一种或多种GCC激动剂和/或一种或多种PDE抑制剂和/或一种或多种MRP抑制剂的组合。
激活细胞受体鸟苷酸环化酶C(GCC)(一种主要在GI道中表达的蛋白质)保护GI道中的细胞免受响应于毒性化学疗法或电离放射损害而死亡。GCC的激活导致cGMP的细胞内累积,cGMP的细胞内累积增强p53介导的细胞存活。可通过增强p53介导的细胞存活来减轻由放射和化学疗法引起的许多副作用。通过激活GCC,细胞内cGMP 水平升高,从而当此类细胞暴露于致命的毒性化学疗法或电离放射损害后产生增强的p53介导的细胞存活。
GCC是内源性旁分泌激素鸟苷素和尿鸟苷素的肠上皮细胞受体。腹泻性细菌热稳定性肠毒素(ST)也靶向GCC。鸟苷素或尿鸟苷素与 GCC的细胞外结构域之间的激素受体相互作用或肽肠毒素ST与 GCC的细胞外结构域之间的ST受体相互作用各自激活GCC的细胞内催化结构域,所述催化结构域将GTP转化为环状GMP(cGMP)。作为第二信使的这种环状核苷酸激活其下游效应子,从而介导GCC 的细胞效应。通过激活鸟苷酸环化酶(包括微粒形式和可溶性形式)或通过磷酸二酯酶(PDE)或多药耐药性相关蛋白(MRP)的抑制剂分别抑制cGMP降解或驱逐来增加细胞内cGMP可促进DNA损伤修复,其进而防止正常肠上皮细胞响应于化学疗法和电离放射损害而死亡。
cGMP水平的升高(如与GCC激活相关的那些升高)在毒性损害后通过p53介导的细胞存活来保护肠细胞。因此,可在化学疗法和放射疗法之前在某一时间实现GCC的激活,以使得在所述时间期间在患者正在经历化学疗法或放射疗法时,通过p53介导的细胞存活保护 GCC激活的肠细胞免受化学疗法和放射疗法的典型副作用。除了激活GCC外,还可通过将cGMP水平提高至有效增强p53介导的细胞存活的量来进行对化学疗法和放射疗法期间的肠上皮细胞的保护。
由于在接受放射的患者中导致严重且有时致命副作用的放射损伤和GI综合征与细胞凋亡无关并且可通过p53减轻,因此GCC激活的水平或cGMP水平的其他提高必须足以增强p53介导的细胞存活。
GCC激动剂的施用是指与GCC结合并激活GCC的一种或多种化合物的施用。
鸟苷酸环化酶C(GCC)是由内衬大肠和小肠的细胞表达的细胞受体。在胃肠道中GCC激动剂与GCC的结合已知激活GCC,从而导致细胞内cGMP增加,这导致下游信号传导事件的激活。
GCC激动剂
GCC激动剂是已知的。已经鉴定了两种天然的GCC激动剂,鸟苷素和尿鸟苷素(参见美国专利号5,969,097和5,489,670,所述专利各自以引用的方式并入本文。此外,由肠病原体产生的若干小肽是引起腹泻的产毒剂(参见美国专利号5,518,888,所述专利以引用的方式并入本文)。最常见的病原体来源的GCC激动剂是由致病性大肠埃希氏菌的菌株产生的热稳定性肠毒素。由致病性大肠埃希氏菌产生的天然热稳定性肠毒素也称为ST。包括耶尔森氏菌和肠杆菌在内的多种其他致病性生物体也产生可以激动性方式结合至鸟苷酸环化酶C的肠毒素。在本质上,毒素通常在可在不同物种之间“跳跃”的质粒上编码。据报告,若干不同的毒素在不同物种中存在。这些毒素都具有显著序列同源性,它们都结合至ST受体,并且它们都激活鸟苷酸环化酶,从而引起腹泻。
ST已经通过化学技术克隆并合成。克隆或合成的分子表现出与天然ST相似的结合特性。从大肠埃希氏菌分离的天然ST的长度是 18或19个氨基酸。ST的储备活性的最小“片段”是从半胱氨酸6至半胱氨酸18(19个氨基酸形式)朝向羧基末端延伸的13个氨基酸的核心肽。ST的类似物已经通过克隆和化学技术产生。可构建天然ST结构的小肽片段,所述小肽片段包括赋予结合活性的结构决定簇。一旦鉴定出结合至ST受体的结构,就可设计模拟所述结构的非肽类似物。
美国专利号5,140,102和7,041,786以及美国公布申请US 2004/0258687 A1和US2005/0287067 A1也涉及可结合至并激活鸟苷酸环化酶C的化合物。
SEQ ID NO:l公开由So和McCarthy(1980)Proc.Natl.Acad.Sci. USA 77:4011报告的编码19个氨基酸的ST(指定为ST Ia)的核苷酸序列,所述文献以引用的方式并入本文。
ST Ia的氨基酸序列公开于SEQ ID NO:2中。
SEQ ID NO:3公开由Chan和Giannella(1981)J.Biol.Chem. 256:7744报告的表现出ST活性的18个氨基酸的肽的氨基酸序列(指定为ST I*),所述文献以引用的方式并入本文。
SEQ ID NO:4公开由Mosely等人(1983)Infect.Immun.39:1167 报告的编码19个氨基酸的ST(指定为ST Ib)的核苷酸序列,所述文献以引用的方式并入本文。
ST Ib的氨基酸序列公开于SEQ ID NO:5中。
在哺乳动物肠中已鉴定出与ST具有约50%序列同源性的15个氨基酸的肽(称为鸟苷素)(Currie,M.G.等人(1992)Proc.Natl.Acad Sci.USA 89:947-951,所述文献以引用的方式并入本文)。鸟苷素结合至ST受体并以比天然ST低约10-100倍的水平激活鸟苷酸环化酶。鸟苷素可能不以15个氨基酸的肽形式存在于肠中,而是作为所述器官中较大蛋白质的一部分存在。来自啮齿动物的鸟苷素的氨基酸序列公开为SEQ ID NO:6。
SEQ ID NO:7是SEQ ID NO:2的18个氨基酸的片段。SEQ ID NO:8是SEQ ID NO:2的17个氨基酸的片段。SEQ ID NO:9是SEQ ID NO:2的16个氨基酸的片段。SEQ ID NO:10是SEQID NO:2的15个氨基酸的片段。SEQ ID NO:11是SEQ ID NO:2的14个氨基酸的片段。 SEQ IDNO:12是SEQ ID NO:2的13个氨基酸的片段。SEQ ID NO:13 是SEQ ID NO:2的18个氨基酸的片段。SEQ ID NO:14是SEQ ID NO:2的17个氨基酸的片段。SEQ ID NO:15是SEQ ID NO:2的16个氨基酸的片段。SEQ ID NO:16是SEQ ID NO:2的15个氨基酸的片段。 SEQ ID NO:17是SEQ ID NO:2的14个氨基酸的片段。
SEQ ID NO:18是SEQ ID NO:3的17个氨基酸的片段。SEQ ID NO:19是SEQ ID NO:3的16个氨基酸的片段。SEQ ID NO:20是SEQ ID NO:3的15个氨基酸的片段。SEQ ID NO:21是SEQ ID NO:3的14 个氨基酸的片段。SEQ ID NO:22是SEQ ID NO:3的13个氨基酸的片段。SEQ ID NO:23是SEQ ID NO:3的17个氨基酸的片段。SEQ ID NO:24是SEQ ID NO:3的16个氨基酸的片段。SEQ ID NO:25是SEQ ID NO:3的15个氨基酸的片段。SEQ ID NO:26是SEQ IDNO:3的14 个氨基酸的片段。
SEQ ID NO:27是SEQ ID NO:5的18个氨基酸的片段。SEQ ID NO:28是SEQ ID NO:5的17个氨基酸的片段。SEQ ID NO:29是SEQ ID NO:5的16个氨基酸的片段。SEQ ID NO:30是SEQ ID NO:5的15 个氨基酸的片段。SEQ ID NO:31是SEQ ID NO:5的14个氨基酸的片段。SEQ ID NO:32是SEQ ID NO:5的13个氨基酸的片段。SEQ ID NO:33是SEQ ID NO:5的18个氨基酸的片段。SEQ ID NO:34是SEQ ID NO:5的17个氨基酸的片段。SEQ ID NO:35是SEQ IDNO:5的16 个氨基酸的片段。SEQ ID NO:36是SEQ ID NO:5的15个氨基酸的片段。SEQ IDNO:37是SEQ ID NO:5的14个氨基酸的片段。
SEQ ID NO:27、SEQ ID NO:31、SEQ ID NO:36和SEQ ID NO:37 公开于Yoshimura,S.,等人(1985)FEBS Lett.181:138中,所述文献以引用的方式并入本文。
SEQ ID NO:38、SEQ ID NO:39和SEQ ID NO:40(它们是SEQ ID NO:3的衍生物)公开于Waldman,S.A.和O'Hanley,P.(1989)Infect. Immun.57:2420中,所述文献以引用的方式并入本文。
SEQ ID NO:41、SEQ ID NO:42、SEQ ID NO:43、SEQ ID NO:44 和SEQ ID NO:45(它们是SEQ ID NO:3的衍生物)公开于Yoshimura, S.,等人(1985)FEBS Lett.181:138中,所述文献以引用的方式并入本文。
SEQ ID NO:46是结合至ST受体的源自小肠结肠炎耶尔森氏菌的25个氨基酸的肽。
SEQ ID NO:47是结合至ST受体的源自霍乱弧菌的16个氨基酸的肽。SEQ ID NO:47报告于Shimonishi,Y.,等人FEBS Lett.215:165 中,所述文献以引用的方式并入本文。
SEQ ID NO:48是结合至ST受体的源自小肠结肠炎耶尔森氏菌的18个氨基酸的肽。SEQ ID NO:48报告于Okamoto,K.,等人Infec. Immun.55:2121中,所述文献以引用的方式并入本文。
SEQ ID NO:49是SEQ ID NO:5的衍生物。SEQ ID NO:50、SEQ ID NO:51、SEQ IDNO:52和SEQ ID NO:53是衍生物。SEQ ID NO:54 是来自人的鸟苷素的氨基酸序列。
已从负鼠在哺乳动物肠中鉴定了称为尿鸟苷素的15个氨基酸的肽(Hamra,S.K.等人(1993)Proc.Natl.Acad Sci.USA 90:10464-10468,所述文献以引用的方式并入本文;还参见Forte L.和M.Curry 1995 FASEB 9:643-650,所述文献以引用的方式并入本文)。SEQID NO:55 是来自负鼠的尿鸟苷素的氨基酸序列。
已从人在哺乳动物肠中鉴定了称为尿鸟苷素的16个氨基酸的肽 (Kita,T.等人(1994)Amer.J.Physiol.266:F342-348,所述文献以引用的方式并入本文;还参见Forte L.和M.Curry 1995FASEEB 9:643-650,所述文献以引用的方式并入本文)。SEQ ID NO:56是来自人的尿鸟苷素的氨基酸序列。
SEQ ID NO:57是鸟苷素原(proguanylin)的氨基酸序列,鸟苷素原是被加工成活性鸟苷素的鸟苷素前体。
SEQ ID NO:58是尿鸟苷素原(prouroguanylin)的氨基酸序列,尿鸟苷素原是被加工成活性尿鸟苷素的尿鸟苷素前体。
在美国两种最近批准的产品,利那洛肽(SEQ ID NO:59)和普卡那肽(SEQ ID NO:60)可在本文所阐述的方法中用作GCC激动剂。
尽管鸟苷素原和尿鸟苷素原分别是成熟鸟苷素和成熟尿鸟苷素的前体,但是它们可如本文所述用作GCC激动剂,只要它们被递送以使得可将它们加工成成熟肽即可。
美国专利号5,140,102、7,041,786和7,304,036以及美国公布申请 US 2004/0258687、US 2005/0287067、20070010450、20040266989、 20060281682、20060258593、20060094658、20080025966、 20030073628、20040121961和20040152868(其各自以引用的方式并入本文)也涉及可结合至并激活鸟苷酸环化酶C的化合物。
除了人鸟苷素和人尿鸟苷素外,鸟苷素或尿鸟苷素还可分离自或以其他方式源自其他物种,如牛、猪、山羊、绵羊、马、兔、野牛等。此类鸟苷素或尿鸟苷素可施用至包括人的个体。
包括GCC结合抗体片段的抗体也可以是GCC激动剂。抗体可包括例如多克隆和单克隆抗体,包括嵌合、灵长类化、人源化或人单克隆抗体,以及结合至GCC的具有激动剂活性的抗体片段,如CDR、 FAb、F(Ab)、Fv,包括单链Fv等。抗体可以是例如IgE、IgA或IgM。
为了减轻由肠细胞死亡引起的副作用,通过经口递送此类GCC 激动剂将GCC激动剂递送至结肠直肠道。例如,ST肽和内源性GCC 激动剂肽是稳定的,并且可在胃酸中存活并穿过小肠至结肠直肠道。提供足够的剂量以确保GCC激动剂以足够的量到达大肠以诱导cGMP在那些细胞中的累积。
GCC激动剂,例如像ST、鸟苷素和尿鸟苷素可在胃环境中存活。因此,可在没有包衣或针对胃酸的保护的情况下施用它们。然而,为了更精确地控制口服施用的GCC激动剂的释放,可对GCC激动剂进行肠溶包衣,以使得一些或全部GCC激动剂在穿过胃后释放。这种肠溶包衣也可被设计成在包衣的GCC激动剂穿过肠的时间段内提供 GCC激动剂的持续或延长释放。在一些实施方案中,可配制GCC激动剂以确保一些化合物在进入大肠后释放。在一些实施方案中,GCC 激动剂可经直肠递送。
大多数肠溶包衣意图保护内容物免受胃酸的影响。因此,它们被设计成在穿过胃时释放活性剂。提供本文所用的包衣和包封物以在小肠中并且优选在延长的时间段内开始释放GCC激动剂,以使得可将 GCC激动剂浓度在更长的时间内维持在有效水平。
根据一些实施方案,用足够量的包衣材料包衣或包封GCC激动剂,使得包衣材料溶解和释放GCC激动剂所需的时间与经包衣或包封的组合物从口行进至肠所需的时间相对应。
根据一些实施方案,将GCC激动剂用包衣材料包衣或包封,所述包衣材料直到与小肠中存在的条件接触才完全溶解并释放GCC激动剂。此类条件可包括结肠直肠道中酶的存在、pH、张力或相对于胃变化的其他条件。
根据一些实施方案,将GCC激动剂用包衣材料包衣或包封,所述包衣材料被设计成在其从胃到小肠再到大肠时逐步溶解。
根据一些实施方案,将GCC激动剂与另一分子实体复合,以使得它们是无活性的,直到GCC激动剂不再与分子实体复合并且以活性形式存在。在此类实施方案中,GCC激动剂作为“前药”施用,所述前药在结肠直肠道中被加工成活性GCC激动剂。
可用于配制在口服施用时持续释放的GCC激动剂的技术的实例包括但不限于:美国专利号5,007,790、4,451,260、4,132,753、5,407,686、 5,213,811、4,777,033、5,512,293、5,047,248和5,885,616。
可用于配制在施用时大肠特异性释放的GCC激动剂或诱导剂的技术的实例包括但不限于:于1992年4月28日授予Allwood等人的美国专利号5,108,758,其公开延迟释放制剂;于1993年6月8日授予Sekigawa等人的美国专利号5,217,720,其公开在大肠中具有可释放性的包衣固体药物形式;于1996年7月30日授予Rhodes等人的美国专利号5,541,171,其公开可口服施用的药物组合物;于1997年 11月18日授予Bauer等人的美国专利号5,688,776,其公开交联多糖、其制备方法及其用途;于1998年12月8日授予Maniar等人的美国专利号5,846,525,其公开用于口服施用的受保护的生物聚合物及其使用方法;于1999年1月26日授予Bolonick等人的美国专利号 5,863,910,其公开胃肠道慢性炎症性病症的治疗;于2005年2月1 日授予Vaghefi等人的美国专利号6,849,271,其公开微胶囊基质微球、增强吸收的药物组合物和方法;于2005年12月6日授予Kudo等人的美国专利号6,972,132,其公开一种用于在下消化道中释放的系统;于2006年11月21日授予Mukai等人的美国专利号7,138,143,其公开可溶于下消化道的包衣制剂;美国专利号6,309,666;美国专利号 6,569,463;美国专利号6,214,378;美国专利号6,248,363;美国专利号6,458,383、美国专利号6,531,152、美国专利号5,576,020、美国专利号5,654,004、美国专利号5,294,448、美国专利号6,309,663、美国专利号5,525,634、美国专利号6,248,362、美国专利号5,843,479和美国专利号5,614,220,所述专利各自以引用的方式并入本文。
在一些实施方案中,递送有效量,以使得发生cGMP的足够累积。在一些实施方案中,递送有效量持续至少2小时的时间段。在一些实施方案中,有效量存在达12小时至数天。可施用多个剂量以维持水平,以使得所存在的游离或与GCC结合的GCC激动剂的量保持在有效剂量或高于有效剂量。在一些实施方案中,肠细胞变得受保护免受放射和化学疗法诱导的细胞死亡需要初始负载剂量和/或多次施用。在暴露于GCC激动剂的细胞变得对由放射和化学疗法诱导的细胞死亡具有抗性后,可施用放射或化学疗法,在一些情况下,以比未用GCC激动剂预治疗的患者所能够耐受的剂量高得多的剂量施用。
在一些实施方案中,可以每4-48小时100ug至1g范围内的量施用作为肽的GCC激动剂。在一些实施方案中,以每4-48小时1mg 至750mg范围内的量施用GCC激动剂。在一些实施方案中,以每 4-48小时10mg至500mg范围内的量施用GCC激动剂。在一些实施方案中,以每4-48小时50mg至250mg范围内的量施用GCC激动剂。在一些实施方案中,以每4-48小时75mg至150mg范围内的量施用GCC激动剂。
在一些实施方案中,每4小时或更长时间施用剂量。在一些实施方案中,每6小时或更长时间施用剂量。在一些实施方案中,每8小时或更长时间施用剂量。在一些实施方案中,每12小时或更长时间施用剂量。在一些实施方案中,每24小时或更长时间施用剂量。在一些实施方案中,每48小时或更长时间施用剂量。在一些实施方案中,每4小时或更短时间施用剂量。在一些实施方案中,每6小时或更短时间施用剂量。在一些实施方案中,每8小时或更短时间施用剂量。在一些实施方案中,每12小时或更短时间施用剂量。在一些实施方案中,每24小时或更短时间施用剂量。在一些实施方案中,每 48小时或更短时间施用剂量。
在一些实施方案中,将添加剂或助剂与GCC激动剂组合施用以使腹泻或痉挛/肠收缩增加的能动性最小化。例如,可在施用减轻腹泻的化合物之前、同时或之后向个体施用化合物。这种止泻组分可掺入制剂中。止泻化合物和制剂(如洛哌丁胺、次水杨酸铋)和益生菌治疗如乳酸杆菌菌株是众所周知的并且可广泛获得。
根据本发明的一些方面,向通常居住在结肠中的物种的无害细菌提供在结肠中产生鸟苷酸环化酶C激动剂所需的遗传信息,从而使这种鸟苷酸环化酶C激动剂可用于在结肠细胞上产生激活鸟苷酸环化酶C的作用。可产生鸟苷酸环化酶C激动剂的细菌群体的存在提供鸟苷酸环化酶C激动剂的连续施用。在一些实施方案中,编码鸟苷酸环化酶C激动剂的核酸序列可在诱导型启动子的控制下。因此,个体可根据是否摄入诱导剂来开启或关闭表达。在一些实施方案中,将诱导剂配制成在结肠中特异性释放,从而防止通过可能在其他位点如小肠中居住的细菌诱导表达。在一些实施方案中,细菌对特定药物或营养缺陷敏感,以使得可通过施用药物或扣留必需的补充物来消除细菌。
将可表达形式的基因引入细菌的技术是众所周知的,并且所需的材料可广泛获得。
在一些实施方案中,包含GCC激动剂的编码序列的细菌可以是通常栖息在个体的肠道中的物种的细菌。常见的肠道菌群包括来自拟杆菌属(Bactenrkles)、梭菌属(Clostridium)、梭杆菌属(Fusobacterium)、真杆菌属(Enhaetermm)、瘤胃球菌属(Rimmococcus)、消化球菌属 (Peptococcus)、消化链球菌属(Peptostreptococcm)、双歧杆菌属 (Bifidobacteria)、埃希氏菌属(Escherichia)和乳杆菌属(Lactobacillus) 的物种。在一些实施方案中,细菌选自已知可用作益生菌的菌株。用作向人施用的组合物的细菌物种的实例包括两歧双歧杆菌、大肠埃希氏菌、嗜酸乳杆菌、鼠李糖乳杆菌、干酪乳杆菌和约氏乳杆菌。其他物种包括保加利亚乳杆菌、嗜热链球菌、凝结芽孢杆菌和双歧乳杆菌。用作向人施用的组合物的细菌菌株的实例包括:婴儿双歧杆菌35624, (Align);植物乳杆菌299V;动物双歧杆菌DN-173 010;动物双歧杆菌DN 173 010(Activia Danone);动物双歧杆菌乳酸亚种BB-12 (Chr.Hansen);短双歧杆菌Yakult Bifiene Yakult;婴儿双歧杆菌35624 乳酸双歧杆菌HN019(DR 10)HowaruTM Bifido Danisco;长双歧杆菌 BB536;尼氏大肠埃希氏菌1917;嗜酸乳杆菌LA-5Chr.Hansen;嗜酸乳杆菌NCFM Rhodia Inc.;干酪乳杆菌DN114-001;干酪乳杆菌 CRL431 Chr.Hansen;干酪乳杆菌F19 Cultura Arla Foods;干酪乳杆菌Shirota Yakult;干酪乳杆菌immunitass Actimel Danone;约氏乳杆菌La1(=乳杆菌LC1)Nestlé;植物乳杆菌299V ProViva Probi IBS;罗伊氏乳杆菌ATTC 55730BioGaiaBiologics;罗伊氏乳杆菌SD2112;鼠李糖乳杆菌ATCC 53013Vifit和其他Valio;鼠李糖乳杆菌LB21 Verum Norrmejerier;唾液乳杆菌UCC118;乳酸乳球菌L1A VerumNorrmejerier;酿酒酵母(布拉酵母菌)Iyo;唾液链球菌嗜热链球菌亚种;鼠李糖乳杆菌GR-1;罗伊氏乳杆菌RC-14;嗜酸乳杆菌CUL60;两歧双歧杆菌CUL 20;瑞士乳杆菌R0052;以及鼠李糖乳杆菌R0011。
各自以引用的方式并入本文的以下美国专利公开可施用至个体的非致病性细菌。美国专利号6,200,609;美国专利号6,524,574;美国专利号6,841,149;美国专利号6,878,373;美国专利号7,018,629;美国专利号7,101,565;美国专利号7,122,370;美国专利号7,172,777;美国专利号7,186,545、美国专利号7,192,581、美国专利号7,195,906、美国专利号7,229,818以及美国专利号7,244,424。
因此,在本发明的方面,首先将以一定形式向细菌提供编码GCC 激动剂的遗传物质,所述形式将允许在所述细菌内表达所述激动剂肽,组成型地抑或通过将开启诱导型启动子的诱导剂的存在诱导。
一些实施方案包括诱导型调控元件,如诱导型启动子。通常,诱导型启动子是其中剂(当存在时)与启动子相互作用、以使得与所述启动子可操作连接的编码序列的表达继续进行的诱导型启动子。或者,诱导型启动子可包括阻遏物,所述阻遏物是与启动子相互作用并阻止与所述启动子可操作连接的编码序列表达的剂。阻遏物的除去导致与所述启动子可操作连接的编码序列的表达。
诱导诱导型启动子的剂优选地不天然存在于寻求转基因表达的生物体中。因此,仅当生物体肯定地暴露于诱导剂时才表达转基因。因此,在包含与诱导型启动子可操作连接的转基因的细菌中,当所述细菌生活在个体的肠道内时,所述启动子可在个体摄入诱导剂时开启并表达转基因。
诱导诱导型启动子的剂优选是无毒的。因此,在包含与诱导型启动子可操作连接的转基因的细菌中,诱导剂优选对细菌在其肠道中生存的个体无毒,以使得当所述个体摄入诱导剂以开启转基因的表达时,所述诱导剂对个体没有任何严重的毒性副作用。
诱导诱导型启动子的剂优选仅影响目标基因的表达。因此,在包含与诱导型启动子可操作连接的转基因的细菌中,诱导剂对个体中的任何其他基因的表达没有任何显著影响。
诱导诱导型启动子的剂优选易于施加或除去。因此,在包含与生活在个体的肠道中的诱导型启动子可操作连接的转基因的细菌中,诱导剂优选是可容易地递送至肠道并且可例如通过肯定中和或通过代谢/传递而除去的剂,以使得可控制基因表达。
诱导诱导型启动子的剂优选地诱导高或非常低的基因表达的可清楚检测的表达模式。
在一些优选的实施方案中,经化学调控的启动子源自与需要其作用的生物体进化距离较远的生物体。诱导型或经化学调控的启动子的实例包括经四环素调控的启动子。四环素响应性启动子系统可在四环素存在下起作用以激活或阻遏基因表达系统。所述系统的一些元件包括四环素阻遏蛋白(TetR)、四环素操纵子序列(tetO)和四环素反式激活因子融合蛋白(tTA)(其是TetR与单纯疱疹病毒蛋白16(VP16)激活序列的融合体)。四环素抗性操纵子由大肠埃希氏菌转座子(Tn)10携带。此操纵子具有负性操作模式。由操纵子编码的阻遏蛋白TetR与其所结合的DNA序列tet操纵子(tetO)之间的相互作用在不存在诱导剂的情况下阻遏位于操纵子附近的启动子的活性,TetR结合至tetO并防止转录。当诱导剂(如四环素)结合至TetR并引起构象变化时可开启转录,所述构象变化阻止TetR保持与操纵子结合。当操纵子位点未结合时,启动子的活性得以恢复。四环素(抗生素)已被用来产生诱导型启动子的两种有益的增强作用。一种增强是诱导型开或关启动子。研究人员可选择使启动子始终激活直到添加Tet为止,或者使启动子始终失活直到添加Tet为止。这是Tet开/关启动子。第二增强是调控启动子的强度的能力。Tet添加的越多,作用越强。
诱导型或经化学调控的启动子的实例包括经类固醇调控的启动子。提供类固醇响应性启动子用于调节基因表达,包括基于大鼠糖皮质激素受体(GR);人雌激素受体(ER);源自不同蛾类物种的蜕皮激素受体的启动子;以及来自类固醇/类视黄醇/甲状腺受体超家族的启动子。GR和其他类固醇受体的激素结合结构域(HBD)也可用于调控呈顺式的异源蛋白质,即可操作地连接至它所作用于的蛋白质编码序列。因此,GR、雌激素受体(ER)和昆虫蜕皮激素受体的HBD显示相对严格的控制和高诱导性。
诱导型或经化学调控的启动子的实例包括经金属调控的启动子。源自来自酵母、小鼠和人的金属硫蛋白(结合并敖合金属离子的蛋白质)基因的启动子是其中金属的存在诱导基因表达的启动子的实例。
IPTG是添加至细胞以激活启动子的化合物的经典实例。可将 IPTG添加至细胞以激活下游基因或将IPTG除去以使基因失活。
以引用的方式并入本文的美国专利6,180,391涉及铜诱导型启动子。
以引用的方式并入本文的美国专利6,943,028涉及外源基因在大肠埃希氏菌中的高效受控表达。
以引用的方式并入本文的美国专利6,180,367涉及用于多肽的细菌产生的方法。
适用于细菌宿主的诱导型启动子的其他实例包括β-内酰胺酶和乳糖启动子系统(Chang等人,Nature,275:615(1978,其以引用的方式并入本文);Goeddel等人Nature,281:544(1979),其以引用的方式并入本文);阿拉伯糖启动子系统,包括araBAD启动子(Guzman等人,J. Bacteriol.174:7716-7728(1992),其以引用的方式并入本文;Guzman 等人,J.Bacteriol.,177:4121-4130(1995),其以引用的方式并入本文; Siegele和Hu,Proc.Nati.Acad.Sci.USA,94:8168-8172(1997),其以引用的方式并入本文);鼠李糖启动子(Haldimann等人,J.Bacteriol., 180;1277-1286(1998),其以引用的方式并入本文);碱性磷酸酶启动子,色氨酸(trp)启动子系统(Goeddel,Nucleic Adds Res.,8:4057 (1980),其以引用的方式并入本文);P.sub.LtetO-1和P.sub.lac/are-1 启动子(Lutz和Bujard,Nucleic Acids Res.,25;1203-1210(1997),其以引用的方式并入本文);以及杂合体启动子,如tac启动子,deBoer 等人,Proc.Nati.Acad.Sci.USA,80:21-25(1983),其以引用的方式并入本文。然而,其他已知的细菌诱导型启动子和低碱基表达启动子是适合的。
以引用的方式并入本文的美国专利号6,083,715涉及用于在细菌细胞中产生含异源二硫键的多肽的方法。
以引用的方式并入本文的美国专利号5,830,720涉及用于外源基因的可阻遏和诱导型表达的重组DNA和表达载体。
以引用的方式并入本文的美国专利号5,789,199涉及用于多肽的细菌产生的方法。
以引用的方式并入本文的美国专利号5,085,588涉及可通过植物提取物诱导的细菌启动子。
以引用的方式并入本文的美国专利号6,242,194涉及可将含有与本发明的启动子可操作缔合的目标DNA的益生菌宿主细胞口服施用至受试者....
以引用的方式并入本文的美国专利号5,364,780涉及通过诱导型启动子对基因表达的外部调控。
以引用的方式并入本文的美国专利号5,639,635涉及用于多肽的细菌产生的方法。
以引用的方式并入本文的美国专利号5,789,199涉及用于多肽的细菌产生的方法。
以引用的方式并入本文的美国专利号5,689,044涉及植物PR-1基因的化学诱导型启动子。
以引用的方式并入本文的美国专利号5,063,154涉及信息素诱导型酵母启动子。
以引用的方式并入本文的美国专利号5,658,565涉及诱导型一氧化氮合酶基因。
各自以引用的方式并入本文的美国专利号5,589,392、6,002,069、 5,693,531、5,480,794、6,171,816、6,541,224、6,495,318、5,498,538、 5,747,281、6,635,482和5,364,780各自涉及IPTG诱导型启动子。
各自以引用的方式并入本文的美国专利号6,420,170、5,654,168、 5,912,411、5,891,718、6,133,027、5,739,018、6,136,954、6,258,595、 6,002,069和6,025,543各自涉及四环素诱导型启动子。
鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)
鸟苷酸环化酶-A/利钠肽受体-A(GCA)是参与维持肾脏和心血管内稳态的细胞蛋白质。GCA是在肾脏细胞中发现的受体,所述受体结合至心脏中制备的两种肽并被所述肽激活。心钠肽(ANP,也称为心脏心钠肽)以原ANP的形式储存在心脏中,并且在释放时被加工成成熟ANP。心脏中还产生B型利钠肽(BNP,也称为脑钠肽),当ANP 或BNP与GCA结合时,表达GCA的细胞产生cGMP作为第二信使。因此,ANP和BNP是激活GCA的GCA激动剂并导致cGMP在表达 GCA的细胞中累积。
作为GCA激动剂的ANP类似物公开于Schiller PW,等人 Superactive analogs ofthe atrial natriuretic peptide(ANP),Biochem Biophys Res Commun,1987年3月13日;143(2):499-505;Schiller PW, 等人Synthesis and activity profiles of atrialnatriuretic peptide(ANP) analogs with reduced ring size.Biochem Biophys ResCommun.,1986年 7月31日;138(2):880-6;Goghari MH,等人Synthesis and biologicalactivity profiles of atrial natriuretic factor(ANF)analogs.,Int J PeptProtein Res.1990年8月;36(2):156-60;Bovy PR,等人A synthetic linear decapeptidebinds to the atrial natriuretic peptide receptors and demonstrates cyclaseactivation and vasorelaxant activity.J Biol Chem. 1989年12月5日;264(34):20309-13;以及Schoenfeld等人Molecular Pharmacology 1995年1月第47卷第1期172-180。
鸟苷酸环化酶B(GCB)激动剂(CNP)
鸟苷酸环化酶B(GCB)也称为利钠肽受体B、atrionatriuretic肽受体B和NPR2。GCB是在许多不同组织中局部产生的小型肽(C型利钠肽)的受体。GCA表达据报告在肾脏、卵巢细胞、主动脉、软骨细胞、海绵体、松果体等中。
GCB据报告结合至ANP和BNP并被其激活,但C型利钠肽(CNP) 是最有效的GCB激活剂。ANP、BNP和CNP是GCB激动剂。美国专利号5,434,133和Furuya,M等人Biochemical andBiophysical Research Communications,第183卷,第3期,1992年3月31日,第 964-969页公开了CNP类似物。
可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)
可溶性鸟苷酸环化酶(sGC)是由具有带环化酶活性的C末端区域的α结构域和也具有带环化酶活性的C末端区域的血红素结合β结构域组成的异二聚体蛋白。sGC是唯一已知的一氧化氮受体,每个二聚体具有一个血红素。呈Fe(II)形式的血红素部分是NO的靶标。NO结合导致sGC的激活,即sGC活性的显著增加。sGC的激活残余血管舒张。
YC-1(其是5-[1-(苯基甲基)-1H-吲唑-3-基]-2-呋喃甲醇)是不依赖于一氧化氮(NO)的可溶性鸟苷酸环化酶激活剂。Ko FN等人YC-1,a novel activator of plateletguanylate cyclase.Blood.1994年12月15 日;84(12):4226-33。
激活sGC的两种药物是西那西呱(4-({(4-羧基丁基)[2-(2-{[4-(2- 苯基乙基)苯基]甲氧基}苯基)乙基]氨基}甲基)苯甲酸)WO-0119780、 7,087,644、7,517,896、WO20008003414、WO 2008148474;和利奥西呱(N-[4,6-二氨基-2-[l-[(2-氟苯基)甲基]-1H-吡唑并[3,4-b]吡啶-3- 基]-5-嘧啶基]-N-甲基-氨基甲酸甲酯)WO-03095451,其已在美国授权为US-07173037。
sGC激活剂的其他实例包括3-(5'-羟基甲基-2'-呋喃基)-1-苄基吲唑(YC-1,Wu等人,Blood 84(1994),4226;Mulsch等人,Brit.J. Pharmacol.120(1997),681);脂肪酸(Goldberg等人,J.Biol.Chem. 252(1977),1279);六氟磷酸二苯基碘鎓(Pettibone等人,Eur.J. Pharmacol.116(1985),307);异甘草素(Yu等人,Brit.J.Pharmacol. 114(1995),1587)和各种经取代的吡唑衍生物(WO 98/16223)。此外, WO 98/16507、WO 98/23619、WO00/06567、WO 00/06568、WO 00/06569、WO 00/21954、WO 02/42299、WO 02/42300、WO 02/42301、 WO 02/42302、WO 02/092596和WO 03/004503描述了吡唑并吡啶衍生物作为可溶性鸟苷酸环化酶的刺激剂。还尤其描述了在3位具有嘧啶残基的吡唑并吡啶。这种类型的化合物具有关于刺激可溶性鸟苷酸环化酶的非常高的体外活性。然而,已经显示出,这些化合物就它们的体内性质而言具有缺点,例如像它们在肝脏中的行为、它们的药代动力学行为、它们的剂量-响应关系或它们的代谢途径。
其他sGC激活剂公开于O.V,Evgenov等人,Nature Rev.Drug Disc.5(2006),755;以及美国公布专利申请公布号20110034450、20100210643、20100197680、20100168240、20100144864、 20100144675、20090291993、20090286882、20090215843、20080中。
PDE抑制剂
在一些实施方案中,活性剂包含PDE抑制剂,包括例如非选择性磷酸二酯酶抑制剂、PDE1选择性抑制剂、PDE2选择性抑制剂、 PDE3选择性抑制剂、PDE4选择性抑制剂、PDE5选择性抑制剂和 PDE10选择性抑制剂。
PDE抑制剂通常在各自以引用的方式并入本文的以下参考文献中论述:Uzunov,P.和Weiss,B.:Separation of multiple molecular forms of cyclic adenosine 3',5'-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis.Biochim.Biophys. Acta 284:220-226,1972;Weiss,B.:Differentialactivation and inhibition of the multiple forms of cyclic nucleotidephosphodiesterase.Adv.Cycl Nucl.Res.5:195-211,1975;Fertel,R.和Weiss,B.:Properties and drug responsiveness of cyclic nucleotide phosphodiesterases ofrat lung.Mol. Pharmacol.12:678-687,1976;Weiss,B.和Hait,W.N.:Selective cyclicnucleotide phosphodiesterase inhibitors as potential therapeutic agents.Ann.Rev.Pharmacol.Toxicol.17:441-477,1977;Essayan DM.(2001). “Cyclicnucleotide phosphodiesterases.”,J Allergy Clin Immunol,108(5): 671-80;DereeJ,Martins JO,Melbostad H,Loomis WH,Coimbra R. (2008).“Insights into theRegulation of TNF-αProduction in Human Mononuclear Cells:The Effects of Non-Specific Phosphodiesterase Inhibition”.Clinics(Sao Paulo),63(3):321-8;MarquesLJ.Zheng L, Poulakis N,Guzman J,Costabel U(February 1999).“Pentoxifyllineinhibits TNF-alpha production from human alveolar macrophages”.Am.J.Respir.Crit.Care Med.159(2):508-11;Peters-Golden M,Canetti C, Mancuso P,Coffey MJ(2005).“Leukotrienes:underappreciated mediators of innate immuneresponses”,J Immunol.174(2):589-94;Daly JW,Jacobson KA,Ukena D.(1987).“Adenosine receptors:development of selective agonists and antagonists”。
Prog Clin Biol Res.230(1):41-63;MacCorquodale DW.THE SYNTHESIS OFSOME ALKYLXANTHiNES.Journal of the American Chemical Society.1929年7月;51(7):2245-2251;WO/1985/002540;美国专利号4,288,433;Daly JW,Padgett WL,Shamim MT(1986年7 月).“Analogues of caffeine and theophylline:effect of structuralalterations on affinity at adenosine receptors”.Journal of MedicinalChemistry 29(7):1305-8;Daly JW,Jacobson KA,Ukena D(1987). “Adenosinereceptors:development of selective agonists and antagonists”. Progress inClinical and Biological Research 230:41-63;Choi OH, Shamim MT,Padgett WL,DalyJW(1988).“Caffeine and theophylline analogues:correlation of behavioraleffects with activity as adenosine receptor antagonists and asphosphodiesterase inhibitors”.Life Sciences 43(5):387-98;Shamim MT,Ukena D,Padgett WL,Daly JW(1989年6 月).“Effects of 8-phenyl and 8-cycloalkylsubstituents on the activity of mono-,di-,and trisubstituted alkylxanthineswith substitution at the 1-,3-, and 7-positions”.Journal of MedicinalChemistry 32(6):1231-7;Daly JW. Hide I,Muller CE,Shamim M(1991).“Caffeineanalogs: structure-activity relationships at adenosine receptors”.Pharmacology 42(6):309-21;Ukena D,Schudt C,Sybrecht GW(1993年2月).“Adenosine receptor-blocking xanthines as inhibitors of phosphodiesteraseisozymes”.Biochemical Pharmacology 45(4):847-51. doi:10.1016/0006-2952(93)90168-V;Daly JW(2000年7月). “Alkylxanthines as research tools”.Journal of theAutonomic Nervous System 81(1-3):44-52.doi:10.1016/SO165-1 S38(00)00110-7;Daly JW (2007年8月).“Caffeine analogs;biomedical impact”.Cellular andMolecular Life Sciences:CMLS 64(16):2153-69;González MP,Terán C, Teijeira M(2008年5月).“Search for new antagonist ligands for adenosine receptors fromQSAR point of view.How dose are we?”. Medicinal Research Reviews 28(3):329-71;Baraldi PG,Tabrizi MA, Gessi S,Berea PA(2008年1月).“Adenosine receptorantagonists: translating medicinal chemistry and pharmacology into clinicalutility”. Chemical Reviews 108(1):238-63;de Visser YP,Walther FJ,Laghmani EH,van Wijngaarden S,Nieuwland K,Wagenaar GT,(2008). “Phosphodiesterase-4inhibition attenuates pulmonary inflammation in neonatal lung injury”.EurRespir J 31(3):633-644;Yu MC,Chen JH,Lai CY,Han CY,Ko WC.(2009).“Luteolin,anon-selective competitive inhibitor of phosphodiesterases 1-5,displaced[(3)H]-rolipram from high-affinity rolipram binding sites and reversed xylazine/ketamine-induced anesthesia”.Eur J Pharmacol. 627(1-3):269-75;Bohon D,BreuletM,Gerard-Vandenhove MA, Guiot-Goffioul F,Plomteux G,Sastre-y-Hernandez M,Schratzer M, Troisfontalnes B,von Frenckeli R,Wachtel H.(1988).“Isphosphodiesterase inhibition a new mechanism of antidepressant action? Adouble-blind double-dummy study between rolipram and desipramine inhospitalized major and/or endogenous depressives”.Eur Arch Psychiatry NeurolSci.238(1):2-6;Maxwell CR,Kanes SJ,Abel T, Siegel SJ.(2004).“Phosphodiesterase inhibitors:a novel mechanism for receptor-independentantipsychotic medications”.Neuroscience. 129(1):101-7;Kanes SJ,Tokarczyk J,Siegel SJ,Bilker W,Abel T,Kelly MP.(2006).“Rolipram;A specificphosphodiesterase 4inhibitor with potential antipsychotic activity”.Neuroscience.144(1):239-46;以及 Vecsey CG,Baillie GS,Jaganath D,Havekes R,Daniels A,Wimmer M, Huang T,Brown KM,Li XY,Descalzi G,Kim SS,Chen T,Shang YZ,Zhuo M,Houslay MD,Abel T.(2009).“Sleep deprivation impairs cAMP signaling inthe hippocampus”.Nature.461(7267):1122-1125。
除了激活鸟苷酸环化酶外,还可升高cGMP水平,并且保护细胞免受使用PDE如PDE1、PDE2、PDE3、PDE4、PDE5和PDE10抑制剂的化学治疗剂和放射疗法。cGMP的分解受磷酸二酯酶(PDE)同工酶家族控制。迄今为止,已经描述了所述家族的七个成员(PDE I-VII),其分布因组织而异(Beavo和Reifsnyder(1990)TIPS, 11:150-155以及Nicholson等人(1991)TIPS,12:19-27)。PDE同工酶的特异性抑制剂可用于实现不同组织中cGMP的差异升高。一些PDE 抑制剂特异性地抑制cGMP的分解,而不影响cAMP。在一些实施方案中,可能的PDE抑制剂可以是PDE3抑制剂、PDE4抑制剂、PDE5 抑制剂、PDE3/4抑制剂或PDE3/4/5抑制剂。
特异性地使cGMP升高的PDE抑制剂公开于美国专利号 6,576,644、7,384,958、7,276,504、7,273,868、7,220,736、7,098,209、 7,087,597、7,060,721、6,984,641、6,930,108、6,911,469、6,784,179、 6,656,945、6,642,244、6,476,021、6,326,379、6,316,438、6,306,870、 6,300,335、6,218,392、6,197,768、6,037,119、6,025,494、6,018,046、 5,869,516、5,869,486、5,716,993中。其他实例包括以下中公开的化合物:WO 96/05176和6,087,368、美国专利号4,101,548、4,001,238、 4,001,237、3,920,636、4,060,615、4,209,623、5,354,571、3,031,450、 3,322,755、5,401,774、5,147,875、4,885,301,4,162,316、4,047,404、 5,614,530、5,488,055、4,880,810、5,439,895、5,614,627、GB 2 063 249、 EP 0 607439、WO 97/03985、EP 0 395 328、EP 0 428 268、PCT WO 93/12095、WO 93/07149、EP 0349 239、EP 0 352 960、EP 0 526 004、 EP 0 463 756、EP 0 607 439、WO 94/05661、EP 0351 058、EP 0 347 146、WO 97/03985、WO 97/03675、WO 95/19978、WO 98/08848、 WO 98/16521、EP0 722 943、EP 0 722 937、EP 0 7 22 944、WO 98/17668、WO 97/24334、WO 98/06722、PCT/JP97/03592、WO 98/23597、WO 94/29277、WO 98/14448、WO 97/03070、WO 98/38168、 WO 96/32379以及PCT/GB98/03712。PDE抑制剂可包括以下专利申请和专利中公开的那些:DE1470341、DE2108438、DE2123328、 DE2305339、DE2305575、DE2315801、DE2402908、DE2413935、DE2451417、DE2459090、DE2646469、DE2727481、DE2825048、DE2837161、DE2845220、DE2847621、DB2934747、DE3021792、 DE3038166、DE3044568、EP000718、EP0008408、EP0010759、 EP0059948、EP0075436、EP0096517、EP0112987、EP0116948、 EP0150937、EP0158380、EP0161632、EP0161918、EP0167121、 EP0199127、EP0220044、EP0247725、EP0258191、EP0272910、 EP0272914、EP0294647、BP0300726、EP0335386、EP0357788、 EP0389282、EP0406958、EP0426180、EP0428302、EP0435811、EP0470805、EP0482208、EP0490823、EP0506194、EP0511865、 EP0527117、EP0626939、EP0664289、EP0671389、EP0685474、 EP0685475、EP0685479、IP92234389、JP94329652、JP95010875美国专利号4,963,561、5,141,931、WO9117991、WO9200968、 WO9212961、WO9307146、WO9315044、WO9315045、WO9318024、 WO9319068、WO93.19720、WO9319747、WO9319749、WO9319751、 WO9325517、WO9402465、WO9406423、WD9412461、WO9420455、WO9422852、WO9425437、WO9427947、WO9500516、WO9501980、 WO9503794、WQ9504045、WO9504046、WO9505386、WO9508534、 WO9509623、WO9509624、WO9509627、WO9509836、WO9514667、 WO9514680、WO9514681、WO9517392、WO9517399、WO9519362、 WO9522520、WO9524381、WO9527692、WO9528926、WO9535281、 WO9535282、WO9600218、WO9601825、WO9602541、WO9611917、 DE3142982、DE1116676、DE2162096、EP0293063、EP0463756、EP0482208、EP0579496、EP0667345和WO9307124、EP0163965、 EP0393500、EP0510562、EP0553174、WO9501338以及WO9603399。
非选择性磷酸二酯酶抑制剂的实例包括:甲基化的黄嘌呤和衍生物,例如像咖啡因(一种轻微刺激剂)、氨茶碱、在药理学研究中用作研究工具的IBMX(3-异丁基-1-甲基黄嘌呤)、对黄嘌呤、己酮可可碱 (一种具有促进血液循环的潜力且可适用于治疗糖尿病、纤维化病症、周围神经损伤和微血管损伤的药物)、可可碱和茶碱(一种支气管扩张药)。甲基化的黄嘌呤充当竞争性非选择性磷酸二酯酶抑制剂,所述抑制剂使细胞内cAMP升高、激活PKA、抑制TNF-α和白三烯合成并且减轻炎症和先天性免疫;并且充当非选择性腺苷受体拮抗剂。不同的类似物在众多亚型上显示出不同的效价,并且在寻找对磷酸二酯酶或腺苷受体亚型具有更高选择性的化合物方面,已经开发了多种合成的黄嘌呤衍生物(一些未甲基化)。
PDE抑制剂包括1-(3-氯苯基氨基)-4-苯基酞嗪和二嘧达莫。另一种PDE1选择性抑制剂是例如长春西汀。
PDE2选择性抑制剂包括例如EHNA(赤-9-(2-羟基-3-壬基)腺嘌呤) 和阿那格雷。
PDE3选择性抑制剂包括例如硫马唑、ampozone、西洛酰胺、卡巴喹伦、匹罗昔酮、伊马唑旦、氰胍佐旦、阿地本旦、沙特力农、埃莫拉丹(emoradan)、瑞维齐农和依诺昔酮以及米力农。一些在临床上用于心力衰竭的短期治疗。这些药物模拟交感神经刺激并增加心输出量。PDE3有时被称为cGMP抑制的磷酸二酯酶。
PDE3/4抑制剂的实例包括苯芬群、曲喹辛、扎达维林和托拉芬群。
PDE4选择性抑制剂包括例如:winlcuder、登布茶碱、咯利普兰、氧格雷酯、nirtaquazone、莫大吡酮、利沙齐农、吲哚利旦、奥普力农、阿替唑仑、dipamfylline、阿罗茶碱、非明司特、吡拉米司特、硫苯司特、莫哌达醇、阿那格雷、异丁司特、氨力农、匹莫苯丹、西洛他唑、喹齐酮以及N-(3,5-二氯吡啶-4-基)-3-环丙基甲氧基4-二氟甲氧基苯甲酰胺。松叶菊碱(一种来自松叶菊的生物碱);咯利普兰,在药理学研究中用作研究工具;异丁司特,一种神经保护和支气管扩张药物,主要用于治疗哮喘和中风(最大程度地抑制PDE4,但也显示出对其他 PDE亚型的显著抑制,并且因此充当选择性PDE4抑制剂或非选择性磷酸二酯酶抑制剂,取决于剂量);吡拉米司特,比咯利普兰更有效的抑制剂;木樨草素,从花生中提取的也具有IGF-1性质的补充剂;屈他维林,用于缓解肾绞痛,也可加速分娩中子宫颈扩张;以及罗氟司特,适用于患有重度COPD的患者,以预防诸如咳嗽和过多粘液的症状恶化。PDE4是在炎性细胞和免疫细胞中发现的主要cAMP代谢酶。已证明PDE4抑制剂作为抗炎药物的潜力,尤其是在炎症性肺部疾病(如哮喘、COPD)和鼻炎中。它们抑制细胞因子和其他炎症信号的释放,并抑制活性氧物质的产生。PDE4抑制剂可具有抗抑郁作用 [26],并且最近还被提议用作抗精神病药。
PDE5选择性抑制剂包括例如:西地那非、他达拉非、伐地那非、维司力农、扎普司特、罗地那非、米罗那非、乌地那非和阿伐那非。 PDE5是cGMP特异性的,负责阴茎海绵体中cGMP的降解(这些磷酸二酯酶抑制剂主要用作勃起功能障碍的药品,以及具有一些其他医学应用,如肺动脉高压的治疗);二嘧达莫(当与NO或他汀类药物一起给予时产生添加的益处);并且较新的且更具选择性的抑制剂是淫羊藿苷(淫羊藿(Epimedium grandiflorum)的活性成分)和可能地4-甲基哌嗪和吡唑并嘧啶-7-1(地衣粗黄梅衣(Xanfhoparmeliascabrosa)的组分)。
PDE10受罂粟碱(鸦片生物碱)选择性抑制。PDE10A几乎仅在纹状体中表达,并且在PDE10A抑制后(例如通过罂粟碱)cAMP和cGMP 随后增加是“发现抗精神病药物中的一种新型的治疗途径”。
另外的PDE抑制剂包括以下中阐述的那些:美国专利号 8,153,104、8,133,903、8,114,419、8,106,061、8,084,261、7,951,397、7,897,633、7,807,803、7,795,378、7,750,015、7,737,155、7,732,162、 7,723,342、7,718,702、7,671,070、7,659,273、7,605,138、7,585,847、 7,576,066、7,569,553、7,563,790、7,470,687、7,396,814、7,393,825、 7,375,100、7,363,076、7,304,086、7,235,625、7,153,824、7,091,207、 7,056,936、7,037,257、7,022,709、7,019,010、6,992,070、6,969,719、 6,964,780、6,875,575、6,743,799、6,740,306、6,716,830、6,670,394、6,642,244、6,610,652、6,555,547、6,548,508、6,541,487、6,538,005、 6,534,519、6,534,518、6,479,505、6,476,025、6,436,971、6,436,944、 6,428,478、6,423,683、6,399,579、6,391,869、6,380,196、6,376,485、 6,333,354、6,306,869、6,303,789、6,294,564、6,288,118、6,271,228、 6,235,782、6,235,776、6,225,315、6,177,471、6,143,757、6,143,746、 6,127,378、6,103,718、6,080,790、6,080,782、6,077,854、6,066,649、 6,060,501、6,043,252、6,011,037、5,998,428、5,962,492、5,922,557、 5,902,824、5,891,896、5,874,437、5,871,780、5,866,593、5,859,034、 5,849,770、5,798,373、5,786,354、5,776,958、5,712,298、5,693,659、 5,681,961、5,674,880、5,622,977、5,580,888、5,491,147、5,426,119 和5,294,626,所述专利各自以引用的方式并入本文。另外的PDE2 抑制剂包括在美国专利号6,555,547、6,538,029、6,479,493和6,465,494 中阐述的那些,所述专利各自以引用的方式并入本文。另外的FDE3 抑制剂包括在美国专利号7,375,100、7,056,936、6,897,229、6,716,871、 6,498,173和6,110,471中阐述的那些,所述专利各自以引用的方式并入本文。另外的PDE4抑制剂包括美国专利号8,153,646、8,110,682、8,030,340、7,964,615、7,960,433、7,951,954、7,902,224、7,846,973、 7,759,353、7,659,273、7,557,247、7,550,475、7,550,464、7,538,127、 7,517,889、7,446,129、7,439,393、7,402,673、7,375,100、7,361,787、 7,253,189、7,135,600、7,101,866、7,060,712、7,056,936、7,045,658、 6,953,774、6,884,802、6,858,596、6,787,532、6,747,043、6,740,655、6,713,509、6,630,483、6,436,971、6,288,118和5,919,801中阐述的那些,所述专利各自以引用的方式并入本文。另外的PDE5抑制剂包括美国专利号7,449,462、7,375,100、6,969,507、6,723,719、6,677,335、 6,660,756、6,538,029、6,479,493、6,476,078、6,465,494、6,451,807、 6,143,757、6,143,746和6,043,252中阐述的那些,所述专利各自以引用的方式并入本文。另外的PDE10抑制剂包括美国专利号6,538,029 中阐述的那些,所述专利以引用的方式并入本文。
MRP抑制剂
人多药耐药性蛋白MRP4和MRP5是具有转运环状核苷酸(包括 cGMP)的异常能力的有机阴离子转运蛋白。因此,可通过抑制MRP4 和MRP5来提高cGMP水平。抑制MRP4和MRP5的化合物可包括二嘧达莫、地拉齐普、硝基苄基巯基嘌呤核糖核苷、西地那非、曲喹辛、扎普司特和MK571(3-[[[3-[(1E)-2-(7-氯-2-喹啉基)乙烯基]苯基][[3-(二甲基氨基)-3-氧代丙基]硫代]甲基]硫代]丙酸)。这些化合物可能在抑制MRP4方面比抑制MRP5更有效。可用作MRP抑制剂的其他化合物包括磺吡酮、齐多夫定-单磷酸盐、染料木黄酮、消炎痛和丙磺舒。
环状GMP和/或cGMP类似物
在一些实施方案中,活性剂包括环状GMP。在一些实施方案中,活性剂包括cGMP类似物,例如像8-溴-cGMP和2-氯-cGMP。
控制释放制剂
提供控制释放组合物用于递送至十二指肠、小肠、大肠、结肠和/或直肠的组织。所述控制释放制剂包含一种或多种选自由以下组成的组的活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝化血管扩张剂、原卟啉IX和直接激活剂)、鸟苷酸环化酶C激动剂、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物,其中所述活性剂被配制为控制释放组合物以用于控制释放至十二指肠、小肠、大肠、结肠和/或直肠的组织。提供了预防正在经历化学疗法或放射疗法以治疗癌症的个体中的GI综合征的方法,所述方法包括以下步骤:在向所述个体施用化学疗法或放射之前,通过口服施用向所述个体施用足以使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的所述控制释放组合物持续足以预防GI综合征的时间段。提供了减轻正在经历化学疗法或放射疗法以治疗癌症的个体中的胃肠副作用的方法,所述方法包括以下步骤:在向所述个体施用化学疗法或放射之前,通过口服施用向所述个体施用足以使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的所述控制释放组合物持续足以提高胃肠细胞的存活并降低化学疗法或放射疗法副作用的严重程度的时间段。提供了治疗患有癌症的个体的方法,所述方法包括以下步骤:通过口服施用向所述个体施用使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的所述控制释放组合物持续足以预防GI综合征的时间段;以及向所述个体施用足以治疗癌症的量的化学疗法或放射。提供了治疗患有癌症的个体的方法,所述方法包括以下步骤:通过口服施用向所述个体施用使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的所述控制释放组合物持续足以提高胃肠细胞的存活并降低化学疗法或放射疗法副作用的严重程度的时间段;以及向所述个体施用足以治疗癌症的量的化学疗法或放射。提供了预防已暴露于足够剂量的放射而导致GI综合征或处于暴露于足够剂量的放射而导致GI综合征的风险的个体中的GI综合征的方法,所述方法包括以下步骤:向所述已暴露于足够剂量的放射而导致GI综合征或处于暴露于足够剂量的放射而导致GI综合征的风险的个体施用使胃肠细胞中的细胞内cGMP水平升高至足以预防GI综合征的量的所述控制释放组合物。提供了治疗已暴露于足够量的放射而导致放射病的个体的方法,所述方法包括以下步骤:通过口服施用向所述个体施用足以使胃肠细胞中的细胞内cGMP水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的升高胃肠细胞中的cGMP水平的控制释放组合物持续足以减轻胃肠损伤的时间段。提供了预防正在接受化学疗法或放射的个体中的副作用的方法,所述方法包括以下步骤:在施用化学疗法或放射之前,通过口服施用向所述个体施用所述控制释放组合物持续足以减轻对所述细胞的损伤的时间段,所述控制释放组合物使待保护的细胞中的cGMP水平升高至足以使所述细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性。提供了治疗患有癌症的个体的方法,所述方法包括以下步骤:向所述个体施用使待保护的细胞中的cGMP水平升高至足以使所述细胞的细胞增殖停滞和/或通过增强的DNA损伤感测和修复维持基因组完整性的量的所述控制释放组合物持续足以减轻对所述细胞的损伤的时间段;以及向所述个体施用足以治疗癌症的量的化学疗法或放射。
在一些实施方案中,方法包括递送一种或多种选自由以下组成的组的活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、鸟苷酸环化酶C(GCC)激动剂、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物,其中所述活性剂被配制用于控制释放,以使得至少一些(如果不是大部分或全部)活性剂的释放绕过胃并递送至十二指肠、小肠、大肠、结肠和/或直肠的组织。这些制剂在其中活性剂通过胃失活或被胃吸收、在任一种情况下由此阻止活性剂到达需要活性的胃下游的组织的那些情况下特别有用。在一些实施方案中,优选的释放部位是十二指肠。在一些实施方案中,优选的释放部位是小肠。在一些实施方案中,优选的释放部位是大肠。在一些实施方案中,优选的释放部位是结肠。绕过胃并在药物已经穿过胃后释放药物确保有效量的活性剂的组织特异性递送。
所述方法提供活性剂更有效地递送至包括十二指肠、小肠和大肠以及结肠的结肠直肠道。提供制剂以将活性剂递送至整个结肠直肠道或递送至其内的特定组织。
一些实施方案利用GCC激动剂、鸟苷酸环化酶A(GCA)激动剂 (ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂和/或环状GMP和/或cGMP类似物和/或由控制释放配制的PDE抑制剂,其中至少一些(如果不是大部分或全部) 活性剂的释放绕过胃并递送至十二指肠、小肠、大肠、结肠和/或直肠的组织。这些制剂在其中活性剂通过胃失活或被胃吸收、在任一种情况下由此阻止活性剂到达需要活性的胃下游的组织的那些情况下特别有用。在一些实施方案中,优选的释放部位是十二指肠。在一些实施方案中,优选的释放部位是小肠。在一些实施方案中,优选的释放部位是大肠。在一些实施方案中,优选的释放部位是结肠。
大多数肠溶包衣意图保护内容物免受胃酸的影响。因此,它们被设计成在穿过胃时释放活性剂。提供本文所用的包衣和包封物,以在通过结肠直肠道时释放活性剂。这可以若干方式来完成。
肠溶制剂在美国专利号4,601,896、美国专利号4,729,893、美国专利号4,849,227、美国专利号5,271,961、美国专利号5,350,741和美国专利号5,399,347中进行了描述。口服制剂和直肠制剂在 Remington's Pharmaceutical Sciences,第18版,1990,MackPublishing Co.,Easton Pa.中教导,所述文献以引用的方式并入本文。
根据一些实施方案,用足够量的包衣材料包衣或包封活性剂,使得包衣材料溶解和释放活性剂所需的时间与经包衣或包封的组合物从口行进至结肠直肠道所需的时间相对应。
根据一些实施方案,将活性剂用包衣材料包衣或包封,所述包衣材料直到与结肠直肠道中存在的条件接触才完全溶解并释放活性剂。此类条件可包括结肠直肠道中酶的存在、pH、张力或相对于小肠变化的其他条件。
根据一些实施方案,将活性剂用包衣材料包衣或包封,所述包衣材料被设计成在其从胃到小肠再到大肠时逐步溶解。活性剂在结肠直肠道中发生的最后阶段的溶解后释放。
在一些实施方案中,提供了用于在结肠直肠道的特定组织或区域例如十二指肠、小肠、大肠或结肠中释放活性剂的制剂。
可用于配制在施用时大肠特异性释放的活性剂的技术的实例包括但不限于:于1992年4月28日授予Allwood等人的美国专利号 5,108,758,其公开延迟释放制剂;于1993年6月8日授予Sekigawa 等人的美国专利号5,217,720,其公开在大肠中具有可释放性的包衣固体药物形式;于1996年7月30日授予Rhodes等人的美国专利号 5,541,171,其公开可口服施用的药物组合物;于1997年11月18日授予Bauer等人的美国专利号5,688,776,其公开交联多糖、其制备方法及其用途;于1998年12月8日授予Maniar等人的美国专利号 5,846,525,其公开用于口服施用的受保护的生物聚合物及其使用方法;于1999年1月26日授予Bolonick等人的美国专利号5,863,910,其公开胃肠道慢性炎症性病症的治疗;于2005年2月1日授予Vaghefi 等人的美国专利号6,849,271,其公开微胶囊基质微球、增强吸收的药物组合物和方法;于2005年12月6日授予Kudo等人的美国专利号6,972,132,其公开一种用于在下消化道中释放的系统;于2006年 11月21日授予Mukai等人的美国专利号7,138,143,其公开可溶于下消化道的包衣制剂;美国专利号6,309,666;美国专利号6,569,463;美国专利号6,214,378;美国专利号6,248,363;美国专利号6,458,383;美国专利号6,531,152;美国专利号5,576,020;美国专利号5,654,004;美国专利号5,294,448;美国专利号6,309,663;美国专利号5,525,634;美国专利号6,248,362;美国专利号5,843,479以及美国专利号5,614,220,所述专利各自以引用的方式并入本文。
控制释放制剂是众所周知的,包括特别适合于将活性剂释放到十二指肠中的那些。可使用的控制释放制剂的实例包括美国专利申请公布2010/0278912、美国专利号4,792,452、美国专利申请公布 2005/0080137、美国专利申请公布2006/0159760、美国专利申请公布 2011/0251231、美国专利号5,443,843、美国专利申请公布 2008/0153779、美国专利申请公布2009/0191282、美国专利申请公布2003/0228362、美国专利申请公布2004/0224019、美国专利申请公布 2010/0129442、美国专利申请公布2007/0148153、美国专利号5,536,507、美国专利号7,790,755、美国专利申请公布2005/0058704、美国专利申请公布2001/0026800、美国专利申请公布2009/0175939, US 2002/0192285、美国专利申请公布2008/0145417、美国专利申请公布2009/0053308、美国专利8,043,630、美国专利申请公布2011/0053866、美国专利申请公布2009/0142378、美国专利申请公布 2006/0099256、美国专利申请公布2009/0104264、美国专利申请公布 2004/0052846、美国专利申请公布2004/0053817、美国专利号 4,013,784、美国专利号5,693,340、美国专利申请公布2011/0159093、美国专利申请公布2009/0214640、美国专利5133974、美国专利 5026559、美国专利申请公布2010/0166864、美国专利申请公布 2002/0110595、美国专利申请公布2007/0148153、美国专利申请公布 2009/0220611、美国专利申请公布2010/0255087以及美国专利申请公布2009/0042889,所述专利各自以引用的方式并入本文。可用于配制在口服施用时持续释放的活性剂的技术的其他实例包括但不限于:美国专利号5,007,790、4,451,260、4,132,753、5,407,686、5,213,811、 4,777,033、5,512,293、5,047,248和5,885,616。
患者群体
在接受抗癌化学疗法或放射之前,可向正在经历化学疗法和/或放射疗法的患者提供组合物,所述组合物使包含分裂细胞的非癌症组织(如胃肠组织)中的cGMP水平升高以保护那些组织免受由针对分裂细胞的非特异性毒性带来的有害副作用。在存在化学治疗剂和/或放疗的时间段内维持升高水平的cGMP。通过升高非癌细胞中的cGMP 水平,个体患者将经历降低的毒性和副作用,所述毒性和副作用通常伴随化学疗法和放射。由于减轻对非癌细胞的副作用,因此可耐受更高剂量的化学疗法和放射。
正在经历放射疗法或用化学治疗药物如烷化剂、抗代谢药、蒽环类药物、植物生物碱、拓扑异构酶抑制剂和以某种方式影响细胞分裂或DNA合成和功能的其他抗肿瘤剂中的一种或多种治疗的个体通常将受益于保护正常分裂的非癌细胞,因为放射和化学疗法不是选择性的并且将影响正常分裂的非癌细胞以及癌细胞。
本发明方法中的患者患有癌症。在一些实施方案中,所述个体被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症。在一些实施方案中,缺乏功能性鸟苷酸环化酶C的癌症选自由以下组成的组:缺乏功能性鸟苷酸环化酶C的结肠直肠癌、缺乏功能性鸟苷酸环化酶C的食道癌、缺乏功能性鸟苷酸环化酶C的胰腺癌、缺乏功能性鸟苷酸环化酶 C的的肝癌、缺乏功能性鸟苷酸环化酶C的胃癌、缺乏功能性鸟苷酸环化酶C的胆道系统癌症、缺乏功能性鸟苷酸环化酶C的腹膜癌、缺乏功能性鸟苷酸环化酶C的膀胱癌、缺乏功能性鸟苷酸环化酶C的肾癌、缺乏功能性鸟苷酸环化酶C的输尿管癌、缺乏功能性鸟苷酸环化酶C的前列腺癌、缺乏功能性鸟苷酸环化酶C的卵巢癌、缺乏功能性鸟苷酸环化酶C的子宫癌以及缺乏功能性鸟苷酸环化酶C的腹部和骨盆的软组织癌(如肉瘤)。在一些实施方案中,所述个体被鉴定为患有缺乏功能性p53的癌症。在一些实施方案中,所述癌症缺乏功能性鸟苷酸环化酶C和功能性p53。在一些实施方案中,所述癌症是缺乏功能性p53的原发性结肠直肠癌。
毒性化学疗法
烷化剂在解剖治疗化学分类系统中分类在L01A下。这些剂通过在咪唑环的7号氮原子处附接至与DNA的鸟嘌呤碱基附接的烷基损伤DNA而起到抗癌剂的作用。烷化剂对正常细胞具有毒性并且当用作抗癌剂时可导致严重副作用。经典的烷基化剂包括真实烷基,包括氮芥类,如环磷酰胺、二氯甲基二乙胺或氮芥(HN2)、乌拉莫司汀或尿嘧啶氮芥、美法仑、苯丁酸氮芥、异环磷酰胺;亚硝基脲类,如卡莫司汀、洛莫司汀、链脲菌素;并且烷基磺酸盐类,如白消安、塞替派及其类似物通常但并非总是被认为是经典的。烷基化样基于铂的化学治疗药物(有时也称为铂类似物)虽然没有烷基,但仍然损伤DNA。这些化合物有时被描述为“烷基化样”,因为它们与DNA配位以干扰 DNA修复。这些剂也结合在鸟嘌呤的N7。烷基化样基于铂的化学治疗药物的实例包括顺铂、卡铂、奈达铂、奥沙利铂、沙铂和四硝酸三铂。尽管有时将铂剂描述为非经典,但更通常,非经典烷化试剂包括丙卡巴肼和六甲蜜胺。有时还在此分类中列出四嗪(达卡巴嗪、米托唑胺、替莫唑胺)。
抗代谢剂在ATC系统中分类在L01B下。它们是毒性化学物质,所述毒性化学物质抑制为正常代谢的一部分的代谢物的使用、从而通过干扰DNA产生且因此干扰细胞分裂和肿瘤生长而阻止细胞生长和细胞分裂。抗代谢剂对正常分裂细胞以及癌细胞均具有毒性,并且在用作抗癌剂时可导致严重副作用。抗代谢药包括嘌呤类似物,如硫唑嘌呤、巯基嘌呤、硫代鸟嘌呤、氟达拉滨、喷司他丁和克拉屈滨;嘧啶类似物,如5-氟尿嘧啶(5FU)、胸苷酸合酶抑制剂、氟尿苷、胞嘧啶阿拉伯糖苷(阿糖胞苷);以及抗叶酸剂,如甲氨蝶呤、甲氧苄啶、乙胺嘧啶、培美曲塞、雷替曲塞和普拉曲沙。
蒽环类药物是一类源自链霉菌细菌的抗癌药物。蒽环类药物作用机制包括通过插入在DNA/RNA链的碱基对之间来抑制DNA和RNA 合成,并且由此阻止快速生长的癌细胞的复制;抑制拓扑异构酶II 酶、防止超螺旋DNA松弛并且由此阻断DNA转录和复制,以及产生损伤DNA和细胞膜的铁介导的氧自由基。蒽环类药物的实例包括柔红霉素(道诺霉素)、脂质体柔红霉素、多柔比星(阿霉素 (Adriamycin))、脂质体阿霉素、表柔比星、伊达比星、戊柔比星和蒽环类药物类似物米托蒽醌。
通过防止微管功能而阻断细胞分裂的生物碱可用作抗癌剂。由于微管是细胞分裂所必需的,因此防止它们的形成可防止细胞分裂的发生。在ATC系统中分类在L01CA下的长春花生物碱结合至微管蛋白,并在细胞周期的M期抑制微管的组装。长春花生物碱包括长春新碱、长春碱、长春瑞滨和长春地辛。与长春花生物碱相似的秋水仙胺和诺考达唑是抗有丝分裂剂和抗微管剂的药物。鬼臼毒素(其在ATC系统中分类在L01CB下)是植物来源的化合物,所述化合物可用于生产阻止细胞进入G1期(DNA复制的开始)和S期(DNA的复制)的两种其他抑制细胞生长的药物,依托泊苷和替尼泊苷。在ATC系统中分类在 L01CD下的紫杉烷包括紫杉烷或紫杉醇(Taxol)。多西他赛是紫杉醇的半合成类似物。紫杉烷增强微管的稳定性,从而防止染色体在后期期间的分离。
在ATC系统中,一些拓扑异构酶抑制剂被分类在L01CB下,所述拓扑异构酶抑制剂抑制在维持DNA超螺旋中起着至关重要作用的拓扑异构酶。通过破坏适当的DNA超螺旋,抑制I型或II型拓扑异构酶干扰DNA的转录和复制。I型拓扑异构酶抑制剂的实例包括喜树碱:伊立替康和拓扑替康。II型抑制剂的实例包括安吖啶、依托泊苷、磷酸依托泊苷和替尼泊苷,它们是天然存在的生物碱表鬼臼毒素的半合成衍生物。
其他抗肿瘤化合物通过产生自由基起作用。实例包括细胞毒性抗生素,如博来霉素(L01DC01)、普卡霉素(L01DC02)和丝裂霉素 (L01DC03)。
毒性放射
放射疗法使用光子或带电粒子损伤癌细胞的DNA。损伤可以是直接或间接电离构成DNA链的原子。间接电离作为水电离的结果发生,从而形成自由基、尤其是羟基自由基,所述自由基然后损伤DNA。对DNA的直接损伤通过高LET(线性能量转移)带电粒子(如质子、硼、碳或氖离子)发生,所述带电粒子具有与肿瘤氧供应无关的抗肿瘤作用,因为这些粒子主要经由直接能量转移起作用,通常导致倍双链 DNA断裂。使用线性加速器经由二维束递送常规外部束放射疗法。立体定向放射是使用聚焦的放射束、从而使用非常细致的成像扫描靶向明确限定的肿瘤的特殊类型的外部束放射疗法。
除了放射疗法中使用的放射外,当个体无意中暴露于大量放射 (如故意或蓄意释放放射性物质的事故的结果)时,还可发生GI综合征和放射病。在此类事件中,可通过施用足以提高胃肠细胞内cGMP 水平升高至足以使所述胃肠细胞的细胞增殖停滞和/或通过增强的 DNA损伤感测和修复维持基因组完整性的量的能使胃肠细胞中的 cGMP水平升高的化合物持续足以减轻对胃肠细胞的损伤并预防GUI 综合征和/或放射病的时间段来预防GI综合征和/或放射病。在一些实施方案中,升高cGMP水平的化合物可在暴露于放射之后立即开始施用,或者在急救人员的情况下,在进入高水平放射的区域之前开始施用。在一些实施方案中,可将升高cGMP水平的化合物施用至正在经历放射病症状的个体。
正常分裂的非癌肠细胞的保护
可通过升高cGMP水平来实现对正常分裂的非癌肠细胞的保护。通过以足以实现升高的cGMP水平的量施用一种或多种化合物,可实现正常分裂的非癌肠细胞中cGMP水平的升高。将一种或多种化合物以足以在暴露于毒性化学疗法和/或放射之前和期间将cGMP维持在升高水平的量和频率递送至肠细胞。
在一些实施方案中,升高cGMP的化合物通过与细胞上存在的细胞受体相互作用而升高。可通过提供激动剂以接触由肠细胞表达的 GCC以激活受体的途径来递送GCC激动剂。在一些实施方案中,升高cGMP水平的化合物可通过其他方式被细胞摄取。例如,含有特异性PDE或MRP同种型的细胞将指示所用的抑制性化合物。例如,表达PDE5的细胞将通过使用PDE5抑制剂来保护,而表达MRP5的细胞将通过使用MRP5抑制剂来保护。在此类实施方案中,所述化合物可通过任何途径施用,以使得它们可被细胞摄取。
无论递送至细胞的机制如何,如果癌细胞是受升高的cGMP水平保护的类型并且所用化合物可影响此类细胞,则递送的剂量和途径优选使癌细胞的摄取最小化。在其中使用GCC激动剂增加正常肠细胞中的cGMP水平的实施方案中,优选经口递送至肠道。在到达肠道之前,必须保护化合物免于降解或摄取。许多已知的GCC肽激动剂在胃的酸性环境中稳定,并且在穿过胃到达肠道时将以活性形式存活。一些化合物可能需要肠溶包衣。在内衬肠道的细胞中GCC表达的情况下,例如通过口服或直肠施用,通过局部递送将GCC激动剂直接递送至肠的内部特别有用,在于肠道外的细胞不会暴露于GCC激动剂,因为肠组织的紧密连接阻止大多数GCC激动剂的直接通过。
在分裂的非癌肠细胞中,升高cGMP水平的化合物的递送的量和持续时间足以在暴露于毒性化学疗法和放射之前和期间维持水平升高至保护水平。结果将是通过p53介导的细胞存活来保护足够数量的此类细胞,以有效降低副作用的严重程度和/或允许使用高水平的化学疗法和放疗,而不会致死或引起不希望或不可耐受水平的副作用。
在一些实施方案中,将一种或多种提高cGMP水平的化合物配制成适于胃肠外施用的可注射药物组合物,如通过静脉内、动脉内、肌内、皮内或皮下注射。因此,所述组合物是具有可注射产品所需的结构/物理特性的无菌、无热原的制剂:即,其满足本领域技术人员公认的关于纯度、pH、等渗性、无菌性和微粒物质的熟知标准。
在一些优选的实施方案中,一种或多种提高cGMP水平的化合物口服或经直肠施用,并将所述组合物配制为适于口服或直肠施用的药物组合物。提供提高cGMP水平的一种或多种化合物的一些实施方案被提供为适合于口服施用并且被配制用于持续释放。提供提高cGMP 水平的一种或多种化合物的一些实施方案被提供为适合于口服施用并且通过肠溶包衣配制以在肠中释放活性剂。肠溶制剂描述于美国专利号4,601,896、美国专利号4,729,893、美国专利号4,849,227、美国专利号5,271,961、美国专利号5,350,741和美国专利号5,399,347中,在Remington's Pharmaceutical Sciences,第18版,1990,Mack PublishingCo.,Easton Pa.中教导了口服和直肠制剂。
替代实施方案包括提供一种或多种提高cGMP水平的化合物的连续递送的持续释放制剂和植入装置。在一些实施方案中,局部、鞘内、心室内、胸膜内、支气管内或颅内施用高cGMP水平的一种或多种化合物。
一般而言,在细胞潜在地暴露于毒性化学疗法或放射的时间段期间,提高cGMP水平的一种或多种化合物必须以足够的水平存在提高 cGMP水平的持续量的时间。一般而言,必须首先和/或通过连续施用来施用足够的提高cGMP水平的一种或多种化合物,以在使患者暴露于毒性化学疗法或放射的大部分时间段(如果不是整个时间段)内维持足以维持cGMP水平升高的浓度。优选地,足以增强p53介导的细胞存活的升高的cGMP水平维持至少约6小时、优选地至少约8小时、更优选地约至少约12小时,在一些实施方案中至少16小时,在一些实施例中至少20小时,在一些实施方案中至少24小时,在一些实施方案中至少36小时,在一些实施方案中至少48小时,在一些实施方案中至少72小时,在一些实施方案中至少96小时,在一些实施方案中至少一周,在一些实施方案中至少两周,在一些实施方案中至少三周且多达约4周或更长时间。重要的是,剂量和施用足以使cGMP 水平升高,其量对于增强p53介导的细胞存活的足够时间而言足够,以使得降低副作用的严重程度和/或可增加化学治疗或放射的可耐受剂量。取决于已知因素,如具体药剂的药效特性及其施用模式和途径;接受者的年龄、健康以及体重;症状的性质和程度、同时治疗的种类、治疗频率以及所期望的效果,剂量有所不同。
在一些实施方案中,向个体施用GCC激动剂,如具有SEQ ID NO:2、3或5-60的肽,在实践所述方法中,所述化合物可单独施用或与其他化合物组合施用。在所述方法中,所述化合物优选地与根据所选择的施用途径和标准药学实践选择的药学上可接受的载体一起施用。考虑所述方法中使用的化合物的每日剂量将在每天约1微克至约10克的范围内。在一些优选的实施方案中,每日剂量化合物将在每天约10mg至约1克的范围内。在一些优选的实施方案中,每日剂量化合物将在每天约100mg至约500mg的范围内。考虑在所述方法 (即本发明)中使用的化合物的每日剂量将在每千克体重约1μg至约 100mg的范围内,在一些实施方案中,在约1μg至约40mg/kg体重的范围内;在一些实施方案中,在每天约10μg至约20mg/kg体重的范围内,在一些实施方案中,在每天10μg至约1mg/kg的范围内。药物组合物可以单剂量、分次剂量或持续释放的形式施用。在一些优选的实施方案中,化合物将以每天多个剂量的形式给药。在一些优选的实施方案中,化合物将以每天3-4个剂量施用。施用化合物的方法包括以药物组合物的形式口服以固体剂型如胶囊、片剂和粉末、或以液体剂型例如酏剂、糖浆和悬浮液口服施用。可将化合物与粉末状载体混合,所述载体如乳糖、蔗糖、甘露醇、淀粉、纤维素衍生物、硬脂酸镁和硬脂酸,以插入到明胶胶囊中或用于形成到片剂中。片剂和胶囊都可制成持续释放产品,以在数小时时间段内提供药物的连续释放。压缩片剂可以是糖或薄膜包衣以掩蔽任何令人不愉快的味道并保护片剂不受大气的影响,或肠溶包衣以在胃肠道中选择性崩解。在一些优选的实施方案中,化合物经经口递送并用肠溶包衣进行包衣,所述肠溶包衣使化合物在通过胃并进入肠道时、优选在进入大肠时可用。以引用的方式并入本文的美国专利号4,079,125教导肠溶包衣,所述肠溶包衣可用于制备可用于本发明方法中的本发明的肠溶包衣化合物。除了药学上可接受的稀释剂(如水、缓冲液或盐溶液)外,用于口服施用的液体剂型还可含有着色剂和调味剂,以提高患者接受度。对于胃肠外施用,可将化合物与适合的载体或稀释剂如水、油、盐溶液、水性右旋糖(葡萄糖)和相关的糖溶液以及二醇如丙二醇或聚乙二醇混合。用于胃肠外施用的溶液优选含有化合物的水溶性盐。还可添加稳定剂、抗氧化剂和防腐剂。适合的抗氧化剂包括亚硫酸氢钠、亚硫酸钠和抗坏血酸、柠檬酸及其盐以及EDTA钠。适合的防腐剂包括苯扎氯铵、对羟基苯甲酸甲酯或对羟基苯甲酸丙酯和氯丁醇。
在一些癌症中的致敏活性
如上所述,cGMP在包括肺癌、乳腺癌、前列腺癌、结肠直肠癌和肝癌细胞的多种癌细胞中响应于化学疗法或放射疗法所致的DNA 损伤而促进细胞死亡。考虑到cGMP对肠中细胞死亡的组织特异性作用,肠细胞中的cGMP增加结合化学疗法或放射疗法减轻GI副作用,并且在一些情况下可增强针对肺癌、乳腺癌、前列腺癌、结肠直肠癌和肝癌的治疗功效。
在当cGMP水平升高时更易于化学疗法或放射疗法诱导的细胞死亡的类型的癌症的治疗中,可以一定剂量且通过将足够的化合物递送至癌细胞以增加化学疗法和放射疗法杀伤癌细胞的有效性的方式的施用途径施用升高cGMP的化合物。在一些实施方案中,所述化合物可增强癌细胞中化学疗法或放射疗法诱导的细胞死亡,同时通过 p53介导的细胞存活保护非癌细胞免受化学疗法或放射疗法的影响。
其他细胞类型
在一些实施方案中,正常的非分裂细胞可以是cGMP升高可增强 p53介导的细胞存活的其他类型的细胞。在一些实施方案中,正常的非分裂细胞可以是毛囊、皮肤、肺、鼻腔通道、口腔中的其他粘膜或组织。化合物可局部递送至头皮或口腔组织,包括口腔、舌头、牙龈和颊组织,优选配制用于局部摄取且全身摄取最小。可使用吸入装置和/或鼻喷雾剂递送化合物,优选地将化合物配制用于局部摄取且全身摄取最小。类似地,可配制在正常分裂的非癌细胞如粘膜的其他细胞或如皮肤细胞中升高cGMP水平的化合物,以优先摄取并直接递送至此类细胞。这种递送可包括眼内、阴道内、尿道内、直肠/肛门或局部。
可通过p53介导的细胞存活通过升高的cGMP保护的分裂的非癌细胞中升高cGMP水平的化合物的递送量和持续时间是足以在暴露于毒性化学疗法和放射之前和期间维持水平升高至保护水平。结果将是通过p53介导的细胞存活来保护足够数量的此类细胞,以有效降低副作用的严重程度和/或允许使用高水平的化学疗法和放疗,而不会致死或引起不希望或不可耐受水平的副作用。
实施例
实施例1
治疗性放射和遗传毒性化学疗法是癌症治疗医疗设备的一部分。这些遗传毒性剂通常由于对正常组织的损伤而受其剂量的限制。我们已经发现,细胞信号传导分子环状GMP可以通过p53依赖性机制防止对细胞的遗传毒性损伤。这里,我们描述了一种通过鉴定呈GUCY2C阴性或携带突变型p53的肿瘤来改善通过放射或化学疗法治疗结直肠肿瘤的方法。对于这些肿瘤,可以使用GUCY2C激活剂(例如,ST、利那洛肽(linaclotide)(SEQ ID NO:59,普卡那肽 (plecanatide)SEQ ID NO:60))以剩下正常的肠上皮,而不影响遗传毒性剂(例如放射、化学疗法)的治疗功效。以这种方式,可以施加更高剂量的遗传毒性疗法来杀伤肿瘤,而不引起正常组织损伤。另外,本文提供了使用遗传毒性剂与升高组织中环状GMP以增加这些剂的治疗剂量同时剩下具有野生型p53的正常组织的药剂(如,一氧化氮、利尿钠肽、磷酸二酯酶抑制剂)的组合来改善针对具有突变型p53的肿瘤的肠外肿瘤疗法的方法。
目前,没有允许选择性杀伤肿瘤但选择性地剩下正常组织的细胞保护剂。此发现利用对环状GMP的细胞保护作用及其对野生型p53 的依赖性的独特见解来实现这种独特的选择性。目前,抗肿瘤疗法的最大限制之一是治疗窗口-杀伤肿瘤的剂量与杀伤正常组织的那些剂量之间的差异。本发明提供了改善治疗窗口的机会。
在一些实施方案中,对于在肠中出现的肿瘤-如果它们呈GCC 阴性或是p53的突变体,则使用GCC(也称为GUCY2C)配体来创建在正常肠上皮中的抗性,但维持肿瘤中的遗传毒性作用。这改善了遗传毒性疗法的治疗窗口。
在一些实施方案中,对于在肠外出现并且携带在p53中的突变的肿瘤,使用升高组织中的环状GMP的药剂(例如,一氧化氮产生剂、利尿钠肽及类似物、磷酸二酯酶抑制剂)来改善遗传毒性疗法的治疗窗口,这将允许杀伤肿瘤细胞但剩下正常组织。
治疗窗口是在几乎所有肿瘤细胞治疗范例中的速率限制因素。
高剂量的电离放射诱导对胃肠(GI)道的上皮细胞的急性损伤,从而介导限制放射在癌症中的治疗功效以及在核灾难中的发病率和死亡率的毒性。尚无经批准的预防或疗法,部分反映了对促成急性放射诱导的GI综合征(RIGS)的机制的不完全了解。鸟苷酸环化酶 C(GUCY2C)及其激素鸟苷蛋白和尿鸟苷蛋白最近已作为一种旁分泌轴出现,所述旁分泌轴防护肠粘膜完整性免受突变、化学和炎性损害。这里,我们揭示了GUCY2C旁分泌轴在对抗RIGS的补偿机制中的作用。消除GUCY2C信号传导使RIGS加剧,从而放大放射诱导的死亡率、体重减轻、粘膜出血、乏力和肠功能障碍。在该情况下,在致死性辐照诱导RIGS后,保留了肠上皮细胞对GUCY2C、鸟苷蛋白和尿鸟苷蛋白mRNA和蛋白质的持久表达。此外,经口递送热稳定性肠毒素(ST)(一种外源性GUCY2C配体)对抗了RIGS,RIGS是一种需要通过与MDM2解离介导的p53激活的过程。反过来,p53激活通过选择性地限制有丝分裂灾难而非细胞凋亡来防止细胞死亡。这些研究揭示了GUCY2C旁分泌激素轴作为对抗RIGS的新型补偿机制的作用。他们强调口服GUCY2C激动剂(LinzessTM;TrulanceTM)预防和治疗癌症疗法和核灾难中的RIGS的潜力。
引言
在恐怖袭击或自然灾难的情况下暴露于放射会在约10天内产生死亡,反映出对胃肠(GI)道的毒性,构成了急性放射诱导的GI综合征(RIGS)(1-3)。与其中可以通过骨髓移植预防死亡的放射诱导的骨髓毒性相比,尚无经批准的预防或治疗RIGS的管理范例(4)。重要的是,放射疗法仍然是全球死亡的主要原因癌症的管理支柱。
放射疗法破坏迅速增殖的癌细胞,并且不可避免地破坏以连续再生程序为特征的正常组织,包括毛囊、骨髓、GI道以及其他腺状上皮细胞(5)。在该情况下,放射的剂量限制性毒性阻碍患者完成疗法;限制最大放射剂量,这限制了治疗功效;并且可能导致慢性发病率和死亡率(5)。管理不充分部分反映了对RIGS的潜在机制的不完全了解。实际上,介导RIGS的潜在上皮毒性的关键分子机制和细胞靶标仍有争议(6-14)。最近的研究表明,肠上皮细胞中的p53主要控制小鼠中放射诱导的GI毒性,不依赖于细胞凋亡(7)。在该情况下,内在细胞凋亡途径从肠内皮或上皮细胞的缺失未能保护小鼠免受GI毒性相关的死亡(7)。
相比之下,肠上皮细胞p53的组织特异性靶向缺失加剧了小鼠中的RIGS,而其过表达拯救了小鼠中的RIGS(7,14)。然而,放射诱导的肠上皮细胞死亡和肠粘膜损伤的潜在机制仍然不确定(7)。GUCY2C 是内源性旁分泌激素鸟苷蛋白(GUCA2A)和尿鸟苷蛋白(GUCA2B)的肠受体以及由腹泻性细菌产生的热稳定性肠毒素(ST)(15-17)。此信号传导轴在以下方面起着主要作用:粘膜生理学、调控流体和电解质分泌(15,16);以及协调隐窝表面内稳态,调控肠上皮细胞增殖、分化、代谢、细胞凋亡、DNA修复和上皮间充质串扰(18-20)。此外,此轴维持肠屏障,从而对抗由致癌物、炎症和放射诱导的上皮损伤,并且其功能障碍有助于炎性肠病和肿瘤发生的病理生理学(19-30)。虽然 GUCY2C信号传导轴已经作为肠上皮完整性的一个保护者出现,但此轴在对致死性放射的响应中的作用及其作为预防和治疗RIGS的治疗靶标的实用性仍然不确定(22)。
这里,我们定义了GUCY2C旁分泌激素轴在对抗RIGS的补偿响应中的新型作用。实际上,消除GUCY2C信号传导会放大放射诱导的GI毒性。在该情况下,在诱导RIGS的高剂量放射后,保留了GUCY2C、GUCA2A和GUCA2B mRNA和蛋白质的持久表达。此外, GUYC2C配体ST的经口施用通过p53依赖性机制对抗RIGS,所述 p53依赖性机制与选择性地从有丝分裂灾难中而非从细胞凋亡中拯救肠上皮细胞相关。这些观察结果揭示了针对由高剂量的放射诱导的上皮损伤的先前未被识别的补偿机制,涉及通过对抗RIGS的GUCY2C 旁分泌轴的信号传导。他们强调口服GUCY2C靶向药剂预防或治疗在癌症放射疗法或通过核事故或恐怖引起的环境暴露的背景中的 RIGS的潜力。最近对利那洛肽(LinzessTM)和普卡那肽(TrulanceTM)(它们是治疗慢性便秘的口服GUCY2C配体)的监管批准强调了立即调动这些方法的机会(31)。
材料和方法
动物模型
具有GUCY2C(Gucy2c-/-)的靶向种系缺失的小鼠已被很好地表征,并且在对C57BL/6背景回交>14代之后使用(15,16,18-20,26,32)。p53FL-vil-Cre-ERT2小鼠是通过将vil-Cre-ERT2(由S.Robine,Institut Curie-CNRS,France提供)与p53FL转基因小鼠(混合的FVB.129和 C57BL/6背景,由Dr.Karen Knudsen,Thomas Jefferson University,Philadelphia,PA友情提供)杂交而产生的。通过向F2 p53FL-vil-Cre-ERT2和对照同窝动物p53t+-vil-Cre-ERT2进行IP施用他莫昔芬(75mg他莫昔芬/kg/d x 5d)来诱导肠上皮细胞中p53的双等位基因丢失(p53int-/-),并且在结构上通过免疫印迹分析磷酸化p53 并且在功能上通过放射诱导的死亡率来确认缺失。如上所述,所有实验均用在2至3.5个月大的小鼠(雄性和雌性混合)进行,并且所有小鼠均处于混合遗传背景下。在适当的情况下,使用年龄匹配和同窝动物对照以最小化遗传背景的影响。用于口服ST或对照肽补充研究的C57BL/6小鼠从NIH(NCI-Frederick)获得,而用于GUCY2C和配体表达分析的那些小鼠从Jackson Laboratory(Bar Harbor,ME)获得。这项研究得到了托马斯杰斐逊大学(ThomasJefferson University)的动物护理和使用委员会机构(Institutional Animal Care andUse Committee)的批准(协议01518)。
伽马辐照诱导的GI毒性
对麻醉的小鼠用全身伽马辐照(TBI)进行辐照,或者在用铅盖防护后肢至尾巴和前肢至头部的情况下进行大部全身辐照(STBI),暴露腹部区域(剑突至耻骨联合的大约1英寸2)。对于从8至25Gy/小鼠的不同剂量,以大约70cGy/min的剂量率用137Cs辐照仪(Gammacell 40)辐照小鼠。在辐照之前和之后,小鼠自由获得常规食物和水。通过死亡率、乏力(不整洁的毛皮)、体重、可见腹泻、粪便潜血、粪便形成、粪便积水和组织病理学评价GI毒性的严重性。
ST和对照肽
ST1-18和对照肽(CP;失活的ST类似物含有相同的一级氨基酸序列,但在位置5、6、9、10、14、17处的半胱氨酸被丙氨酸替代) 购自Bachem Co(客户订单;纯度>99.0%)。将ST和对照肽以50ng/μL 的浓度重悬于1X磷酸盐缓冲盐水(PBS)中。对于辐照前14d和辐照后14d,每天使用饲喂针(目录号01-208-88,Fisher Scientific)(26)向小鼠口服灌饲10μg的CP或ST(在200μL溶液中)。ST和CP是通过固相合成制备并通过反相HPLC纯化的,其结构通过Bachem Co.(客户订单;纯度>99.0%)的质谱确认,并且其活性通过在乳鼠测定中定量竞争性配体结合、鸟苷酸环化酶激活和分泌来确认(16,33)。
试剂
McCoy氏5A和杜尔贝科氏改良的伊格尔培养基(Dulbecco's Modified EagleMedium,DMEM)(含有10%胎牛血清)以及用于细胞培养的其他试剂从Life Technologies(Rockville,MD)获得。8-溴鸟苷3’, 5’-环状一磷酸(8-Br-cGMP)(cGMP的细胞可渗透类似物)从Sigma(St. Louis,MO)获得,并且在所有实验中均使用500μM(18,20,25,26,34)。
细胞系
从ATCC获得C57BL/6-来源的EL4淋巴瘤细胞(小鼠胸腺中的淋巴细胞;胸腺瘤)和C57BL/6来源的B16黑色素瘤细胞。缺乏 GUCY2C(19,34,35)的HCT116(野生型p53)人结肠癌细胞购自ATCC。同基因HCT116-p53-裸细胞是来自Dr.Bert Vogelstein(Johns HopkinsUniversity,MD)的礼物(36)。
异位肿瘤接种和生长测量
将EL4和B16细胞(每次注射104个细胞)皮下注射到小鼠侧腹 (EL4,左;以及B16,右)中。每3d测量一次肿瘤生长,并且通过乘以3个肿瘤维度来计算肿瘤体积。与CP相比,在用ST治疗的小鼠中观察到在大部全身辐照之前和之后的肿瘤生长没有显著差异。
免疫印迹分析
将蛋白质在T-Per试剂(Pierce,Dallas,TX)中从小鼠小肠和结肠粘膜中,或从Laemmli缓冲液中的体外细胞裂解物中提取,并且补充了蛋白酶和磷酸酶抑制剂(Roche,Indianapolis,IN)。使用针对以下的抗体通过免疫印迹分析对蛋白质进行定量:来自CellSignaling Technology(Danvers,MA)的磷酸化组蛋白H2AX(目录号2577,1:200 稀释)、磷酸化p53(目录号9284,1:200稀释)、切割的半胱天冬酶 3(目录号9579,1:200稀释)、Mdm2(目录号3521,1:200稀释)和 GAPDH(目录号2118,1:200稀释);来自Millipore(Billerica,MA)的磷酸化组蛋白H2AX(目录号05-636,1:1000稀释);以及来自Santa Cruz(Santa Cruz,CA)的p53(目录号sc-126,1:1000稀释)。先前已验证针对GUCY2C的抗体(25,26)。针对GUCA2A和GUCA2B的抗血清由Dr.Michael Goy(University of North Carolina,ChapelHill,NC)慷慨提供(37,38)。与辣根过氧化物酶缀合的二抗来自Jackson ImmunoresearchLaboratories(West Grove,PA)。将通过密度测定法定量的特异性条带的染色强度归一化至使用Kodak成像系统的GAPDH 的染色强度。平均相对强度反映了每个组中至少三只动物的平均值和至少两个独立实验的平均值。用于免疫印迹分析的分子量标记(目录号10748010,每次运行5μL,或者目录号LC58005,每次运行10μL) 来自Invitrogen(GrandIsland,NY)。对轻链具有特异性的二抗(包括山羊抗小鼠IgG(目录号115-065-174)和小鼠抗兔IgG(目录号 211-062-171))来自Jackson Inununoresearch Laboratories(Suffolk,UK),用于免疫沉淀后的免疫印迹分析。
免疫沉淀
在补充有蛋白酶和磷酸酶抑制剂的1%NP40免疫沉淀(IP)裂解缓冲液中提取来自8-10x 106个HCT116细胞的蛋白质,并且将其与来自Cell Signaling Technology的针对Mdm2的抗体(目录号3521,5μg) 和来自Santa Cruz的针对p53的抗体(目录号sc-126,1μg)和蛋白A 珠(Invitrogen,Grand Island,NY)一起孵育过夜,随后洗涤六次。将沉淀的蛋白质收集在补充有蛋白酶和磷酸酶抑制剂(Roche)的Laemmli 缓冲液(具有5%β巯基乙醇)中,并且使用来自Cell Signaling Technology的针对Mdm2的抗体(目录号3521,1:200稀释)和来自 Santa Cruz的针对p53的抗体(目录号sc-126,1:1000稀释)通过免疫印迹分析进行定量。小鼠IgG(5μg,目录号10400C,Invitrogen)和兔 IgG(5μg,目录号10400C,Invitrogen)是用于免疫沉淀的同种型对照。
免疫组织化学和免疫荧光
通过在10mM柠檬酸缓冲液(ph 6.0)中于100℃下加热10min,使抗原在石蜡包埋的切片(5μm)中暴露。除了已经描述的那些以外,此处探测的针对抗原的抗体包括:来自CellSignaling(目录号2577,1: 200稀释)、或来自Millipore(目录号05-636,1:1000稀释)的磷酸化组蛋白H2AX,来自Cell Signaling的切割的半胱天冬酶3(目录号 9579,1:200稀释)和来自Santa Cruz的β-连环蛋白(目录号sc-7199, 1:50稀释)。先前描述了针对GUCY2C的抗体(25,26)以及针对GUCA2A和GUCA2B的抗血清(37,38)。荧光二抗来自Invitrogen。使用酪胺信号放大(Tyramide signal amplification)检测GUCY2C和 GUCA2A;与辣根过氧化物酶缀合的二抗来自Jackson Immunoresearch Laboratories(目录号115-035-206和号111-036-046,1: 1000稀释),并且荧光素缀合的酪胺由酪胺HCl(目录号T2879,Sigma) 和NHS-荧光素(目录号46410,Thermo Scientific)制备(39)。
将磷酸化组蛋白H2AX-阳性细胞以每只动物每切片200-1000个隐窝进行定量,并且将阳性细胞归一化至隐窝数量。如果在每个组中有至少3只动物,则结果反映了平均值±SEM。使用针对以下抗原的抗体在HCT116和HCT116 p53-裸细胞中进行免疫荧光染色,所述抗原包括:来自Cell Signaling的α/β-微管蛋白(目录号2148,1:200稀释)和来自Abcam的γ-微管蛋白(目录号ab11317,1:100稀释, Cambridge,MA)。用来自Life Technologies-Thermo Fischer Scientific(Waltham,MA)的EVOS FL自动细胞成像系统捕获荧光图像。
细胞处理、辐照和集落形成测定
将HCT116和HCT116 p53-裸细胞以1x 104个细胞/孔铺板在6 孔培养皿中,随后用媒介物或细胞可渗透cGMP(8-Br-cGMP,500μM) 处理7d。每隔一天更换含有不同处理的培养基。在暴露于放射(0-4Gy) 之后,将细胞胰蛋白酶化并且根据处理的效力以不同密度铺板在6孔培养皿中(对于在0、1和2Gy下暴露的HCT116为104个细胞/孔;对于在0、1和2Gy下暴露的HCT116 p53-裸为4x 104个细胞/孔;对于在3和4Gy下暴露的HCT116为50x 104个细胞/孔;对于在3 和4Gy下暴露的HCT116 p53-裸为200x 104个细胞/孔)。在辐照之后,将细胞用媒介物或8-Br-cGMP处理7d,然后固定并用于70%乙醇中的10%亚甲蓝染色。对定义为>50个细胞/集落的集落数量进行计数,并且将存活分数计算为经处理的样品中的集落数量与由未经辐照的细胞产生的集落数量之比。在三个独立实验中,对于每种条件使用一式三份样品。
后期桥指数(ABI)和非整倍性
将用8-Br-cGMP预处理的细胞或对照细胞辐照(5Gy),然后接种到24孔板的盖玻片上(每孔5X 104个细胞)。在辐照后2d对ABI和非整倍性定量。
ABI:将细胞固定在4%PFA中并用DAPI染色。分析后期细胞,并且在荧光显微镜下计算异常的后期细胞。在每个独立实验的每个处理组中分析超过200个后期细胞。枚举显示在两个纺锤极之间的染色体桥接延长的具有后期桥或后期滞后的任何异常后期细胞,并且将 ABI计算为异常后期细胞占总体后期细胞的百分比。
非整倍性:将细胞固定在4%PFA中并用DAPI染色,并且使用α/β-微管蛋白特异性抗体和着丝粒特异性γ-微管蛋白抗体进行免疫荧光染色,用来自Invitrogen的Alexa
Figure BDA0002455538470000701
555或Alexa
Figure BDA0002455538470000702
488 标记的二抗进行检测。使用激光共聚焦显微镜(Zeiss510M和Nikon C1 Plus,Thomas Jefferson University Bioimaging Shared Resource)获取图像,并且在室温下用100x 1.3NA油浸物镜收集在z轴上的0.5μm 光学切片。使用LSM图像浏览器(Zeiss)进行迭代恢复,并且图像代表在z轴上的三个至四个合并平面。如果细胞含有超过两个中心体或者两个中心体(位于与在两级的着丝粒分开的纺锤体中央区相同方向上),则对异常后期染色单体计数。
定量RT-PCR分析
使用先前所述的引物和条件通过RT-PCR对GUCY2C、GUCA2A 和GUCA2B的转录物进行定量(25,26)。
125I标记的ST结合
如先前所述进行125I标记的ST与GUCY2C的结合(33)。简言之,如先前所述从细胞中制备膜(33),并且将ST碘化(125ITyr4-ST)使其最终比活为2,000Ci/mmol(33)。在不存在未标记的ST竞争的情况下,通过每分钟计数(CPM)测量总结合,然而在1x 10-5M未标记的ST的存在下测量非特异性结合。通过从总结合中减去非特异性结合来计算特异性结合(33)。至少按一式三份进行测定。
统计分析
除非另有说明,否则通过未配对两尾学生t检验确定统计显著性。结果代表来自至少3只动物或一式三份进行的3个实验的平均值± SEM。通过Kaplan-Meier分析对存活和无病存活进行分析。使用脆弱模型分析体重,所述脆弱模型组合了体重的分段线性纵向模型、存活时间的对数正态模型、和体重随机断点(拐点)的对数正态模型。通过 Cochran-Mantel-Hansel检验进行粪便潜血和不整洁皮毛的分析。通过在四种处理中成对比较通过线性回归获得的等温线斜率来分析集落形成。
结果
使GUCY2C沉默加剧了RIGS。GUCY2C在对抗由低剂量的电离放射诱导的上皮细胞细胞凋亡中的作用(22)表明此受体可能在 RIGS中起作用。Gucy2c的靶向种系缺失(Gucy2c-/-小鼠)(15,16,18-20,26,32)加速了在暴露于致死剂量(高剂量,15Gy)的全身辐照后的小鼠死亡(TBI;图1A)。此剂量的放射通过诱导RIGS产生死亡,RIGS不能通过骨髓移植来拯救,相比之下低剂量(8Gy)放射产生造血综合征,而非GI综合征(图1B)。类似地,使GUCY2C信号传导沉默加剧了通过在通过防护进行骨髓保存的情况下在18Gy大部全身腹部辐照(STBI)后的腹泻(图1C)和降低的存活(图1D)定量的急性GI毒性。在不存在GUCY2C信号传导的情况下RIGS的加剧与增加的肠功能障碍相关,所述肠功能障碍包括体重减轻(图1E)、肠出血(图1F)、乏力(不整洁皮毛,图1G)(40)和粪便积水(图1H)(41)。使GUCY2C信号传导沉默放大了小肠中通过STBI产生的肠上皮破坏 (定量为隐窝损失)(图1I-1J)。此外,它在结肠中创建了新的上皮脆弱性,其对RIGS具有相对抗性(图1K-1L)(1-5)。总之,这些观察结果揭示,GUCY2C信号传导轴在调节促成RIGS的机制中起补偿作用。
GI毒性辐照保留GUCY2C及其旁分泌激素的持久表达。 GUCY2C旁分泌激素轴在对抗RIGS的补偿机制中的作用是根据在高剂量的放射后受体及其激素表达的持续而断定的。实际上,沿着整个隐窝-绒毛轴特征性地表达的GUCY2C mRNA和蛋白质(17)在致死性 TBI后被持久保存(图2A、2D、2G),这是类似于破坏上皮完整性的其他情况(包括肿瘤发生)的一个结果(18-20,25)。出乎意料的是,与其中失去配体表达的破坏上皮完整性的其他模式(包括肿瘤发生、炎性肠病和代谢应激)形成对比,GI毒性TBI保留了GUCA2A(图2B、图 2E、图2H)和GUCA2B(图2C、图2F、图2I)的表达(18-21,25,26)。实际上,如先前所述,在小肠中低的GUCA2A表达主要保留在分离的上皮细胞中(42)。相比之下,作为小肠中的主要GUCY2C激素的 GUCA2B的表达主要被远端绒毛中分化的上皮细胞保留(42)。受体和激素表达的保留是持久的,并且在损害响应的整个时程中mRNA或蛋白质水平均无显著差异(图2)。此外,激素表达的保留与GUCY2C 表达无关。这些观察结果与GUCY2C旁分泌激素信号传导轴在对抗急性放射诱导的GI毒性的补偿响应中的作用是一致的。
此外,在整个损害响应的连续时间中受体表达的持续性表明 GUCY2C作为预防RIGS的治疗靶标的潜在实用性。通过口服配体进行的GUCY2C激活会拯救RIGS,但不会拯救GI外肿瘤对放射的响应。在野生型小鼠中,经口施用ST(一种外源性GUCY2C配体)降低了通过STBI诱导的发病率和死亡率,所述发病率和死亡率分别通过腹泻的发生(图3A)和存活(图3B)定量。类似地,口服ST对抗STBI 诱导的肠功能障碍,包括体重减轻(图3C)、肠出血(图3D)、乏力(图 3E)和粪便积水(图3F)。此外,口服ST拯救了肠形态和粪便形成(图 3G),并且在STBI之后拯救了与正常组织学的保留相关的水再吸收(图3H)。相比之下,口服ST不拯救在Gucy2c-/-小鼠中的RIGS。此外,口服ST不改变放射敏感型胸腺瘤或放射抗性黑色素瘤的治疗性放射响应(图3I)。此外,长期口服ST是安全的,没有像腹泻(图3J) 或生长迟缓(图3K)的不利的药理作用。这些观察结果支持如下的建议:GUCY2C信号传导包括可以被经口施用的配体所参与的对抗 RIGS的补偿机制。实际上,GUCY2C配体安全地且特异性地保护肠上皮细胞(26),而不会改变对肠外肿瘤放射的治疗响应。对抗RIGS 的GUCY2C信号传导需要p53。GUCY2C信号传导保护肠上皮细胞免受低剂量放射诱导的凋亡(22)。然而,虽然使GUCY2C信号传导沉默增加了小肠中细胞凋亡的基础水平,如先前所证实(18),但是它并不改变与在整个损害响应的连续时间中沿着肠的延髓-尾轴 (rostral-caudal axis)的RIGS相关的细胞凋亡(图4A)。在该情况下,p53 还通过不依赖于细胞凋亡的机制对抗RIGS(7)。实际上,消除p53表型复制了(phenocopied)GUCY2C沉默,从而加剧RIGS相关的死亡率 (图1D)。此外,通过口服ST激活GUCY2C改善了在STBI后野生型小鼠而非p53int-/-小鼠的存活(图4B)。此外,GUCY2C激活对抗野生型小鼠而非p53int-/-小鼠中的STBI诱导的肠功能障碍,所述STBI 诱导的肠功能障碍通过体重减轻(图4C)、肠出血(图4D)和乏力(图4E) 来定量。这些观察结果表明,GUCY2C信号传导轴通过需要p53的机制对抗RIGS。对抗RIGS的GUCY2C信号传导与p53响应的放大相关。与p53在介导GUCY2C信号传导对放射诱导的肠毒性的影响方面的作用一致,口服ST提高了在由STBI诱导的RIGS中在小鼠肠上皮细胞中的磷酸化p53的水平(图4F)。通过概述这些体内结果, GUCY2C第二信使cGMP增加了HCT116人结肠癌细胞中由放射诱导的总体和磷酸化p53(图4G),所述HCT116人结肠癌细胞是表达野生型p53但不表达GUCY2C的肠上皮细胞的体外模型(19,34,35)。在 HCT116细胞中由cGMP信号传导诱导的p53对放射的响应的放大与 p53与抑制蛋白Mdm2之间的相互作用降低相关(图4H)。对抗RIGS 的GUCY2C信号传导与有丝分裂灾难的p53依赖性拯救相关。通过口服ST诱导GUCY2C信号传导对抗在STBI后在肠上皮细胞中的染色体不稳定,从而减少双链DNA断裂(图5A)和与有丝分裂灾难特征性地相关的异常有丝分裂(图5B)。类似地,在用8-Br-cGMF处理的 HCT116细胞中通过中心体计数或后期桥指数(43)定量的由辐照产生的染色体不稳定有所降低(图5C-图5D)。相比之下,消除p53(HCT116 p53-/-)放大了由辐照产生的染色体不稳定,并且这种损伤对 8-Br-cGMP不敏感(图5C-图5D)。此外,在亲本而非p53-/-的HCT116 细胞中,cGMP降低了由反映放射诱导的异常有丝分裂的有丝分裂灾难导致的细胞死亡(图5E)。
讨论
RIGS是指肠上皮细胞中的放射诱导的遗传毒性应激 (7-9,11,12,14)。放射直接和通过活性氧物质产生DNA损伤(23),从而激活p53(7,9,14,44)。反过来,p53介导分支的损害响应。受损而无法修复的细胞经历由PUMA的p53激活启动的半胱天冬酶依赖性细胞凋亡(6,9,12,13)。此外,在可以拯救的细胞中,p53诱导p21的表达, p21是调控细胞周期检查点的细胞周期蛋白依赖性激酶关键抑制剂 (7,9,14)。抑制与这些检查点相关的增殖允许细胞修复受损的 DNA(7-9,12,14,45)。然而,p53响应受到限制,并且DNA受损的细胞在辐照的数天内逃逸检查点,过早进入DNA受损的细胞周期,并且经历有丝分裂灾难(7,9,12,14,46)。反过来,这产生上皮损失和粘膜炎,从而破坏与流体和电解质损失和感染相关的屏障功能,这是RIGS 致死的主要机制(47)。这里,我们揭示了涉及在放射损害和p53响应的交叉点处的GUCY2C信号传导轴的对抗这种病理生理学的一种出乎意料的补偿机制。
GUCY2C由肠上皮细胞选择性地表达,并且被内源性激素鸟苷蛋白和尿鸟苷蛋白或腹泻性细菌ST激活增加了细胞内cGMP积累 (17)。虽然有证据表明其他组织中存在GUCY2C信号传导(32,48),但是本研究中口服ST在改善RIGS方面的作用与对肠受体的主要作用一致,反映了不存在口服GUCY2C配体生物利用度(31)。GUCY2C-cGMP信号传导调节肠分泌,这是细菌诱导腹泻的一种机制,并且口服GUCY2C配体利那洛肽(LinzessTM)和普卡那肽(TrulanceTM)在患有肠易激综合征的患者中改善便秘并缓解腹痛 (31,49)。此外,GUCY2C信号传导调控增殖和DNA损伤修复,它们是在RIGS中典型地被破坏的过程(26)。实际上,通过GUCY2C-cGMP 轴的信号传导抑制DNA合成并延长细胞周期,部分通过调控p21(对放射的关键损害响应)而造成G1-S延迟(18-20,50)。此外,使GUCY2C 沉默增加DNA氧化和双链断裂,从而放大由化学或遗传DNA损伤诱导的突变,反映了ROS和修复不足(20)。此外,使GUCY2C沉默破坏肠屏障(26),这是促成RIGS的关键病理生理机制(47)。
相反,GUCY2C配体阻断该损伤,增强屏障完整性,并加速从损害中恢复(23,24,26,27,30)。促进粘膜屏障完整性的这种作用支持 GUCY2C作为RIGS的治疗靶标。目前的观察结果提出先前未识别的对抗RIGS的补偿机制,其中旁分泌激素鸟苷蛋白和尿鸟苷蛋白激活GUCY2CcGMP信号传导以防护肠上皮屏障的完整性。在该模型中, GUCY2C-cGMP信号传导轴的旁分泌激素刺激支持通过破坏与 Mdm2的相互作用对放射损伤的p53响应,Mdm2是对遗传毒性应激响应的关键调控因子,其与18-19.p53的氨基末端结合,抑制其反式激活功能并将其靶向蛋白酶体降解(45,51,52)。反过来,放大的p53 响应有助于解决DNA损伤,从而限制有丝分裂灾难(7)。除了这些补偿响应外,在高剂量辐照后在整个肠延髓-尾轴和在整个损害响应的连续时间中GUCY2C表达的持久保留提供了通过口服GUGY2C激素施用将此受体靶向缓解RIGS的机会。实际上,它创建了将RIGS从不可逆DNA损伤的综合征转化为可以被口服GUCY2C配体补充所逆转或预防的一种的独特可能性。
这些研究与肠损害的其他模型形成对比,其中通过旁分泌激素损失使GUCY2C沉默破坏了内稳态。实际上,鸟苷蛋白和尿鸟苷蛋白是散发性结直肠癌中最常丢失的基因产物,并且这些激素在瘤形成的最早阶段就丢失了(29,53,54)。激素损失使GUCY2C信号传导轴沉默,并中断调控连续再生的肠上皮并且其破坏对于肿瘤发生是必不可少的的典范内稳态机制(17-20,25,26,34)。类似地,虽然肥胖和结肠癌是相关的,但潜在机制仍不清楚。最近的研究揭示,卡路里过度消耗(其是促成肥胖的基本机制)产生ER应激,从而导致鸟苷蛋白损失,使 GUCY2C肿瘤抑制因子沉默(25)。实际上,替代由卡路里抑制的鸟苷蛋白消除了肿瘤发生(25)。此外,口服硫酸葡聚糖损伤肠粘膜,产生炎性肠病(IBD),并且使GUCY2C沉默放大了IBD中损害,从而增加小鼠的死亡率(24,26,30)。实际上,IBD与人的GUCY2C旁分泌激素损失相关(21)。在这种新兴的肠上皮损害范例的情况下,证明在高剂量辐照的情况下保留旁分泌激素表达的本发明结果是出乎意料的。但是,它们与GUCY2C旁分泌激素轴在对抗RIGS的补偿机制中的作用是一致的。先前的研究揭示,使GUCY2C沉默放大了由低剂量的放射(5Gy)诱导的细胞凋亡(22)。这些放射剂量低于产生RIGS或骨髓衰竭的GI毒性水平。此外,与那些较早研究相比,使GUCY2C沉默 (Gucy2c-/-小鼠)不改变在RIGS中的小肠或大肠的细胞凋亡诱导(参见图4A)。此外,使GUCY2C沉默概述了消除p53信号传导(p53-/-小鼠) 的作用,如先前报道,其对RIGS中的小肠或大肠的细胞凋亡也没有影响(7)。在GUCY2C在优化p53损害响应方面的作用(被Gucy2c-/- 小鼠表型复制p53-/-小鼠的能力加强(7))的情况下,在不存在 GUCY2C的情况下放大RIGS中的上皮破坏的主要机制似乎是有丝分裂灾难,而非细胞凋亡。直接靶向p53以预防和治疗RIGS具有独特的挑战性,并且尚未出现利用此机制的治疗(7,9,12,14)。所述治疗挑战性由p53在RIGS和放射诱导的造血综合征中的自相矛盾地相反的作用(与放射相关的两种主要毒性)引起。p53对上皮细胞的保护已使其激活成为治疗RIGS的靶标(7-9,14,46)。与此形成鲜明对比,骨髓中由p53介导的放射毒性已使其抑制成为治疗造血综合征的靶标 (8,46,55)。因此,p53仍然是一个难以捉摸的靶标,需要组织特异性策略来进行适当的定向调控。本研究提供了关于RIGS潜在病理生理学的新型分子机制的见解,这些新型分子机制可以很容易地转化为 p53靶向的医学对策以预防和治疗急性放射诱导的GI毒性。因此,GUCY2C具有狭窄的组织分布,由从十二指肠至直肠的肠上皮细胞选择性地表达(15-17)。此外,GUCY2C在解剖学上享有特权,在那些细胞的腔膜中表达,可直接获得口服药剂,但不可进入全身区室 (17,31)。此外,利那洛肽(LinzessTM)和普卡那肽(TrulanceTM)是最近被批准用于治疗慢性便秘综合征的口服GUCY2C配体,其在GI道外的口服生物利用度或生物活性可忽略(31)。与其他可用方法相比, GUCY2C在解剖学上的特权以及利那洛肽和普卡那肽仅限于肠腔的区室化活性提供了一种独特的靶向方法来特异性地参与p53依赖性机制,以预防和治疗RIGS。反过来,这为处于像切尔诺贝利(Chernobyl) 或福岛(Fukushima)的放射灾难的风险的平民、急救人员和军事人员提供了预防性和治疗性解决方案。类似地,它为靶向预防来自针对癌症的腹腔骨盆放射疗法的GI毒性、减少剂量限制性毒性和允许所施用的更大放射分数而不改变肠外肿瘤的治疗性放射敏感度提供了一种临床可驾驭的方法(参见图3I)(5)。
参考文献(其通过引用特此并入本文)
1.Terry NH,Travis EL.The influence of bone marrow depletion onintestinal radiation damage. Int J Radiat Oncol Biol Phys 1989;17:569-73
2.Mason KA,Withers HR,Davis CA.Dose dependent latency of fatalgastrointestinal and bone marrow syndromes.Int J Radiat Biol 1989;55:1-5
3.Mason KA,Withers HR,McBride WH,Davis CA,Smathers JB.Comparison ofthe gastrointestinal syndrome after total-body or total-abdominalirradiation.Radiat Res 1989:117:480-8
4.Berger ME,Christensen DM,Lowry PC,Jones OW,Wiley AL.Medicalmanagement of radiation injuries:current approaches.Occup Med(Lond)2006;56:162-72
5.Rodriguez ML,Martin MM,Padellano LC,Palomo AM,PueblaYI.Gastrointestinal toxicity associated to radiation therapy.Clin TranslOncol 2010;12:554-61
6.Jeffers JR,Parganas E,Lee Y,Yang C,Wang J,Brennan J,et al.Puma isan essential mediator of p53-dependent and-independent apoptoticpathways.Cancer Cell 2003;4:321-8
7.Kirsch DG,Santiago PM,di Tomaso E,Sullivab JM,Hou WS,Dayton T,etal,p53 controls radiation-induced gastrointestinal syndrome in miceindependent of apoptosis.Science 2010:327:593-6
8.Komarova EA,Kondratov RV,Wang K,Christov K,Golovkina TV,GoldblumJR.et al.Dual effect of p53 on radiation sensitivity in vivo:p53 promoteshematopoietic injury,but protects from gastro-intestinal syndrome inmice.Oncogene 2004;23:3265-71
9.Leibowitz BJ,Qiu W,Liu H,Cheng T,Zhang L,Yu J.Uncoupling p53functions in adiation induced intestinal damage via PUMA and p21,Molecularcancer research:MCR 2011;9:616-25
10.Paris F,Fuks Z,Kang A,Capodieci P,Juan G,Ehleiter D,etal.Endothelial apoptosis as the primary lesioin initiating intestinalradiation damage in mice.Science 2001;293:293-7
11.Potten CS.Radiation,the ideal cytotoxic ageat for studying thecell biology of tissues such as the small intestine.Radiat Res 2004;161:123-36
12.Qiu W,Carson-Walter EB,Lìu H,Epperly M,Greenberger JS,Zambetti Gp,et al.PUMA regulates intestinal progenitor cell radiosensitivity andgastrointestinal syndrome.Cell Stem Cell 2008;2:576-83
13.Villunger A,Michalak EM,Coultas L,Mullauer F,Bock G.AusserlechnerMJ,et al.p53- and drug-induced apoptotic responses mediated by BH3-onlyproteins puma and noxa.Science 2003:302:1036-8
14.Sullivan JM,Jeffords LB,Lee CL,Rodrigues R,Ma Y,Kirsch DG.p21protects″Super p53″ mice from the radiation-induced gastrointestinalsyndrome.Radiat Res 2012;177:307-10
15.Schulz S,Green CK,Yuen PS,Garbers DL.Guanylyl cyclase is a heat-stable enterotoxin receptor.Cell 1990;63:941-8
16.Schulz S,Lopez MJ,Kuhn M,Garbers DL.DisruPtion of the guanylylcyclase-C gene leads to a paradoxical phenotype of viable but heat-stableenterotoxin-resistant mice.J Clin Invest +997;100:1590-5
17.Kuhn M.Molecular physiology of membrane guanylyl cyclasereceptors.Physìol Rev 2016;96:751-804
18.Li P,Lin JE,Chervoneval,Schulz S,Waldman SA,Pitari GM.Homeostaticcontrol of the crypt-vill us axis by the bacterial enterotoxin receptorguanylyl cyclase C restricts the proliferating compartment in intestine.Am JPathol 2007;171:1847-58
19.Li P,Schulz S,Bombonati A,Palazzo JP,Hyslop TM,Xu Y.et al.Guanylylcyclase C suppresses intestinal tumorigenesis by restricting proliferationand maintaining genomic integrity.Gastroenterology 2007;133:599-607
20.Lin JE,Li P,Snook AE,Schulz S,Dasgupta A,Hyslop TM,et al.Thehormone receptor GUCY2C suppresses intestinal tumor formation by inhibitingAKT signaling.Gastroenterology 2010;138:241-54
21.Brenna O,Bruland T,Furnes MW,Granlund A,Drozdov I, Emgard J,etal.The guanylate cyclase-C signaling pathway is down-regulated ininflammatory bowel disease.Scand J Gastroenterol 2015;50:1241-52
22.Garin-Laflam MP、Steinbrecher KA,Rudolph JA,Mao J,CohenMB.Activation of guanylate cyclase C signaling pathway protects intestinalepithelial cells from acute radiation- induced apoptosis.Am J PhysiolGastrointest Liver Physiol 2009;296:G740-9
23.Han X,Mann E,Gilbert S,Guan Y,Steinbrecher KA,Montrose MH,etal.Loss of guanylyl cyclase C(GCC)signaling leads to dysfunctional intestinalbarrier,PLoS One 2011;6:e16139
24.Harmel-Laws E,Mann EA,Cohen MB,Steinbrecher KA.Guanylate cyclase Cdeficiency causes severe inflammation in a murine model of spontaneouscolitis.PLoS One 2013;8:e79180
25.Lin JE,Colon-Gonzalez F,Blomain E,Kim GW,Aing A,Stoecker B,etal.Obesity-induced colorectal cancer is driven by caloric silencing of theguanylin-GUCY2C paracrine signaling axis.Cancer Res 2016;76:339-46
26.Lin JE,Snook AE,Li P,Stoecker BA,Kim GW,Magee MS,et al.GUCY2Copposes systemic genotoxic tumnorigenesis by regulating AKT-dependentintestinal barrier integrity. PLoS One 2012;7:e31686
27.Mann EA,Harmel-Laws E,Cohen MB,Steinbrecher KA.Guanylate cyclase Climits systemic dissemination of a murine enteric pathogen.BMC Gastroenterol2013;13:135
28Shailubhai K,Palejwala V,Arjunan KP,Saykhedkar S,Nefsky B,Foss JA,et al.Plecanatide and dolcanatide,novel guanylate cyclase-C agonists,ameliorate gastrointestinal inflammation in experimental models of murinecolitis.World J Gastrointest Pharmacol Ther 2015;6:213-22
29.Shailubhai K,Yu HH,Karunanandaa K,Wang JY,Eber SL,Wang Y,etal.Uroguanylin treatment suppresses polyp formation in the Apc(Min/+)mouseand induces apoptosis in human colon adenocarcinoma cells via cyclicGMP.Cancer Res 2000;60:5151-7
30.Steinbrecher KA,Harmel-Laws E,Garin-Laflam MP,Mann EA,Bezerra LD,Hogan SP,et al.Murine guanylate cyclase C regulates colonic injury andinflammation.J Immunol 2011;186:7205-14
31.Camilleri M.Guanylate cyclase C agonists:emerging gastrointestinaltherapies and actions. Gastroenterology 2015;148:483-7
32.Valentino MA,Liu JE,Snook AE,Li P,Kim GW,Marszalowicz G.et al.Auroguanylin- GUCY2C endocrine axis regulates feeding in mice,J Clin Invest2011;121:3578-88
33.Waldman SA,Barber M,Pearlman J,Park J,George R,ParkinsonSJ.Heterogeneity of guanylyl cyclase C expressed by human colorectal cancercell lines in vitro.Cancer Epidemiol Biomarkers Prev 1998;7:505-14
34.Gibbons AV,Lin JE,Kim GW,Marszalowicz GP,Li P,Stoecker BA.etal.Intestinal GUCY2C prevents TGF-beta secretion coordinating desmoplasia andhyperproliferation in colorectal cancer Cancer Res 2013;73;6654-66
35.Zuzga DS,Pelta-Heller J,Li P,Bombonati A,Waldman SA,PitariGM.Phosphorylation of vasodilator-stimulated phosphoprotein Ser239 suppressesfilopodia and invadopodia in colon cancer.Int J Cancer 2012;130:2539-48
36.Bunz F,Dutriaux A,Lengauer C,Waldman T,Zhou S,Browa JP,etal.Requirement for p53 and p21 to sustain G2 arrest after DNA damage,Science1998;282:1497-501
37.Li Z,Taylor-Blake B,Light AR,Goy MF.Guanylin.an endogenous ligandfor C-type guanylate cyclase,is produced by goblet cells in thc ratintestine.Gastroenterology 1995;109:1863-75
38.Perkins A,Goy MF,Li Z.Uroguanylin is expressed by enterochromaffincells in the rat gastrointestinal tract.Gastroenterology 1997;113:1007-14
39.Faget L,Hnasko TS.Tyramide signal amplification for immunofluorescent enhancement. Methods Mol Biol 2015;1318:161-72
40.Moreau MR,Wijetunge DS.Bailey ML,Gongati SR.Goodfield LL,HewageEM,et al. Growth in egg yolk enhances salmonella enteritidis colonization andvirulence in a mouse model of human colitis.PLoS One 2016:11:e0150258
41.Fierer J,Okamoto S,Banerjee A,Guiney DG.Diarrhea and colitis inmice require the Salmonella Pathogenicity island 2-encoded secretion funetionbut not SifA or Spv effectors. Infect Immun 2012;80:3360-70
42.Brenna O,Furnes MW,Munkvold B,Kidd M,Sandvik AK,Gussta fssonB1.Cellular localization of guanylin and uroguanylin mRNAs in human and ratduodenal and colonic mucosa.Cell Tissue Res 2016;365:331-41
43.Ganem NJ,Godinho SA,Pellman D.A mechanism linking extracentrosomes to chromosomal instability.Nature 2009;460:278-82
44.Marusyk A,Casas-Selves M,Henry CJ,Zaberezhnyy V,Klawitter J,Christians U,et al. Irradiation alters selection for oncogenic mutations inhematopoietic progenitors.Cancer Res 2009;69:7262-9
45.Vousden KH,Prives C.Blinded by the Light:The growing complexity ofp53.Cell 2009;137:413-31
46.Lee CL,Blum.IM,Kirsch DG.Role of p53 in regulating tissue responseto radiation by mechanisms independent of apoptosis.Translational cancerresearch 2013;2:412-21
47.Hauer-Jensen M,Denham JW,Andreyev HJ,Radiation enteropathy-pathogenesis, treatment and prevention.Nature reviews Gastroenterology&hepatology 2014;11:470-9
48.Carrithers SL,Hill MJ,Johnson BR,OHara SM,Jackson BA,Ott CE,etal.Renal effects of uroguanylin and guanylin in vivo.Brazilian journal ofmedical and biological research=Revist+ brasileira de pesquisas medicas ebiologicas 1999;32:1337-44
49.Castro J,Harrington AM,Hughes PA,Martin CM,Ge P,Shea CM,etal.Linaclotide inhibits colonic nociceptors and relieves abdominal pain viaguanylate cyclase-C and extracellular cyclic guanosine 3′,5’-monophosphate.Gastroenterology 2013;145:1334-46 e1-11
50.Basu N,Saha S,Khan l,Ramachandra SG,Visweswariah SS.Intestin3lcell proliferation and senescence are regulated by receptor guanylyl cyclaseC and p21,The Journal of biological chemistry 2014;289:581-93
51.Chene P,Inhibiting the p53-MDM2 interaction:an important targetfor cancer therapy. Nature reviews Cancer 2003;3:102-9
52.prives C,Signaling to p53:breaking the MDM2-p53 circuit.Cell 1998;95:5-8
53.Wilson C,Lin JE,Li P,Snook AE,Gong J,Sato T,et al The paracrinehormone for the GUCY2C tumor suppressor,guanylin,is universally lost incolorectal cancer.Cancer Epidemiol Biomarkers Prev 2014;23:2328-37
54.Steinbrecher KA,Tuohy TM,Heppner Goss K,Scott MC,Witte DP,GrodenJ,et al. Expression of guanylin is downregulated in mouse and humanintestinal adenomas.Biochem Biophys Res Commum 2000;273:225-30
55.Lotem J,Sachs L.Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents.Blood1993;82:1092-6
实施例2
在肠隐窝的基底的长寿多能干细胞(ISC)调节其表型,以适应上皮的正常维护和损害后再生。它们的长寿命、谱系可塑性和增殖潜力是对ISC区室进行严格内稳态调控的必要性的基础。在该情况下,鸟苷酸环化酶C(GUCY2C)受体及其旁分泌配体调控肠上皮内稳态,包括增殖、谱系定型(lineage commitment)和DNA损伤修复。然而,此轴在维持ISC中的作用仍然未知。将使得能够在GUCY2C消除的情况下对ISC(Lgr5-GFP)进行分析的转基因小鼠(Guey2c-/-)与免疫检测技术和药物治疗相结合,以定义GUCY2C信号传导轴在支持ISC中的作用。在Gucy2c-/-小鼠中ISC减少,这与活性Lgr5+细胞的损失相关,但在储备Bmil+细胞中互惠增加(reciprocal increase)。GUCY2C 在其中它介导典范的环状(c)GMP依赖性信号传导的隐窝基底Lgr5+ 细胞中表达。在Gucy2c-/-小鼠中在整个隐窝基底中通常离开ISC的内质网(ER)应激升高。化学分子伴侣牛磺熊去氧胆酸解决了这种ER 应激并恢复了ISC的平衡,这是被GUCY2C效应子8Br-cGMP所模仿的一种作用。在亚致死剂量的辐照后,Gucy2c-/-小鼠中的ISC减少与更大的上皮损害和受损再生相关。这些观察结果表明,GUCY2C 作为有助于ISC完整性的机器的一部分提供调控ER应激和细胞脆弱性的内稳态信号。
引言
肠上皮是高度动态的,经历着更新和修复的连续周期。在隐窝基底的干细胞产生祖细胞,所述祖细胞继续分裂,沿隐窝-绒毛轴向上迁移,并分化为肠的特殊上皮细胞类型[56]。吸收细胞每周以传送带的方式脱落到肠腔中,而分泌细胞(如成簇细胞和潘氏细胞(Paneth cell))存活数周[57,58]。除了此程序性周转之外,肠损害(如炎症、氧化损伤和放射)[59,60]诱导细胞死亡,需要替换以维持上皮屏障。这些周转和再生过程是由同样动态的肠干细胞(ISC)群驱动的,所述肠干细胞的特征才刚刚开始出现[57]。
在隐窝基底的高度组织化的ISC区室包含具有不同标记表达和功能表型的细胞类型。Lgr5+或隐窝基底柱状(CBC)细胞是位于隐窝细胞位置0-4处的长寿多能干细胞,所述长寿多能干细胞每天分裂以驱动上皮的每周周转,使它们成为“活性”干细胞[61]。这些细胞对损害非常敏感,并且与提供基本调控信号的分化细胞密切相关,所述分化细胞包括潘氏细胞[61-63]。在细胞位置4-8周围的、位于隐窝轴较上位置的另一种长寿的多能干细胞类型通常表达标记Bmi1[64]。这些 Bmi1+细胞是静止的并且对组织内稳态贡献最小[61]。然而,在损害后,Bmi1+细胞可以恢复活性更高的CBC以及肠上皮的所有分化的细胞类型,从而使它们获得“储备”ISC的标签[61,65]。尽管Lgr5+细胞对肠损害后的死亡具有敏感性并且Bmi1+细胞对再生有贡献,但仍需要Lgr5+细胞从放射诱导的胃肠道损伤中恢复[60]。尽管肠干细胞群的身份和功能浮现出来,但有助于其维持和相对平衡的机制仍在不断完善[61-63,66]。
GUCY2C是一种膜相关的鸟苷酸环化酶受体,其选择性地在从十二指肠至远端直肠的肠上皮细胞的顶膜中表达[67]。同源配体是结构上相似的肽,并且包括在整个肠中产生的旁分泌激素鸟苷蛋白、和在小肠中选择性地产生的尿鸟苷蛋白、以及由腹泻性细菌产生的热稳定性肠毒素(ST)[67]。GUCY2C最初被鉴定为肠流体和电解质分泌的介质,所述介质有助于产肠毒素性腹泻的病理生理学[67]。然而, GUCY2C-旁分泌激素轴已经作为关键内稳态过程的必不可少的调控因子出现,所述关键内稳态过程包括细胞增殖[68,69]、谱系定型[70] 和DNA损伤修复[69],这些功能对于隐窝的完整性是必不可少的 [71]。此外,在肿瘤发生或炎性肠病的鼠类模型中,其中损害和恢复特征性地涉及ISC[72],使GUCY2C沉默会放大病理生理学、组织损伤和死亡率[69,73-76]。这里,我们探索GUCY2C信号传导在维持ISC 中的作用。
结果
消除GUCY2C表达破坏ISC编号
通过电子显微术枚举了在来自Gucy2c+/+和Gucy2c-/-小鼠的小肠隐窝中的干细胞。包括在隐窝位置0至5的楔形细胞,并且潘氏细胞由于其囊泡形态被排除在外(图6小图A)[61-63]。在不存在GUCY2C 的情况下,隐窝基底中ISC的总数减少(图6小图B)。类似地,在不存在GUCY2C的情况下,离体肠状形成(ISC数量和功能的量度)[77] 减少了(p<0.001;图6小图C)。FACS分析揭示,如通过免疫荧光显微术确认的(图6小图E-F;图10),在消除了GUCY2C的 Lgr5-EGFP-IRES-CreERT2小鼠(Lgr5-EGFP-Cre-Gucy2c-/-,图6小图 D)中的Lgr5+/GFP细胞更少。此外,在对Rosa-STOPfl-LacZ背景回交的Lgr5-EGFP-Cre-Gucy2c+/+和-Gucy2c-/-小鼠中的谱系追踪揭示, Gucy2c-/-小鼠具有更少的LacZ标记的隐窝(图6小图G-H)。相反,Gucy2c-/-小鼠通过免疫荧光显微术展现出Bmi1+细胞的扩增群体(图 6,小图I-J;图11),这通过免疫印迹分析得以确认(图6小图K-L)。总之,这些结果表明,消除GUCY2C信号传导重新平衡干细胞群,有利于“储备”ISC表型。ISC中GUCY2C信号传导轴的功能表达。
通过FACS从Lgr5-EGFP-Cre-Gucy2c+/+和-Gucy2c-/-小鼠中收集 Lgr5+GFP+细胞[78],并且通过干细胞(Lgr5)和分化细胞[蔗糖异麦芽糖酶(SI)]mRNA标记的RT-qPCR验证富集(图7小图A)。干细胞(Lgr5 /SI)中Gucy2c mRNA的表达与分化(Lgr5/SI)细胞的表达在数量上相似,表明在干细胞和分化区室中的表达水平相似(图7小图B)。免疫荧光显微术确认了GUCY2C在Lgr5+GFP+干细胞中的特异性共定位(图7小图C)。为了确认GUCY2C受体在ISC中的功能性,将 ST注射到Lgr5-EGFP-Cre-Gucy2c+/+和Lgr5-EGFP-Cre-Gucy2c-/-小鼠的肠腔区段中[79]。在Gucy2c+/+小鼠中而非在Gucy2c-/-小鼠中,腔对此GUCY2C激动剂的暴露[80]在Lgr5+GFP+细胞中产生cGMP积累和 cGMP依赖性蛋白激酶(血管扩张剂刺激的磷蛋白(VASP))的下游靶标的cGMP-特异性磷酸化(图7小图D),强调了GUCY2C在ISC中的功能性。此外,8Br-cGMP(GUCY2C第二信使cGMP的细胞可渗透类似物[81])恢复了ISC的平衡,从而将Gucy2c-/-小鼠中的Lgr5+GFP+(图 7小图E)和Bmi1+(图7小图F)细胞回复到与在Gucy2c+/+小鼠中的那些相当的水平。此外,口服GUCY2C激动剂利那洛肽(LinzessTM, Ironwood,Cambridge,MA)放大了Gucy2c+/+小鼠中肠状形成的效率 (图7小图G)。这些观察结果加强了GUCY2C信号传导在维持ISC 中的作用。
GUCY2C信号传导对抗隐窝ER应激
正常的ISC区室使内质网(ER)应激最小化,并且延长的暴露诱导 ISC从干细胞区室转移到增殖的祖细胞池中[82,83],这是通过消除GUCY2C信号传导而进行表型复制的作用[68-70,75,84]。这里,在 Gucy2c-/-小鼠中,GUCY2C表达的消除诱导了隐窝中的伴侣蛋白BiP(Gip78)(它是ER应激的典范标记[85])的过表达(图8小图A-D)。有趣的是,在那些隐窝中,由ER应激诱导的未折叠蛋白响应的标记,包括ATF6、钙网蛋白和磷酸化eIF2α(p-eIF2α)没有变化[86](图8,小图A、B)。此外,在那些隐窝中,促细胞凋亡蛋白CHOP(其消除了具有不可逆ER应激的细胞[87])自相矛盾地减少了(图8,小图A、B)。这种标记模式特异性地反映了适应性ER应激,其中分子伴侣像BiP 被过表达以缓解长期ER应激,从而最小化未折叠蛋白质的响应,然而CHOP转录被下调以防止细胞死亡[88,89]。在该情况下,牛磺熊去氧胆酸(TUDCA)(它是通过减轻蛋白质错误折叠来模拟伴侣蛋白BiP 以减少ER应激的胆汁盐[90])在Gucy2c-/-小鼠中恢复了隐窝中正常的 BiP表达,这是被8Br-cGMP模仿的作用(图8小图C-D)。此外,与 8Br-cGMP一样(图7小图F-G),在Gucy2c-/-小鼠中TUDCA也将 Lgr5+GFP+细胞(图8小图E)和Bmi1+细胞(图8小图F)恢复到正常水平。这些观察结果强调了GUCY2C信号传导在对抗ER应激中的作用,这对于维持ISC而言至关重要。
GUCY2C维持ISC,从而支持放射损害后的再生
肠辐照是定量ISC脆弱性和再生能力的既定模型[91]。Lgr5+细胞对辐照非常敏感,并且因辐照而耗尽,然而Bim1+细胞被募集以扩增并重新填充隐窝基底以支持再生[61]。单次亚致死剂量10Gy的全身放射产生通过在Gucy2c+/+和Gucy2c-/-小鼠的小肠中小集落测定[92] 定量的大量隐窝死亡(图4A)。然而,与Gucy2c+/+小鼠相比,在辐照后48小时,Gucy2c-/-小鼠显示出更大的隐窝损失分数(36%对比62%, p<0.05),这与在不存在GUCY2C信号传导的情况下对放射诱导的ISC 细胞死亡的易感性增加一致(图9小图A)。此外,GUCY2C信号传导的不存在与再生滞后相关;在72小时的时候与Gucy2c+/+小鼠中的 82%相比Gucy2c-/-小鼠仅恢复了其隐窝的49%(p<0.01),这与在不存在GUCY2C的情况下隐窝的脆弱性增强一致(图9小图A-B)。实际上,与Gucy2c+/+小鼠相比,辐照后48小时Lgr5+GFP+细胞的绝对数量在 Gucy2c-/-中较低(31对比9,p<0.05)(图9小图C)。相比之下,在 Gucy2c+/+小鼠中放射之后Bmi1+细胞扩增以重新填充隐窝,在48h 达到最大响应,而在Gucy2c-/-小鼠中那些细胞存在自相矛盾的损失,没有恢复(p<0.01;图9小图D),与再生滞后并行(图9小图A)。总之,这些观察结果支持如下假设:GUCY2C信号传导至少部分地保护了对放射损害的再生响应所需的Lgr5+和Bmi1+干细胞。
讨论
新兴的范例表明,隐窝拥有支持连续不断地再生肠上皮细胞的独特内稳态需求的多能干细胞群。虽然已经提出了反映表型和功能特征的几种肠干细胞群,但在两大类别上存在共识[93]。迅速增殖并对像放射的损害敏感的、在位置0-4处的活性隐窝基底干细胞是最终在常规黏膜维持中替代分化的上皮细胞的短暂扩增细胞的来源[61,94]。相比之下,位于高于4的位置处的干细胞(缓慢增殖并对损害有相对抗性)包含在损害后使肠上皮再生的储备群体[95]。虽然已声称几种蛋白质标记鉴定离散的干细胞群,但它们全部都由隐窝中的ISC可变地表达[96]。然而,Lgr5和Bmi1似乎分别作为活性和储备干细胞群的标记具有相对选择性[93]。标记表达种的这种异质性可能反映了ISC的可塑性。实际上,相比离散的稳定群体,ISC可能在活性与储备表型之间过渡,以满足正常或受损上皮的瞬时需求[97]。这种可塑性创造了功能能力以适应环境激发中对粘膜完整性的广泛变化[98]。反过来,这种可塑性需要特定的机制,所述特定的机制维持活性和储备干细胞的数量和相对平衡并且直到现在才被发现。
这里,我们揭示了GUCY2C是活性和储备ISC的数量和相对平衡的一个关键决定因子。在不存在GUCY2C的情况下,存在ISC数量的减少,反映在它们的总数和它们离体形成肠类的能力上。而且,这些细胞的相对平衡存在变化,其中活性Lgr5+细胞减少且储备Bmi1+细胞互惠增加。ISC数量和相对平衡的调控与干细胞中GUCY2C的功能性共表达相关。在该情况下,通过在Gucy2c-/-小鼠中经口递送8Br-cGMP重构cGMP信号传导恢复了活性和储备干细胞的数量和相对平衡。消除GUCY2C与隐窝中的慢性ER应激(与肠中干细胞的损失相关的过程)相关[89,99]。ER应激可能促成Gucy2c-/-小鼠中的ISC 损失,因为8Br-cGMP或TUDCA(化学分子伴侣[90])解决了ER应激并恢复了Lgr5+和Bmi1+干细胞的数量和平衡。重要的是,在暴露于亚致死剂量的放射的Gucy2c-/-小鼠中,使GUCY2C沉默增加了ISC 脆弱性、干细胞损失及上皮损害和再生延迟。这些观察结果强调了 GUCY2C先前在维持和平衡活性和储备干细胞池方面的未知作用,继而影响对环境损害的再生上皮响应。
通过GUCY2C调控ISC池的机制可能是复杂且多因素的。通常, GUCY2C作用是由通过激素鸟苷蛋白和尿鸟苷蛋白驱动的发光中心旁分泌和自分泌信号传导介导的[74]。在ISC中,此调控可能由鸟苷蛋白选择性地介导,所述鸟苷蛋白的mRNA在肠隐窝中表达[100]。激素信号传导的作用可能是细胞自主的,直接由ISC介导,ISC在顶膜中表达GUCY2C,从而使它们易获得发光中心激素分泌。可选地,这些作用可能是非自主的,反映了当GUCY2C沉默时潘氏细胞在维持ISC方面的至关重要的作用[57,63,78,91]以及那些细胞的损失[69]。而且,在不存在GUCY2C的情况下ISC的损失可能反映了相关的ER 应激,所述ER应激使干细胞从活性的Lgr5+池中退出并进入增殖祖细胞(短暂扩增)池中,作为更新肠上皮的典范分化程序的一部分[89]。实际上,这些观察结果为在Gucy2c-/-小鼠的肠隐窝中增殖祖细胞区室的扩增提供了一种机制解释[68-70,75,84]。此外,在不存在GUCY2C 的情况下ISC的损失可能反映了干细胞对环境损害的脆弱性增加,再次可能反映了放大干细胞对细胞凋亡的易感性的相关慢性ER应激 [99]。在此方面,GUCY2C信号传导增强了肠上皮细胞对化学、炎性和放射诱导的损害的抗性[69,73,76,101-103]。此外,这里我们揭示了在不存在GUCY2C信号传导的情况下,通常对伤害有抗性[61]的活性 Lgr5+细胞和储备Bmi1+细胞对放射损害敏感。除了使干细胞从ISC 池中退出并放大其脆弱性外,GUCY2C信号传导对ISC的可塑性及它们在活性池与储备池之间转换的能力的影响仍尚待确定。在该情况下,虽然Gucy2c-/-小鼠中的储备Bmi1+细胞池存在互惠增加,但这些细胞无法分别完全补偿正常或经辐照上皮中活性Lgr5+细胞的损失或者恢复正常或经辐照上皮中活性Lgr5+细胞。这些观察结果表明,GUCY2C信号传导可能在Bmi1+和Lgr5+细胞的相互转化中起作用,所述作用部分地定义了响应于环境损害而再生的功能能力。
基于目前的观察结果,试图推测GUCY2C信号传导在病理生理机制中的作用至少部分反映了ISC区室失调的贡献。GUCY2C信号传导轴在结直肠癌中普遍沉默,这反映了鸟苷蛋白在转化隐窝中的表达缺失[104-106]。相反,消除GUCY2C表达促进肠肿瘤发生 [69,75,107]。目前肠癌的病理生理学范例表明启动转化事件发生在干细胞区室中[108]。此外,Bmi1已被鉴定为支持在多种肿瘤中癌干细胞的转化的重要转录因子[109,110]。此外,GUCY2C是调控DNA损伤修复的机制的关键组分[69]。这些观察结果提出如下假设,其中鸟苷蛋白的损失使GUCY2C沉默,使ISC池从活性Lgr5+细胞向Bmi1+细胞转换,所述Bmi1+细胞在不存在cGMP信号传导的情况下可能特别易受遗传毒性损害,从而放大了转化和癌症的风险。类似地,炎性肠病(IBD)与GUCY2C信号传导轴的组分损失相关[111]。相反,在啮齿动物IBD模型中,消除GUCY2C信号传导放大了组织损害和死亡率[73,76,102,103]。这些数据提出如下假设:其中IBD中GUCY2C信号传导的损失改变了干细胞的数量、平衡和质量,进而促成其易受损害并削弱了恢复受损上皮的再生响应。这些考虑提示了结直肠癌和 IBD潜在的先前未曾预料的病理生理学范例,其可以在以后的研究中进行探索。
除病理生理学以外,这些观察结果表明了开发靶向ISC的新型治疗和预防方法的相关转化机会。在该情况下,存在经批准或正在开发以治疗慢性便秘综合征的几种口服GUCY2C配体[112]。干细胞对 GUCY2C的腔表达强调了使用口服替代策略靶向此受体以纠正在ISC区室中创造功能障碍的旁分泌激素不足的可能性。实际上,这里, FDA批准的口服GUCY2C配体利那洛肽(LinzessTM)在野生型小鼠中放大了肠状形成的能力(一种干细胞数量和质量的量度)(参见图7小图H)。此外,腔GUCY2C配体替代削弱了小鼠中的肠肿瘤发生,并且口服GUCY2C配体正在作为人的结直肠癌的新型化学预防策略进行检测[107,113,114]。此外,GUCY2C配体的腔替代改善了小鼠中的炎症,并且这些药剂处于IBD患者的早期临床开发中[76,115]。此外,本研究揭示,使GUCY2C轴沉默加剧了放射诱导的胃肠综合征 (RIGS),所述胃肠综合征的病理生理学在很大程度上归因于ISC的损伤和死亡[116,117]。本观察结果强调了使用口服GUCY2C配体治疗性地靶向此信号传导轴来防护隐窝以削弱或预防RIGS的潜力。
总之,我们证明了鸟苷酸环化酶C(GUCY2C)旁分泌信号传导轴 (一种肠上皮内稳态的关键调控因子)通过调控内质网应激来维持活性和储备肠干细胞的完整性和平衡。这些研究揭示了GUCY2C在支持肠干细胞方面的新作用。重要的是,它们强调了口服GUCY2C配体预防或治疗反映肠干细胞功能障碍的疾病(包括放射诱导的胃肠综合征)的治疗潜力。
材料和方法
小鼠和治疗
将Gucyc-/-(Gucy2ctmlGar[63])、Lgr5-EGFP-CreERT2(B6.129P2-Lg r5tm1(cre /ERT2)Cle/J;Jax,Bar Harbor,ME,#008875)和Rosa-STOPfl-Lac Z(B6.129S4-Gt(ROSA)26SortmlSar/J;Jax#003474)转基因小鼠系进行异种交配,以产生具有所需等位基因的后代。使所有小鼠共住,并将具有适当等位基因的Gucy2c+/+(野生型)同窝动物用作对照。从成年小鼠 (12-16周龄)收获组织。以10mg/ml用单次200μL剂量的在向日葵油中的他莫昔芬(Sigma;Billerica,MA;T5648)诱导Cre。每天以100 mg/kg/天腹膜内施用牛磺熊去氧胆酸(TUDCA,Millipore 580549)处理,持续3d。用PanTak,310kVe x射线机使小鼠暴露于单次10Gy剂量的全身γ辐照,并且在辐照之后的指定时间点收获组织。在一些实验中,每天用100μL的20mM 8-cpt-cGMP灌胃小鼠7d。除非另有说明,否则图(n)中的每个点代表一只小鼠。所有动物方案均已获得托马斯杰斐逊大学(Thomas Jefferson University)动物护理和使用委员会机构(Institutional Animal Care and Use committee)的批准。
免疫组织化学和免疫荧光
如先前所述,将肠从小鼠中收获,固定在福尔马林中,并包埋在石蜡中[75]。切下切片(4μM),然后在连续的乙醇兑水浴中再水化,并用苏木精和曙红或抗原特异性一抗和二抗染色。用于免疫荧光的一抗包括:抗GFP、抗Bmi1和抗GRP78(Abcam;Cambridge,MA);抗磷酸VASP Ser239(Sigma;Billerica,MA);和抗GUCY2C(内部制备和验证)[119]。二抗来自Life Technologies(Waltham,MA),并对第一宿主具有特异性。将酪胺信号放大技术[120]用于检测GUCY2C;与辣根过氧化物酶缀合的二抗来自Jackson ImmunoresearchLaboratories(目录号115-035-206和目录号111-036-046,1:1000稀释),并且如所描述的,荧光素缀合的酪胺由酪胺HCl(目录号T2879, Sigma)和NHS-荧光素(目录号46410,ThermoScientific)制备[121]。为了可视化Rosa-LacZ谱系追踪,如先前所述制备他莫昔芬诱导的重组 Cre肠[122]。每只小鼠评价至少4个肠周切片。
隐窝分离和培养
使用螯合解离方法的变型进行了隐窝分离用于后续分析(肠状测定、荧光激活细胞分选(FACS)、免疫印迹)[123]。简言之,收获肠,轻轻刮去小肠的绒毛,并且将组织切碎并在冰上于10mM EDTA/无 Ca、无Mg的汉克氏平衡盐溶液(HBSS)中孵育,持续总共40min。在整个这段时间中,以2次摇动/秒的速度间断地用手摇动溶液,总共废弃6次上清液,并且每次废弃之后添加新鲜的EDTA/HBSS。将组织在冰上不受干扰地孵育30min,随后用10mL移液管剧烈吸移以解离剩余的隐窝。将隐窝通过70μM过滤器过滤并沉淀。对于肠状培养,将每种基因型的相同数量的隐窝(在300-1500个隐窝/孔的范围内)重悬于基质胶液滴(BD,354230)中,用1000μL微量移液器短暂吸移,铺板在30μL中,并覆盖有350μL Intesticult培养基(Stem Cell Technologies,Vancouver,Canada;06005)。对于FACS,将隐窝在0.25%胰蛋白酶(Thermo Scientific,Philadelphia,PA;15050065)中于37℃孵育,直到获得单细胞悬浮液(不超过10min)。然后将细胞使用40μM 过滤器过滤第二次,并保存在EDTA溶液中进行分选。
荧光激活细胞分选
使用Coulter MoFlo细胞分选仪收集来自Lgr5-EGFP-CreERT2小鼠的细胞群,或使用BD LSRII进行分析。将通过前向散射、侧向散射和碘化丙啶(PI,Roche)确定的活细胞在CD45(BD Pharmingen,San Jose,CA)上阴性门控,然后在CD24(BD Pharmingen)上阳性门控 [124,125]。最后,在内源性eGFP荧光上对细胞进行阴性门控(对于分化细胞)和阳性门控(对于Lgr5+细胞)。
定量逆转录酶-聚合酶链反应(RT-qPCR)
将来自分选细胞的RNA扩增,并使用来自CD45-/CD24/EGFP+群体的总RNA进行原位逆转录。对于qPCR,使用Message BOOSTER cDNA Synthesis Kit(Epicentre,Madison,WI)扩增RNA,并且然后在 ABI 7900(Applied Biosystems,Norwalk,CT)中使用TaqMan EZ逆转录聚合酶链反应核心试剂和用于TaqMan基因表达测定的适当引物/探针进行一步逆转录聚合酶链反应。
免疫印迹
如所描述提取蛋白质[107],使用BCA测定(Pierce)定量,并且使用抗Bmi1(Abcam;Cambridge,MA)、抗CHOP、抗钙网蛋白、抗磷酸 -EIF2α、抗β微管蛋白(Cell Signaling,Danvers,MA)和抗Grp78(Abcam) 进行免疫印迹分析。二抗来自Santa Cruz Biotechnology(Dallas,TX)。用于免疫印迹分析的分子量标记(目录号10748010,每次运行5μL,或目录号LC5800,每次运行10μL)来自Invitrogen(Grand Island,NY)。
透射电子显微术
将肠组织片(3cm)放入含有2.5%戊二醛、0.1%鞣酸和0.1mol/L 磷酸盐缓冲液的固定剂中持续5min,进行三次,并储存在4℃下。将组织固定在塑料块中,通过提供有2%QsO4(锇)、乙酸铀酰的0.1 mol/L磷酸盐缓冲液处理,然后通过分级丙酮顺序脱水。在嵌入Spurrs 培养基中之后,使用FEI Tecnai 12显微镜对块进行切片和可视化,并且将图像用AMT数码相机捕获。拍摄每组的代表性电子显微照片 (由托马斯杰斐逊大学病理学系(Department of Pathology,Thomas Jefferson University)的Timothy Schneider友情进行)。每只小鼠枚举来自至少30个隐窝的细胞。
统计分析
所有分析均以设盲形式进行。除非另有说明,否则使用两尾学生 t检验进行单一比较,并且使用两因素方差分析(ANOVA)用于多重比较。将群组大小计算成足以检测具有95%置信度和80%功效的两尾统计显著性差异,假设方差不相等并且允许各组之间的样品大小不相等。P<0.05被认为显著。使用GraphPad Prism 6软件进行统计分析。数据代表平均值±SEM。
缩写:CBC,隐窝基底柱状;cGMP,环状GMP;ER,内质网; GUCY2C,鸟苷酸环化酶C;ISC,肠干细胞;ST,细菌热稳定性肠毒素
参考文献(其通过引用特此并入本文)
56.Umar S.Intestinal stem cells.Curr Gastroenterol Rep.2010;12(5):340-348.
57.Barker N.Adult intestinal stem cells:critical drivers ofepithelial homeostasis and regeneration.Nature reviews Molecular cellbiology.2014;15(1):19-33.
58.Westphalen CB,Asfaha S,Hayakawa Y,Takemoto Y,Lukin DJ,Nuber AH,Brandtner A,Setlik W,Remotti H,Muley A,Chen X,May R,Houchen CW,Fox JG,GershonMD,Quante M,et al.Long-lived intestinal tuft cells serve as colon cancer-initiating cells.The Journal of clinical investigation.2014;124(3):1283-1295.
59.Luo K and Cao SS.Endoplasmic reticulum stress in intestinalepithelial cell function and inflammatory bowel disease.Gastroenterol ResPract.2015;2015:328791.
60.Metcalfe C,Kljavin NM,Ybarra R and de Sauvage FJ.Lgr5+stem cellsare indispensable for radiation-induced intestinal regeneration.Cell stemcell.2014;14(2):149-159.
61.Yan KS,Chia LA,Li X,Ootani A,Su J,Lee JY,Su N,Luo Y,Heilshorn SC,Amieva MR,Sangiorgi E,Capecchi MR and Kuo CJ.The intestinal stem cell markersBmil and Lgr5 identify two funcrionally distinct populations.proeeedings ofthe National Academy of Sciences of the United States of America.2012;109(2):466-471.
62.Davidson LA,Goldsby JS,Callaway ES,Shah MS,Barker N and ChapkinRS.Alteration of colonic stem cell gene signatures during the regenerativeresponse to injury.Biochimica et biophysica acta.2012;1822(10):1600-1607.
63.Tan DW and Barker N.Intestinal stern cells andtheir definingniche,Current topics in developmental biology.2014;107:77-107.
64.Sangiorgi E and Capecchi MR.Bmil is expressed in vivo inintestinal stem cells.Nature genetics.2008;40(7):915-920.
65.Tian H,Biebs B,Warming S,Leong KG,Rangell L,Klein OD and deSauvage FJ.A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable.Nature. 2011;478(7368):255-259.
66.Takeda N,Jain R,LeBoeuf MR,Wang Q,Lu MM andEpsteinJA.Interconversion between intestinal stem cell populations in distmctniches.Science,2011;334(6061):1420-1424.
67.Kuhn M.Molecular physiology of membrane guanylyl cyclasereceptors.PhysioI Rev. 2016;96(2):751-804.
68.Pitari GM.Di Guglielmo MD,Park J,Schulz S and Waldman SA.Guanylylcyclase C agonists regulate progression through the cell cycle of human coloncarcinoma cells.Proceedings of the National Academy of Sciences of the UnitedStates of America.2001;98(14);7846-7851.
69.Li P,Schulz S,Bombonati A,Palazzo JP,Hyslop TM,Xu Y,Baran AA,Sitacusa LD, pitari GM and Waldman SA.Guanylyl cyclase C suppressesintestinal tumorigenesis by restricting proliferation and maintaining genomicintegrity.Gastroenterology.2007;133(2)599- 607.
70.Li P,Lin JE,Chervoneva I,Schulz S,Waldman SA and PitariGM.Homeostatic control of the crypt-villus axis by the bacterial enterotoxinreceptor guanylyl cyclase C restricts the proliferating compartment inintestine.The American journal of pathology.2007;171(6):1847- 1858.
71.Marshman E,Booth C and Potten CS.The intestinal epithelial stemcell.Bioessays. 2002;24(1):91-98.
72.Biswas S,Davis H,Irshad S,Sandberg T,Worthley Dand Leedham S,Microenvironmental control of stem cell fate in intestinal homeostasis anddisease.J Pathol. 2015:237(2):135-145.
73.Han X,Mann E,Gilbert S,Guan Y,Steinbrecher KA.Montrose MH andCohen MB. Loss of guanylyl cyclase C(GCC)signaling leads to dysfunctionalintestinal barrier.PloS one. 2011;6(1):e16139.
74.Kuhn M.Molecular physiology of membrane guanylyl cyclasereceptors.Physiological Reviews.2016;96(2):751-804.
75.Lin JE,Li P,Snook AE,Schulz S,Dasgupta A,Hyslop TM,Gibbons AV,Marszlowicz G,Pitari GM and Waldman SA.The honmone receptor GUCY2C suppressesintestinal tumor formation by inhibiting AKT signaling.Gastroenterology.2010;138(1):241-254.
76.Lin JE,Snook AE,Li P,Stoecker BA,Kim GW,Magee MS,Garcia AV,Valentino MA, Hyslop T,Schulz S and Waldman SA.GUCY2C opposes systemicgenotoxic tumorigenesis by regulating AKT-dependent intestinal barrierintegrity.PLoS One.2012;7(2):e31686.
77.Leushacke M and Barker N.Ex vivo culture of the intestinalepithelium:strategies and applications.Gut.2014;63(8):1345-1354.
78.Barker N,van Es JH,Kuipers J,Kujala P,van den Born M,Cozijnsen M,Haegebarth A, Korving J,Begthel H,Peters PJ and Clevers H.Identification ofstem cells in small intestihe and colon by mar ker gene Lgr5.Nature.2007;449(7165):1003-1007.
79.Punyashthiti K and Finkelstein RA.Enteropathogenicity ofEscherichia coli.1. Evaluation of mouse intestinal loops.Infect Immun.1971;4(4):473-478.
80.Pitari GM.Pharmacology and clinical potential of guanylyl cyclaseC agonists in the treatment of ulcerative colitis.Drug design,development andtherapy.2013;7:351-360.
81.Poppe H,Rybalkin SD,Rehmann H,Hinds TR,Tang XB,Christensen AE,Schwede F, Genieser HG,Bos JL,Doskeland SO,Beavo JA and Butt E.Cyclicnucleotide analogs as probes of signaling pathways.Nat Methods.2008;5(4):277-278,
82.Heijmans J,van Lidth de Jeude JF,Koo BK,Rosekrans SL,Wielenga MC,van de Wetering M,Ferrante M,Lee AS,Onderwater JJ,Paton JC.Paton AW,MommaasAM,Kodach LL,Hardwick JC,Hommes DW,Clevers H,et al.ER stress causes rapidloss of intestinal epithelial stemness through activation of the unfoldedprotein response.Cell reports.2013; 3(4):1128-1139.
83.Niederreiter L,Fritz TM,Adolph TE,Krismer AM,Offner FA,Tschurtschenthaler M, Flak MB,Hosomi S,Tomczak MF,Kaneider NC,Sarcevic E,Kempster SL,Raine T,EsSer D, Rosenstiel P,Kohno K,et al.FR stresstranscription factor Xbp1 suppresses intestinal tumorigenesis and directsintestìnal stem cells.The Journal of experimental medicine.2013; 210(10):2041-2056
84.Pitari GM.Zingman LV,Hodgson DM,Alekseev AE,Kazerounian S,Bienengraeber M, Hajnoczky G,Terzic A and Waldman SA.Bacterial enterotoxinsare associated with resistance to colon cancer.proceedings of the NationalAcademy of Sciences of the United States of America.2003;100(5):2695-2699.
85.Lee AS.The ER chaperone and signaling regulator GRP78/BiP as amonitor of endoplasmic reticulum stress.Methods.2005;35(4):373-381.
86.Xu C,Bailly-Maitre B and Reed JC.Endoplasmic reticulum stress:celllife and death decisions.The Journal of clinical investigation.2005;115(10):2656-2664.
87.Urra H,Dufey E,Lisbona F,Rojas-Rivera D and Hetz C.When ER stressreaches a dead end.Biochimica et biophysica acta.2013;1833(12):3507-3517.
88.Rutkowski DT,Arnold SM,Miller CN,Wu J,Li J,Gunnison KM,Mori K,Sadighi Akha AA,Raden D and Kaufman RJ.Adaptation to ER stress is mediated bydifferential stabilities of pro-survival and pro-apoptotic mRNAs andproteins.PLoS Biol.2006;4(11):e374.
89.Tsang KY,Chan D,Bateman JF and Cheah KS.In vivo cellularadaptation to ER stress; survival strategies with double-edged consequences,JCell Sci.2010;123(pt 13):2145-2154.
90.Cortez L and Sim V.The therapeutic potential of chenncalchaperones in protein folding diseasesPrion.2014;8(2)
91.Bach SP,Renehan AG and Potten CS.Stem cells:the intestinal stemcell as a paradigm. Carcinogenesis.2000;21(3):469-476.
92.Withers HR and Elkind MM.Microcolony survival assay for cells ofmouse intestinal mucosa exposed to radiation.Int J Radiat Biol Relat StudPhys Chem Med.1970;17(3):261-267.
93Li N,Yousefi M,Nakauka-Ddamba A,Jain R,Tobias J,Epstein JA,JensenST and Lengner CJ.Single-cell analysis of proxy reporter allele-markedepithelial cells establishes intestinal stem cell hierarchy.Stem CellReports.2014;3(5):876-891.
94.Kim E,Davidson LA,Zoh RS,Hensel ME,Patil BS,Jayaprakasha GK,Callaway ES, Allred CD,Turner ND,Weeks BR and Chapkin RS.Homeostaticresponses of colonic LGR5+ stem cells following acute in vivo exposure to agenotoxic carcinogen.Carcinogenesis.2016; 37(2):206-214.
95.Mills JC and Sansom OJ.Reserve stem cells:Differentiated cellsreprogram to fuel repair,metaplasia,and neoplasia in the adultgastrointestinal tract.Sci Signal.2015;8(385):re8.
96.Itzkovitz S,Lyubimova A,Blai IC,Maynard M,van Es J,Lees J,Jacks T,Clevers H and van Oudenaarden A,Single-molecule transcript counting of stem-cell markers in the mouse intestine.Nat Cell Biol.2012;14(1):106-114.
97.Tetteh PW,Farin HF and Clevers H.Plasticify within stem cellhierarchies in mammalian epithelia.Trends Cell Biol.2015;25(2):100-108.
98.Donati G and Watt FM.Stem cell heterogeneity and plasticity inepithelia.Cell stem cell. 2015;16(5):465-476.
99.Qiu W,Wang X,Buchanan M,He K,Sharma R,Zhang L,Wang Q and YuJ.ADAR1 is essepntial for intestinal homeostasis and stem cellmaintenance.Cell Death Dis.2013;4:e599.
100.Brenna O,Furnes MW,Munkvold B,Kidd M,Sandvik AK and GustafssonBl.Cellular localization of guanylin and uroguanytin mRNAs in human and ratduodenal and colonic mucosa.Cell Tissue Res.2016.
101.Garin~Laflam MP,Steinbrecher KA,Rudolph JA,Mao J and CohepnMB.Activation of guanylate cyclase C signaling pathway protects intestinalepithelial cells from acute radiation- induced apoptosis.Am J PhysiolGastrointest Liver Physiol.2009;296(4):G740-749.
102.Harmel-Laws E,Mann EA,Cohen MB and Steinbrecher KA.Guanylatecyclase C deficiency causes severe inflammation in a murine model ofspontaneous colitis.PloS one.2013; 8(11):e79180.
103.Steinbrecher KA,Harmel-Laws E,Garin-Laflam MP,Mann EA,Bezerra LD,Hogan SP and Cohen MB.Murine guanylate cyclase C regulates colonic injury andinflammation.J Immunol.2011;186(12):7205-7214.
104.Notterman DA,Alon U,Sierk AJ and Levine AJ.Transcriptional geneexpression profiles of colorectal adenoma,adenocarcinoma,and normal tissueexamined by oligonucleotide arrays.Cancer Res.2001;61(7):3124-3130.
105.Steinbrecher KA,Tuohy TM,Heppner Goss K,Scott MC,Witte DP,GrodenJ and Cohen MB.Expression of guanylinis downregulated in mouse and humanintestinal adenomas. Biochem Biophys Res Commun.2000;273(1):225-230.
106.Wilson C,Lin JE,Li P,Snook AE,Gong J,Sato T,Liu C,Girondo MA,RuiH,Hyslop T and Waldman SA.The paracrine hormone for the GUCY2C tumorsuppressor,guanylin,is universally lost in colorectal caneer,Cancer EpidemiolBiomarkers Prev.2014;23(11):2328- 2337.
107.Lin JE,Colon-Gonzalez F,Blomain E,Kim GW,Aing A,Stoecker B,RockJ,Snook AE,Zhan T.Hyslop TM,Tomczak M,Blumberg RS and Waldman SA.Obesity-induced colorectal cancer Is driven by caloric silencing of the guanylin-GUCY2C paracrine signaling axis.Cancer Res.2016;76(2):339-346.
108.Barker N,Ridgway RA,van Es JH,van de Wetering M,Begthel H,van denBorn M, Danenberg E,Clarke AR,Sansom OJ and Clevers H.Crypt stem cells as thecells-of-origin of intestinal cancerNature.2009;457(7229):608-611
109.Proctor E,Waghray M,Lee CJ,Heidt DG,Yalamanchili M,Li C,Bednar Fand Simeone DM.Bmil enhances tumorigenicity and cancer stem cell fumction inpancreatic adenocarcinoma. PloS one.2013;8(2):e55820.
110.Zhu D,Wan X,Huang H,Chen X,Liang W,Zhao F,Lin T,Han J and Xie W,Knockdown of Bmil inhibits the stemness properties and tumorigenicity ofhuman bladder cancer stem cell-like side population cells.Oncol Rep.2014;31(2):727-736.
111.Brenna O,Bruland T,Furnes MW,Granlund A,Drozdov I,Emgard J,Bronstad G,Kidd M,Sandvik AK and Gustafsson B1.The guanylate cyclase-Csignaling pathway is down- regulated in inflammatory bowel disease.Scand JGastroenterol.2015;50(10):1241-1252.
112.Camilleri M.Guanylate cyclase C agonists:emerginggastrointestinal therapies and actions.Gastroenterology.2015;148(3):483-487.
113.Shailubhai K,Yu HH,Karunanandaa K,Wang JY,Eber SL,Wang Y,Joo NS,Kim HD, Miedema BW,Abbas SZ,Boddupalli SS,Currie MG and Forte LR.Uroguanylintreatment suppresses polyp formation in the Apc(Min/+)mouse and inducesapoptosis in human colon adenocarcinoma cells via cyclic GMP.Cancer Res.2000;60(18):5151-5157.
114.Weinberg DS,Lin JE,Foster NR,Della’Zanna G,Umar A,Seisler D,KraftWK, Kastenberg DM,Katz LC,Limburg PJ and Waldman SA.Bioactivity of orallinaclotide in human colorectum for cancer chemoprevention.Cancer Prev Res(Phila).2017;10(6):345-354.
115.Shailubhai K,Palejwala V,Arjunan KP,Saykhedkar S,Nefsky B,FossJA,Comiskey S, Jacob GS and Plevy SE.Plecanatide and dolcanatide,novelguanylate cyclase-C agonists,ameliorate gastrointestinal inflammation inexperimental models of murine colitis.World J Gastrointest Pharmacol Ther,2015;6(4):213-222.
116.Kantara C,Moya SM,Houchen CW,Umar S,Ullrich RL,Singh P and CarneyDH. Novel regenerative peptideTP508 mitigates radiation-inducedgastrointestinal damage by activating stem cells and preserving cryptintegrity.Lab Invest.2015;95(11):1222-1233.
117.Booth C,Tudor G,Tudor J,Katz BP and MacVittie TJ.Acutegastroinfestinal syndrome in high-dose irradiated mice.Health Phys.2012;103(4):383-399.
118.Schulz S,Lopez MJ.Kuhn M and Garbers DL.Disruption of theguanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice.The Journal of clinical investigation.1997;100(6)1590-1595.
119.Marszalowicz GP,Snoek AE,Magee MS,Merlino D,Berman-Booty LD andWaldman SA.GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy tometastatic colorectal cancer.Oncotarget.2014;5(19):9460-9471.
120.Faget L and Hnasko TS.Tyramide Signal Amplification forImmunofluorescent Enhancement.Methods in molecular biology(Clifton,NJ).2015;1318:161-172.
121.Hopman AH,Ramaekers FC and Speel EJ,Rapid synthesis of biotin-、digoxigenin-, trinitrophenyl-,and fluorochrome-labeled tyramides and theirapplication for In situ hybridization using CARD amplification.The joumal ofhistochemistry and cytochemistry: offiicial journal of the HistochemistrySociety.1998;46(6):771-777,
122.el Marjou F,Janssen KP,Chang BH,Li M,Hindie V,Chan L,Louvard D,Chambon P, Metzger D and Robine S.Tissue-specific and inducible Cre-mediatedrecombination in the gut epithelium.Genesis.2004;39(3):186-193.
123.Yilmaz OH,Katajisto P,Lamming DW,Gultekin Y,Bauer-Rowe KE,Sengupta S, Birsoy K,Dursun A,Yilmaz VO,Selig M,Nielsen GP,Mino-Kenudson M,Zukerberg LR,Bhan AK,Deshpande V and Sabatini DM.mTORCl in the Paneth cellniche couples intestinal stem- cell fuction to calorie intake.Nature.2012;486(7404):490-495.
124.von Furstenberg RJ,Gulati AS.Baxi A,Doherty JM,Stappenbeck TS,Gracz AD, Magness ST and Henning SJ.Sorting mouse jejunal epithelial cellswith CD24 yields a population with characteristics of intestinal stemcells.Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G409-417.
125.Sato T,van Es JH,Snippert HJ,Stange DE,Vries RG,van den Born M,Barker N, Shroyer NF,van de Wetering M and Clevers H.Paneth cells constitutethe niche for Lgr5 stem cells in intestinal crypts.Nature.2011;469(7330):415-418.
序列表
<110> 托马森杰弗逊大学(Thomason Jefferson Univerity)
瓦尔德曼·斯科特A(Waldman, Scott A)
<120> 对癌症治疗中的正常组织的保护
<130> 100051.19102
<140> US 62/547,560
<141> 2017-08-18
<160> 60
<170> MS Word
<210> 1
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 1
acaacacatt ttactgctgt gaactttgtt gtaatcctgc ctgtgctgga tgttat 56
<210> 2
<211> 19
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 2
Asn Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala
1 5 10 15
Gly Cys Tyr
<210> 3
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 3
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly
1 5 10 15
Cys Asn
<210> 4
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 4
atagtagcaa ttactgctgt gaattgtgtt gtaatcctgc ttgtaacggg tgttat 56
<210> 5
<211> 19
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 5
Asn Ser Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Asn
1 5 10 15
Gly Cys Tyr
<210> 6
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 6
Pro Asn Thr Cys Glu Ile Cys Ala Tyr Ala Ala Cys Thr Gly Cys
1 5 10 15
S
SEQ ID NO:10:
SEQ ID NO:11:
SEQ ID NO:12:
SEQ ID NO:13: (
SEQ ID NO:14:
SEQ ID NO:15: PheTyrCysCysGluLeuCysCysAsnProAlaCysAlaGlyCysTyr
<210> 7
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 7
Asn Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala
1 5 10 15
Gly Cys
<210> 8
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 8
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly
1 5 10 15
Cys
<210> 9
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 9
Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10 15
<210> 10
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 10
Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10 15
<210> 11
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 11
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10
<210> 12
<211> 13
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 12
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10
<210> 13
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 13
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly
1 5 10 15
Cys Tyr
<210> 14
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 14
Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10 15
Tyr
<210> 15
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 15
Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10 15
<210> 16
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 16
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10 15
<210> 17
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 17
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10
<210> 18
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 18
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly
1 5 10 15
Cys
<210> 19
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 19
Thr Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys
1 5 10 15
<210> 20
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 20
Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys
1 5 10 15
<210> 21
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 21
Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys
1 5 10
<210> 22
<211> 13
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 22
Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys
1 5 10
<210> 23
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 23
Thr Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys
1 5 10 15
Asn
<210> 24
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 24
Phe Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys Asn
1 5 10 15
<210> 25
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 25
Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys Asn
1 5 10 15
<210> 26
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 26
Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Ala Gly Cys Asn
1 5 10
<210> 27
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 27
Asn Ser Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr
1 5 10 15
Gly Cys
<210> 28
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 28
Ser Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly
1 5 10 15
Cys
<210> 29
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 29
Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10 15
<210> 30
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 30
Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10 15
<210> 31
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 31
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10
<210> 32
<211> 13
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 32
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10
<210> 33
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 33
Ser Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly
1 5 10 15
Cys Tyr
<210> 34
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 34
Ser Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10 15
Tyr
<210> 35
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 35
Asn Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys Tyr
1 5 10 15
<210> 36
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 36
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys Tyr
1 5 10 15
<210> 37
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 37
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys Tyr
1 5 10
<210> 38
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 38
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly
1 5 10 15
Cys Tyr
<210> 39
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 39
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Ala Pro Ala Cys Ala Gly
1 5 10 15
Cys Tyr
<210> 40
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 40
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Ala Ala Cys Ala Gly
1 5 10 15
Cys Tyr
<210> 41
<211> 17
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 41
Asn Thr Phe Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly
1 5 10 15
Cys
<210> 42
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 42
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10 15
<210> 43
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 43
Tyr Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10
<210> 44
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 44
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10
<210> 45
<211> 13
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 45
Cys Cys Glu Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys
1 5 10
<210> 46
<211> 25
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 46
Gln Ala Cys Asp Pro Pro Ser Pro Pro Ala Glu Val Cys Cys Asp Val
1 5 10 15
Cys Cys Asn Pro Ala Cys Ala Gly Cys
20 25
<210> 47
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 47
Ile Asp Cys Cys Ile Cys Cys Asn Pro Ala Cys Phe Gly Cys Leu Asn
1 5 10 15
<210> 48
<211> 18
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 48
Ser Ser Asp Trp Asp Cys Cys Asp Val Cys Cys Asn Pro Ala Cys Ala
1 5 10 15
Gly Cys
<210> 49
<211> 19
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 49
Asn Ser Ser Asn Tyr Cys Cys Glu Leu Cys Cys Tyr Pro Ala Cys Thr
1 5 10 15
Gly Cys Tyr
<210> 50
<211> 13
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 50
Cys Cys Asp Val Cys Cys Asn Pro Ala Cys Thr Gly Cys
1 5 10
<210> 51
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 51
Cys Cys Asp Val Cys Cys Tyr Pro Ala Cys Thr Gly Cys Tyr
1 5 10
<210> 52
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 52
Cys Cys Asp Leu Cys Cys Asn Pro Ala Cys Ala Gly Cys Tyr
1 5 10
<210> 53
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 53
Cys Cys Gln Leu Cys Cys Asn Pro Ala Cys Thr Gly Cys Tyr
1 5 10
<210> 54
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 54
Pro Gly Thr Cys Glu Ile Cys Ala Tyr Ala Ala Cys Thr Gly Cys
1 5 10 15
<210> 55
<211> 15
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 合成序列
<400> 55
Gln Glu Asp Cys Glu Leu Cys Ile Asn Val Ala Cys Thr Gly Cys
1 5 10 15
<210> 56
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 肽
<400> 56
Asn Asp Asp Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu
1 5 10 15
<210> 57
<211> 94
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 肽
<400> 57
Val Thr Val Gln Asp Gly Asn Phe Ser Phe Ser Leu Glu Ser Val Lys
1 5 10 15
Lys Leu Lys Asp Leu Gln Glu Pro Gln Glu Pro Arg Val Gly Lys Leu
20 25 30
Arg Asn Phe Ala Pro Ile Pro Gly Glu Pro Val Val Pro Ile Leu Cys
35 40 45
Ser Asn Pro Asn Phe Pro Glu Glu Leu Lys Pro Leu Cys Lys Glu Pro
50 55 60
Asn Ala Gln Glu Ile Leu Gln Arg Leu Glu Glu Ile Ala Glu Asp Pro
65 70 75 80
Gly Thr Cys Glu Ile Cys Ala Tyr Ala Ala Cys Thr Gly Cys
85 90
<210> 58
<211> 86
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 肽
<400> 58
Val Tyr Ile Gln Tyr Gln Gly Phe Arg Val Gln Leu Glu Ser Met Lys
1 5 10 15
Lys Leu Ser Asp Leu Glu Ala Gln Trp Ala Pro Ser Pro Arg Leu Gln
20 25 30
Ala Gln Ser Leu Leu Pro Ala Val Cys His His Pro Ala Leu Pro Gln
35 40 45
Asp Leu Gln Pro Val Cys Ala Ser Gln Glu Ala Ser Ser Ile Phe Lys
50 55 60
Thr Leu Arg Thr Ile Ala Asn Asp Asp Cys Glu Leu Cys Val Asn Val
65 70 75 80
Ala Cys Thr Gly Cys Leu
85
<210> 59
<211> 14
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 肽
<400> 59
Cys Cys Glu Tyr Cys Cys Asn Pro Ala Cys Thr Gly Cys Tyr
1 5 10
<210> 60
<211> 16
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> 肽
<400> 60
Asn Asp Glu Cys Glu Leu Cys Val Asn Val Ala Cys Thr Gly Cys Leu
1 5 10 15

Claims (36)

1.一种治疗已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的个体的方法,所述方法包括:
向已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的所述个体中的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至通过引起以下各项而保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物:
所述胃肠细胞的细胞增殖停滞,和/或
DNA合成的抑制,和通过施加G1-S延迟而延长所述胃肠细胞的细胞周期,和/或
通过增强的DNA损伤感测和修复来维持所述胃肠细胞的基因组完整性;以及
施用化学疗法和/或放射疗法以杀伤缺乏功能性鸟苷酸环化酶C的癌细胞,
其中在通过所述胃肠细胞中细胞内cGMP升高的作用保护正常胃肠细胞免受遗传毒性损伤细胞时施用所述化学疗法和/或放射。
2.如权利要求1所述的方法,其中所述缺乏功能性鸟苷酸环化酶C的癌症选自由以下组成的组:缺乏功能性鸟苷酸环化酶C的结肠直肠癌、缺乏功能性鸟苷酸环化酶C的食道癌、缺乏功能性鸟苷酸环化酶C的胰腺癌、缺乏功能性鸟苷酸环化酶C的的肝癌、缺乏功能性鸟苷酸环化酶C的胃癌、缺乏功能性鸟苷酸环化酶C的胆道系统癌症、缺乏功能性鸟苷酸环化酶C的腹膜癌、缺乏功能性鸟苷酸环化酶C的膀胱癌、缺乏功能性鸟苷酸环化酶C的肾癌、缺乏功能性鸟苷酸环化酶C的输尿管癌、缺乏功能性鸟苷酸环化酶C的前列腺癌、缺乏功能性鸟苷酸环化酶C的卵巢癌、缺乏功能性鸟苷酸环化酶C的子宫癌以及缺乏功能性鸟苷酸环化酶C的腹部和骨盆的软组织癌如肉瘤。
3.如权利要求1所述的方法,所述方法还包括将所述癌症鉴定为缺乏功能性p53并且施用选自由以下组成的组的一种或多种活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
4.如权利要求1所述的方法,所述方法还包括将所述癌症鉴定为缺乏功能性p53并且施用选自由以下组成的组的一种或多种活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝化血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物,其中通过检测来自所述个体的癌细胞样品中不存在p53或编码p53的RNA而将所述癌症鉴定为缺乏功能性p53。
5.一种治疗已被鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症的个体的方法,所述方法包括:
将所述个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症;
向所述个体中的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至通过引起以下各项而保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物:
所述胃肠细胞的细胞增殖停滞,和/或
DNA合成的抑制,和通过施加G1-S延迟而延长所述胃肠细胞的细胞周期,和/或
通过增强的DNA损伤感测和修复来维持所述胃肠细胞的基因组完整性;以及
施用化学疗法和/或放射疗法以杀伤缺乏功能性鸟苷酸环化酶C的癌细胞,
其中在通过所述胃肠细胞中细胞内cGMP升高的作用保护正常胃肠细胞免受遗传毒性损伤细胞时施用所述化学疗法和/或放射。
6.如权利要求5所述的方法,所述方法包括以下步骤:通过检测来自所述个体的癌细胞样品中不存在鸟苷酸环化酶C或编码鸟苷酸环化酶C的RNA而将所述个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症。
7.如权利要求5所述的方法,所述方法包括以下步骤:通过检测来自所述个体的癌细胞样品中不存在鸟苷酸环化酶C而将所述个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症,所述检测通过使所述癌细胞样品与结合至鸟苷酸环化酶C的试剂接触并检测所述试剂与所述样品癌细胞的结合的不存在来进行。
8.如权利要求5所述的方法,所述方法包括以下步骤:通过检测来自所述个体的癌细胞样品中不存在鸟苷酸环化酶C而将所述个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症,所述检测通过使所述癌细胞样品与结合至鸟苷酸环化酶C的试剂接触并检测所述试剂与所述样品癌细胞的结合的不存在来进行,其中所述试剂是抗鸟苷酸环化酶C或鸟苷酸环化酶C配体。
9.如权利要求5所述的方法,所述方法包括以下步骤:通过检测来自所述个体的癌细胞样品中不存在编码鸟苷酸环化酶C的RNA而将所述个体鉴定为患有缺乏功能性鸟苷酸环化酶C的癌症,所述检测通过以下方式来进行:使用使编码鸟苷酸环化酶C的RNA扩增的PCR引物对来自所述癌细胞样品的mRNA进行PCR并检测所述样品癌细胞中不存在扩增的RNA;或通过使寡核苷酸与来自所述癌细胞样品的mRNA接触,其中所述寡核苷酸具有与编码鸟苷酸环化酶C的RNA杂交的序列,并且检测与来自所述癌细胞样品的mRNA杂交的寡核苷酸的不存在。
10.如权利要求5所述的方法,其中所述缺乏功能性鸟苷酸环化酶C的癌症选自由以下组成的组:缺乏功能性鸟苷酸环化酶C的结肠直肠癌、缺乏功能性鸟苷酸环化酶C的食道癌、缺乏功能性鸟苷酸环化酶C的胰腺癌、缺乏功能性鸟苷酸环化酶C的肝癌、缺乏功能性鸟苷酸环化酶C的胃癌、缺乏功能性鸟苷酸环化酶C的胆道系统癌症、缺乏功能性鸟苷酸环化酶C的腹膜癌、缺乏功能性鸟苷酸环化酶C的膀胱癌、缺乏功能性鸟苷酸环化酶C的肾癌、缺乏功能性鸟苷酸环化酶C的输尿管癌、缺乏功能性鸟苷酸环化酶C的前列腺癌、缺乏功能性鸟苷酸环化酶C的卵巢癌、缺乏功能性鸟苷酸环化酶C的子宫癌以及缺乏功能性鸟苷酸环化酶C的腹部和骨盆的软组织癌如肉瘤。
11.如权利要求5所述的方法,所述方法还包括将所述癌症鉴定为缺乏功能性p53并且施用选自由以下组成的组的一种或多种活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
12.如权利要求5所述的方法,所述方法还包括将所述癌症鉴定为缺乏功能性p53并且施用选自由以下组成的组的一种或多种活性剂:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝化血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物,其中通过检测来自所述个体的癌细胞样品中不存在p53或编码p53的RNA而将所述癌症鉴定为缺乏功能性p53。
13.一种治疗已被鉴定为患有缺乏功能性p53的原发性结肠直肠癌的个体中的患有原发性结肠直肠癌的个体的方法,所述方法包括:
向已被鉴定为患有缺乏功能性p53的原发性结肠直肠癌的所述个体中的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至通过引起以下各项而保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物:
所述胃肠细胞的细胞增殖停滞,和/或
DNA合成的抑制,和通过施加G1-S延迟而延长所述胃肠细胞的细胞周期,和/或
通过增强的DNA损伤感测和修复来维持所述胃肠细胞的基因组完整性;以及
施用化学疗法和/或放射疗法以杀伤缺乏功能性p53的原发性结肠直肠癌细胞,
其中在通过所述胃肠细胞中细胞内cGMP升高的作用保护正常胃肠细胞免受遗传毒性损伤细胞时施用所述化学疗法和/或放射。
14.一种治疗已被鉴定为患有缺乏功能性p53的原发性结肠直肠癌的个体中的患有原发性结肠直肠癌的个体的方法,所述方法包括:
将所述个体鉴定为患有缺乏功能性p53的原发性结肠直肠癌;
向所述个体中的胃肠细胞施用足以激活所述胃肠细胞的鸟苷酸环化酶C并使所述胃肠细胞中的细胞内cGMP升高至通过引起以下各项而保护胃肠细胞免受遗传毒性损伤的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物:
所述胃肠细胞的细胞增殖停滞,和/或
DNA合成的抑制,和通过施加G1-S延迟而延长所述胃肠细胞的细胞周期,和/或
通过增强的DNA损伤感测和修复来维持所述胃肠细胞的基因组完整性;以及
施用化学疗法和/或放射疗法以杀伤缺乏功能性鸟苷酸环化酶C的癌细胞,
其中在通过所述胃肠细胞中细胞内cGMP升高的作用保护正常胃肠细胞免受遗传毒性损伤细胞时施用所述化学疗法和/或放射。
15.一种治疗患有癌症的个体的方法,所述方法包括:
向所述个体中的肠干细胞施用足以激活所述肠干细胞的鸟苷酸环化酶C并使所述肠干细胞中的细胞内cGMP升高至引起肠干细胞数量增加和肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有Bmi1+储备表型的肠干细胞的水平的量的一种或多种鸟苷酸环化酶C激动剂化合物,
施用化学疗法和/或放射疗法,以在肠干细胞数量增加且肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有Bmi1+储备表型的肠干细胞时杀伤癌细胞,
其中当肠干细胞数量增加且肠干细胞的相对平衡转变以增加具有Lgr5+活性表型的肠干细胞并且减少具有Bmi1+储备表型的肠干细胞时施用的所述化学疗法和/或放射产生较少的胃肠副作用。
16.如权利要求1-15中任一项所述的方法,其中向所述个体施用化学疗法。
17.如权利要求1-15中任一项所述的方法,其中向所述个体施用放射。
18.如权利要求1-15中任一项所述的方法,其中向所述个体施用腹腔骨盆放射。
19.如权利要求1-15中任一项所述的方法,所述方法包括向所述个体施用GCC激动剂肽。
20.如权利要求1-15中任一项所述的方法,所述方法包括向所述个体施用选自由SEQID NO:2、3和5-60组成的组的GCC激动剂肽。
21.如权利要求1-15中任一项所述的方法,其中向所述个体施用选自鸟苷素、尿鸟苷素、SEQ ID NO:59、SEQ ID NO:60以及它们的组合的鸟苷酸环化酶C激动剂。
22.如权利要求1-15中任一项所述的方法,其中通过口服施用来施用所述GCC激动剂化合物。
23.如权利要求1-15中任一项所述的方法,其中通过以控制释放组合物的形式口服施用来施用所述GCC激动剂化合物。
24.如权利要求1-15中任一项所述的方法,其中在向所述个体施用足以治疗癌症的量的化学疗法或放射之前24小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前48小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前72小时;或者在向所述个体施用足以治疗癌症的量的化学疗法或放射之前96小时向所述个体施用所述GCC激动剂化合物。
25.如权利要求1-15中任一项所述的方法,其中向所述个体每日施用鸟苷酸环化酶C激动剂持续2、3、4、5、6、7、8、9、10、11、12、13或14天。
26.如权利要求1-15中任一项所述的方法,其中以多个剂量施用所述GCC激动剂化合物。
27.如权利要求1-15中任一项所述的方法,其中在施用所述鸟苷酸环化酶C激动剂之前,通过手术从所述个体除去肿瘤。
28.如权利要求1-15中任一项所述的方法,其中通过检测鸟苷酸环化酶C激动剂施用后所述个体的肠蠕动的变化来将所述个体鉴定为对所述鸟苷酸环化酶C激动剂化合物的保护作用有响应,其中在施用所述鸟苷酸环化酶C激动剂后检测到所述个体的肠蠕动的变化后治疗继续进行。
29.一种治疗已被鉴定为患有缺乏功能性p53的癌症的个体的方法,所述方法包括:
将所述个体鉴定为患有缺乏功能性53的癌症;
以足以升高正常细胞中的细胞内cGMP并保护所述正常细胞免受化学疗法和/或放射的遗传毒性作用的量向所述个体中的胃肠细胞施用一定量的一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP、BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物;以及
施用化学疗法和/或放射疗法以杀伤癌细胞,其中在保护所述正常细胞免受化学疗法和/或放射的遗传毒性作用时施用所述化学疗法和/或放射。
30.如权利要求29所述的方法,所述方法包括以下步骤:通过检测来自所述个体的癌细胞样品中不存在p53或编码p53的RNA而将所述个体鉴定为患有缺乏功能性p53的癌症。
31.如权利要求29所述的方法,其中向所述个体施用化学疗法。
32.如权利要求29所述的方法,其中向所述个体施用放射。
33.如权利要求29-32中任一项所述的方法,其中在向所述个体施用足以治疗癌症的量的化学疗法或放射之前24小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前48小时;在向所述个体施用足以治疗癌症的量的化学疗法或放射之前72小时;或者在向所述个体施用足以治疗癌症的量的化学疗法或放射之前96小时向所述个体施用一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP、BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
34.如权利要求29-32中任一项所述的方法,其中向所述个体每天施用一种或多种选自由以下组成的组的化合物:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物持续2、3、4、5、6、7、8、9、10、11、12、13或14天。
35.如权利要求29-32中任一项所述的方法,其中以多个剂量施用选自由以下组成的组的一种或多种化合物:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
36.如权利要求29-32中任一项所述的方法,其中在施用选自由以下组成的组的一种或多种化合物之前,通过手术从所述个体除去肿瘤:鸟苷酸环化酶A(GCA)激动剂(ANP,BNP)、鸟苷酸环化酶B(GCB)激动剂(CNP)、可溶性鸟苷酸环化酶激活剂(一氧化氮、硝基血管扩张剂、原卟啉IX和直接激活剂)、PDE抑制剂、MRP抑制剂、环状GMP和cGMP类似物。
CN201880067966.3A 2017-08-18 2018-08-10 对癌症治疗中的正常组织的保护 Pending CN111542332A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762547560P 2017-08-18 2017-08-18
US62/547,560 2017-08-18
PCT/US2018/046273 WO2019036299A2 (en) 2017-08-18 2018-08-10 PROTECTION OF NORMAL TISSUES IN THE TREATMENT OF CANCER

Publications (1)

Publication Number Publication Date
CN111542332A true CN111542332A (zh) 2020-08-14

Family

ID=65362525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880067966.3A Pending CN111542332A (zh) 2017-08-18 2018-08-10 对癌症治疗中的正常组织的保护

Country Status (7)

Country Link
US (1) US20200376068A1 (zh)
EP (1) EP3668533A4 (zh)
JP (1) JP2020531580A (zh)
KR (1) KR20200108409A (zh)
CN (1) CN111542332A (zh)
CA (1) CA3073181A1 (zh)
WO (1) WO2019036299A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113041359A (zh) * 2021-03-26 2021-06-29 湖南师范大学 一种谷胱甘肽响应性抗骨肉瘤前药纳米粒子及其制备方法和用途
CN113116917A (zh) * 2021-03-12 2021-07-16 徐州医科大学 8-Br-cGMP作为PKG I激活剂在制备预防或治疗卵巢上皮癌药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071436A2 (en) * 2003-02-10 2004-08-26 Thomas Jefferson University The use of gcc ligands
US20140255518A1 (en) * 2011-04-29 2014-09-11 Thomas Jefferson University Hospitals, Inc. Treatment and Prevention of Gastrointestinal Syndrome

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60142228D1 (de) * 2000-03-27 2010-07-08 Univ Jefferson Zusammensetzungen und methoden zur identifizierung und zum targeting von krebszellen aus dem verdauungskanal
ES2622468T3 (es) * 2001-03-29 2017-07-06 Synergy Pharmaceuticals, Inc. Agonistas del receptor de guanilato ciclasa para el tratamiento de inflamación tisular y carcinogénesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071436A2 (en) * 2003-02-10 2004-08-26 Thomas Jefferson University The use of gcc ligands
US20140255518A1 (en) * 2011-04-29 2014-09-11 Thomas Jefferson University Hospitals, Inc. Treatment and Prevention of Gastrointestinal Syndrome

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASU ET AL.: "Cross Talk between Receptor Guanylyl Cyclase C and c-src Tyrosine Kinase Regulates Colon Cancer Cell Cytostasis", 《MOL.CELL.BIOL.》 *
CORSETTI ET AL.: "Linaclotide: A new drug for the treatment of chronic constipation and irritable bowel syndrome with constipation", 《UEG J.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116917A (zh) * 2021-03-12 2021-07-16 徐州医科大学 8-Br-cGMP作为PKG I激活剂在制备预防或治疗卵巢上皮癌药物中的应用
CN113116917B (zh) * 2021-03-12 2022-06-17 徐州医科大学 8-Br-cGMP作为PKG I激活剂在制备预防或治疗卵巢上皮癌药物中的应用
CN113041359A (zh) * 2021-03-26 2021-06-29 湖南师范大学 一种谷胱甘肽响应性抗骨肉瘤前药纳米粒子及其制备方法和用途

Also Published As

Publication number Publication date
EP3668533A2 (en) 2020-06-24
WO2019036299A3 (en) 2020-04-02
JP2020531580A (ja) 2020-11-05
KR20200108409A (ko) 2020-09-18
WO2019036299A2 (en) 2019-02-21
CA3073181A1 (en) 2019-02-21
US20200376068A1 (en) 2020-12-03
EP3668533A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
US8007790B2 (en) Methods for treating polycystic kidney disease (PKD) or other cyst forming diseases
Sinclair et al. Targeting survival pathways in chronic myeloid leukaemia stem cells
Wang et al. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models
TWI620565B (zh) 治療及預防移植物抗宿主病之方法
CA2782527C (en) Uses of hypoxia-inducible factor inhibitors
US9532997B2 (en) Compositions and methods for promoting intestinal stem cell function
WO2013152038A1 (en) Targeting senescent cells and cancer cells by interference with jnk and/or foxo4
E Ling et al. Tgf-beta type I receptor (Alk5) kinase inhibitors in oncology
JP7399135B2 (ja) がんにおけるマクロピノサイトーシス
CN111542332A (zh) 对癌症治疗中的正常组织的保护
AU2016222587A1 (en) Compositions and methods of treating Fanconi Anemia
US20100260718A1 (en) Irf-4 as a tumor suppressor and uses thereof
EP3275444A2 (en) Composition for inhibiting growth or proliferation of chronic myelogenous leukemia cancer stem cells, and screening method therefor
Costa et al. Adenosine receptors differentially mediate enteric glial cell death induced by Clostridioides difficile Toxins A and B
US20140255518A1 (en) Treatment and Prevention of Gastrointestinal Syndrome
WO2020232095A1 (en) Polypeptides for treatment of cancer
RU2429848C2 (ru) Композиции для лечения системного мастоцитоза
US10526402B2 (en) Anti-TGF-beta antibody for the treatment of fanconi anemia
Wang et al. Chemotherapy-elicited extracellular vesicle CXCL1 from dying cells promotes triple-negative breast cancer metastasis by activating TAM/PD-L1 signaling
Jatal Novel Therapeutic strategies that interfere with senescence escape for the treatment of drug resistance in colorectal and breast cancer
US20210324057A1 (en) Methods and compositions for treating and preventing t cell-driven diseases
Kraft Guanylyl cyclase C maintains integrity of intestinal stem cells through modulation of endoplasmic reticulum stress
WO2015073813A2 (en) Compositions and methods for the treatment of diseases involving hippo pathway
Hernandez-Gutierrez et al. Phospholipid scramblase-1 regulates innate type 2 inflammation in mouse lungs via CRTH2-dependent mechanisms
KR101847170B1 (ko) 암 치료 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200814

WD01 Invention patent application deemed withdrawn after publication