CN111540007A - 一种利用sar图像估算油罐存储量的方法 - Google Patents

一种利用sar图像估算油罐存储量的方法 Download PDF

Info

Publication number
CN111540007A
CN111540007A CN202010281057.9A CN202010281057A CN111540007A CN 111540007 A CN111540007 A CN 111540007A CN 202010281057 A CN202010281057 A CN 202010281057A CN 111540007 A CN111540007 A CN 111540007A
Authority
CN
China
Prior art keywords
oil tank
satellite
tank
image
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010281057.9A
Other languages
English (en)
Other versions
CN111540007B (zh
Inventor
易维
黄树松
苏文博
张永佳
史小金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Center for Resource Satellite Data and Applications CRESDA
Original Assignee
China Center for Resource Satellite Data and Applications CRESDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Center for Resource Satellite Data and Applications CRESDA filed Critical China Center for Resource Satellite Data and Applications CRESDA
Priority to CN202010281057.9A priority Critical patent/CN111540007B/zh
Publication of CN111540007A publication Critical patent/CN111540007A/zh
Application granted granted Critical
Publication of CN111540007B publication Critical patent/CN111540007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Abstract

本发明一种利用SAR图像估算油罐存储量的方法,步骤如下:步骤一:从SAR图像中识别出油罐;所述油罐为浮顶油罐;步骤二:采用阈值分割,识别出油罐顶、油罐底和油罐浮顶;步骤三:确定卫星观测时的方位角和入射角;步骤四:确定油罐的实际高度H;步骤五:计算油罐的容量V;步骤六:确定油罐浮顶的高度H’;步骤七:计算得到油罐存储率η和存储量V’。本发明解决了由于天气或者太阳光照条件制约无法获取光学卫星图像时,通过SAR图像进行拍摄。

Description

一种利用SAR图像估算油罐存储量的方法
技术领域
本发明属于遥感图像处理领域,具体涉及根据SAR遥感卫星成像时的卫星姿态、雷达遥感散射特性和浮顶油罐的结构特点,结合几何原理估算油罐存储量的方法。
背景技术
遥感技术与国民经济、生态保护和国防安全的关系紧密,在土地资源调查、生态环境监测、农业监测与作物估产、灾害预报与灾情评估、海洋环境调查等领域都有广泛应用。除此之外,与日常生活息息相关的天气预报、空气质量监测、电子地图与导航等活动中,遥感的重要性也逐渐提升。进入21世纪,遥感科技已显现出高空间分辨率、高光谱分辨率、高时间分辨率的“三高”新特征,并开拓了更多的应用新领域。随着后期技术不断进步以及卫星数量的增多,在大宗商品的商业化服务中已经形成了一些应用场景,例如原油库存的检测等。这些数据为企业和政府提供了资源配置的参考,是产业升级以及经济调节的重要依据。
遥感技术包括光学遥感、红外遥感和微波遥感等。SAR是英语Synthetic ApertureRadar的缩写,意为合成孔径雷达。合成孔径雷达(Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点,属于微波遥感的范畴。油罐是遥感图像中的典型地物之一,面积小但分布范围广,用遥感手段获取油罐分布是目前经济可行的方法。并且,全球原油中95%储存在浮顶油罐之中,若能通过遥感获取浮顶油罐的储油量,则可以估算出全球原油储量。目前有些专利已经提出油罐的检测方法和油罐的储量估计方法。针对已有遥感图像检测油罐的专利,存在以下问题:(1)已有的都是针对光学遥感图像检测油罐或者估算油罐存储量,方法可以借鉴,但并不完全适用于SAR卫星图像;(2)光学遥感图像获取途径受气象条件制约,在有雾的天气图像模糊;在雨雪天气,受云层遮档,不能获取到地面油罐信息。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提出一种基于SAR图像估算油罐存储量的方法,由于天气或者太阳光照条件制约无法获取光学卫星图像时,通过SAR图像拍摄可以作为一种替代手段。而光学遥感图像和SAR遥感图像成像原理不同,直接照搬光学图像估算油罐存储量的方法并不能达到目的,因此本专利提出利用SAR遥感卫星成像时的卫星姿态、雷达遥感散射特性和浮顶油罐的结构特点,结合几何原理估算油罐存储量的新方法。
本发明的技术方案是:一种利用SAR图像估算油罐存储量的方法,包括以下步骤:
步骤一:从SAR图像中识别出油罐;
所述油罐为浮顶油罐,油罐顶、油罐底和浮顶的边缘在SAR图像上灰度值高于其他地方,并且边缘上有三个点为灰度值最高的点,即为油罐顶、油罐底和浮顶;离卫星最近的圆弧为油罐顶在图像上的投影,其次为油罐底在图像上的投影,再次为油罐浮顶远离卫星那一半的投影;
步骤二:采用阈值分割,识别出油罐顶、油罐底和油罐浮顶;
通过采用动态阈值确定油罐边缘和重要点位;在SAR图像中采用低阈值提取出的信息,确定油罐的各个边缘,从边缘判断出卫星是左侧视还是右侧视,以及罐顶和罐底位置;在SAR图像中采用高阈值提取出的信息,确定罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点;
步骤三:确定卫星观测时的方位角和入射角;
罐顶和罐底的边缘为平行弧段;若弧段的圆心在左侧,则卫星是右侧视,最右侧的弧段是罐顶,最左侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交;若弧段的圆心在右侧,则卫星是左侧视,最左侧的弧段是罐顶,最右侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交;罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点三个点在一条直线上,该直线与卫星方位平行;卫星观测时的方位角为以罐顶离卫星最近的点为起点,浮顶离卫星最远的点为终点的矢量角;卫星入射角是卫星入射方向与天顶方向的夹角;
步骤四:确定油罐的实际高度H;
油罐高度在图像中的像素个数N为
N=P2–P1 (1)
式中,P1为罐底离卫星最近的点在剖面图的像素位置为;P2为罐底离卫星最近的点在剖面图的像素位置;
油罐高度在图像中的空间距离h为
h=N×Re/cos(α-90)或者h=N×Re/cos(α-270) (2)
式中,N为油罐高度在图像中的像素个数,Re为SAR图像的空间分辨率,α为卫星方位角;
油罐的实际高度H为
H=h×tanθ (3)
式中,h为油罐高度在图像中的空间距离,θ为卫星入射角;
步骤五:计算油罐的容量V;
由求积公式计算出油罐容量V,计算公式如下:
V=π×R2×H (4)
R为油罐半径,H为油罐的实际高度,π取值3.14;
步骤六:确定油罐浮顶的高度H’;
假设浮顶的高度为H’,计算公式如下:
H’=h’×tanθ (5)
式中,h’为油罐浮顶高度在图像中的空间距离,θ为卫星入射角;
步骤七:计算得到油罐存储率η和存储量V’;
根据浮顶的高度和油罐的高度计算得到油罐的存储率η:
η=H’/H (6)
式中,H’为浮顶的高度,H为油罐的实际高度;
进而得到油罐的存储量V’
V’=V×η。 (7)
本发明相比现有技术的优点:
(1)SAR卫星图像采集了地物后向散射系数,油罐顶的边缘尖锐,散射系数强,易于识别。
(2)油罐底部和浮顶为二面角,在SAR图像上会出现强反射,对浮顶油罐的储量提取精度高,可以达到像素级精度。
(3)SAR卫星成像时为侧视,角度大覆盖广,相比光学卫星不侧摆或者小角度侧摆,获取时间频率更高。
(4)SAR图像为遥感卫星主动发射微波,不受天气和阳光因素影响,可以实现全天时、全天候数据采集。
附图说明
图1为本发明的计算流程;
图2为本发明SAR卫星对浮顶油罐成像示意图;
图3为SAR图像与光学图像油罐对比图;
图4(1)为SAR图像原始数据,图4(2)为低阈值提取结果,图4(3)为高阈值提取结果。
图5为SAR图像沿卫星方位角的剖面图;
图6为求取弧半径示意图。
具体实施方式
下面结合附图对本发明作详细说明。
参照附图1,利用SAR图像估算油罐存储量的分析方法步骤如下:
步骤一:从SAR图像中识别出油罐。
SAR成像方式是由卫星对地面发射连续的无线电脉冲,被地面目标反射回卫星,由卫星接收并记录每个脉冲的回波。卫星依靠无线电脉冲在路径上传输的时间来计算卫星与目标地物的距离,因此越高的物体收到的点脉冲信号会更早传回卫星,理论上在图像上的位置离卫星越近。油罐在SAR卫星图像中识别利用的就是这个原理。如附图2所示,假设卫星位于油罐东侧,卫星降轨从北往南飞行,采用右侧视成像。油罐为浮顶油罐,A点为罐顶离卫星最近的点,B点为罐底离卫星最近的点,E点为浮顶离卫星最远的点。油罐顶的边缘尖锐,散射系数强,油罐底部和浮顶为二面角,在SAR图像上会出现强反射,所以油罐顶、油罐底和浮顶的边缘在图像上灰度值较高,并且A、B、E三个点为灰度值最高的点。根据SAR成像原理,附图中标为1的弧为罐顶在图像上的投影,标为2的弧为罐底在图像上的投影,标为3的弧为浮顶远离卫星那一半的投影。由于油罐本身遮挡因素,油罐底远离卫星和浮顶靠近卫星的弧段在图像上没有投影。附图3为SAR图像与光学图像拍摄油罐的对比图。可以看出,由于SAR图像成像特点,油罐识别较光学图像容易,但区分罐顶、罐底和浮顶边缘需要对SAR成像机理了解,否则容易混淆。
步骤二:采用阈值分割,识别出油罐顶、油罐底和油罐浮顶。
在SAR图像上确定了哪些区域是浮顶油罐后,下一步则需要确定油罐顶、油罐底和油罐浮顶在图像中的位置,尤其重要的是确定上一步骤中提到的三个点:罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点。附图4(1)为SAR图像中单个油罐,从图中可以看出,SAR图像噪声很多,油罐附近的地物也对边缘的识别有干扰。于此同时,油罐边缘的强散射引起的旁瓣效应也会产生多个“伪边缘”。因此,此步骤通过采用动态阈值确定油罐边缘和重要点位。附图4(2)为SAR图像中采用低阈值提取出的信息,此时已经可以准确确定油罐的各个边缘,从边缘可以判断出卫星是左侧视还是右侧视以及罐顶和罐底位置。附图4(3)为SAR图像中采用高阈值提取出的信息,此时则可以确定罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点,图中标出了各个点的字母编号,以此与上一步骤中的示意图对应。
步骤三:确定卫星观测时的方位和入射角。
假设卫星是降轨成像,罐顶和罐底的边缘应该是平行弧段,弧段的圆心若是在左侧,则卫星是右侧视,最右侧的弧段是罐顶,最左侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交;弧段的圆心若是在右侧,则卫星是左侧视,最左侧的弧段是罐顶,最右侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交。卫星是升轨成像也可以此原理类推。从附图4与附图2示意图对比可以发现,卫星即使是左侧视或者右侧视,在地理位置上依然不是正东或者正西,存在一定夹角。以附图4为例,罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点三个点在一条直线上,该直线与卫星方位平行。卫星观测时的方位角为以罐顶离卫星最近的点为起点,浮顶离卫星最远的点为终点的矢量角,假设卫星方位角为α。卫星入射角是卫星入射方向与天顶方向的夹角,附图2中θ即为卫星入射角,可以从SAR图像中的辅助文件获取。
步骤四:确定油罐的高度。
油罐的高度需要通过图像上像素进行换算。油罐的高度是从油罐顶到油罐底的垂直距离,垂线的方向在SAR图像上为沿着卫星方位角方向从附图4(3)中从C点到B点的距离,这个距离可以通过剖面线进行提取。附图5为沿卫星方位角方向油罐在SAR图像上的剖面图,从步骤1分析中罐顶离卫星最近的点、罐底离卫星最近的点、浮顶离卫星最远的点存在强散射和反射,从剖面图上可以看出3个波峰,波峰的位置既是对应的三个点。第一个波峰为罐底离卫星最近的点,假设在剖面图的像素位置为P1;第二个波峰为罐底离卫星最近的点,假设在剖面图的像素位置为P2;第三个波峰为浮顶离卫星最远的点,假设在剖面图的像素位置为P3。则油罐高度在图像中的像素个数N为
N=P2–P1 (1)
假设SAR图像的空间分辨率为Re,则油罐高度在图像中的空间距离h为
h=N×Re/cos(α-90)或者h=N×Re/cos(α-270) (2)
油罐的实际高度H为
H=h×tanθ (3)
步骤五:计算油罐的容量。
油罐的容量取决于油罐的高度和油罐的半径,油罐的高度在步骤四中已经获取。油罐的半径从罐顶、罐底或浮顶判断都可以,从附图4(2)中可以看出,在SAR图像上,反射最强烈、边缘最清晰的是罐底边缘,但是边缘并不是个完整的圆形,只有不到整个圆一半的圆弧。利用可见圆弧的最两端的端点作两条与弧相切的直线,再以端点为相交点作垂直于切线的直线,两条直线的交点就是圆心,圆心与弧端点的距离则是半径,半径获取步骤可以参照附图6。在SAR图像上从半径像素个数转换为空间长度的方法可以参照步骤四,假设计算出的半径为R,则可以由求积公式计算出油罐容量V,计算公式如下:
V=π×R2×H (4)
步骤六:确定油罐浮顶的高度。
通过油罐浮顶离卫星最远的点和油罐底离卫星最近的两个点的像素距离减去油罐直径的像素距离,可以计算出油罐浮顶到油罐罐底在SAR图像上的像素,在SAR图像上从像素个数转换为空间长度的方法可以参照步骤五,假设浮顶的高度为H’。
步骤七:计算油罐存储率和存储量。
油罐的存储率可以根据浮顶的高度和油罐的高度计算:
η=H’/H (5)
进而可以得到油罐的存储量
V’=V×η (6)

Claims (8)

1.一种利用SAR图像估算油罐存储量的方法,其特征在于包括以下步骤:
步骤一:从SAR图像中识别出油罐;所述油罐为浮顶油罐;
步骤二:采用阈值分割,识别出油罐顶、油罐底和油罐浮顶;
步骤三:确定卫星观测时的方位角和入射角;
步骤四:确定油罐的实际高度H;
步骤五:计算油罐的容量V;
步骤六:确定油罐浮顶的高度H’;
步骤七:计算得到油罐存储率η和存储量V’。
2.根据权利要求1所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤一中,油罐顶、油罐底和浮顶的边缘在SAR图像上灰度值高于其他地方,并且边缘上有三个点为灰度值最高的点,即为油罐顶、油罐底和浮顶;离卫星最近的圆弧为油罐顶在图像上的投影,其次为油罐底在图像上的投影,再次为油罐浮顶远离卫星那一半的投影。
3.根据权利要求1所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤二具体方法为:通过采用动态阈值确定油罐边缘和重要点位;在SAR图像中采用低阈值提取出的信息,确定油罐的各个边缘,从边缘判断出卫星是左侧视还是右侧视,以及罐顶和罐底位置;在SAR图像中采用高阈值提取出的信息,确定罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点。
4.根据权利要求1所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤三具体方法为:罐顶和罐底的边缘为平行弧段;若弧段的圆心在左侧,则卫星是右侧视,最右侧的弧段是罐顶,最左侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交;若弧段的圆心在右侧,则卫星是左侧视,最左侧的弧段是罐顶,最右侧的弧段是浮顶,中间弧段是罐底,且浮顶边缘与罐底边缘相交;罐顶离卫星最近的点,罐底离卫星最近的点,浮顶离卫星最远的点三个点在一条直线上,该直线与卫星方位平行;卫星观测时的方位角为以罐顶离卫星最近的点为起点,浮顶离卫星最远的点为终点的矢量角;卫星入射角是卫星入射方向与天顶方向的夹角。
5.根据权利要求1-4任一所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤四的具体方法为:油罐高度在图像中的像素个数N为
N=P2–P1
式中,P1为罐底离卫星最近的点在剖面图的像素位置为;P2为罐底离卫星最近的点在剖面图的像素位置;
油罐高度在图像中的空间距离h为
h=N×Re/cos(α-90)或者h=N×Re/cos(α-270)
式中,N为油罐高度在图像中的像素个数,Re为SAR图像的空间分辨率,α为卫星方位角;
油罐的实际高度H为
H=h×tanθ
式中,h为油罐高度在图像中的空间距离,θ为卫星入射角。
6.根据权利要求5所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤五的具体方法为:由求积公式计算出油罐容量V,计算公式如下:
V=π×R2×H
R为油罐半径,H为油罐的实际高度,π取值3.14。
7.根据权利要求6所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤六的具体方法为:假设浮顶的高度为H’,计算公式如下:
H’=h’×tanθ
式中,h’为油罐浮顶高度在图像中的空间距离,θ为卫星入射角。
8.根据权利要求7所述的一种利用SAR图像估算油罐存储量的方法,其特征在于:所述步骤七的具体方法为:根据浮顶的高度和油罐的高度计算得到油罐的存储率η:
η=H’/H
式中,H’为浮顶的高度,H为油罐的实际高度;
进而得到油罐的存储量V’
V’=V×η。
CN202010281057.9A 2020-04-10 2020-04-10 一种利用sar图像估算油罐存储量的方法 Active CN111540007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010281057.9A CN111540007B (zh) 2020-04-10 2020-04-10 一种利用sar图像估算油罐存储量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010281057.9A CN111540007B (zh) 2020-04-10 2020-04-10 一种利用sar图像估算油罐存储量的方法

Publications (2)

Publication Number Publication Date
CN111540007A true CN111540007A (zh) 2020-08-14
CN111540007B CN111540007B (zh) 2023-04-28

Family

ID=71977094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010281057.9A Active CN111540007B (zh) 2020-04-10 2020-04-10 一种利用sar图像估算油罐存储量的方法

Country Status (1)

Country Link
CN (1) CN111540007B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124253A1 (de) 2020-09-17 2022-03-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstandsbestimmung von Öltanks durch Radarbildgebung eines Satelliten
CN117036982A (zh) * 2023-10-07 2023-11-10 山东省国土空间数据和遥感技术研究院(山东省海域动态监视监测中心) 海上养殖区的光学卫星图像处理方法和装置、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202987969U (zh) * 2013-01-04 2013-06-12 中国石油大学(北京) 浮顶原油储罐温度场自动测量系统
CN104833336A (zh) * 2015-04-27 2015-08-12 中国资源卫星应用中心 一种基于图像特征的卫星侧摆角获取方法
US20170217605A1 (en) * 2016-02-01 2017-08-03 Honeywell International Inc. Systems and methods of precision landing for offshore helicopter operations using spatial analysis
CN107688782A (zh) * 2017-08-23 2018-02-13 中国科学院软件研究所 基于高分辨率光学遥感图像的油罐检测和储量分析方法
CN110210453A (zh) * 2019-06-14 2019-09-06 中国资源卫星应用中心 一种基于遥感图像特征的油罐存储量确定方法及系统
CN110276796A (zh) * 2019-06-25 2019-09-24 北京四象爱数科技有限公司 基于高分辨sar图像的浮顶油罐储量估算方法
CN110389342A (zh) * 2019-09-02 2019-10-29 上海无线电设备研究所 一种基于近场竖直向sar成像的目标与环境耦合分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202987969U (zh) * 2013-01-04 2013-06-12 中国石油大学(北京) 浮顶原油储罐温度场自动测量系统
CN104833336A (zh) * 2015-04-27 2015-08-12 中国资源卫星应用中心 一种基于图像特征的卫星侧摆角获取方法
US20170217605A1 (en) * 2016-02-01 2017-08-03 Honeywell International Inc. Systems and methods of precision landing for offshore helicopter operations using spatial analysis
CN107688782A (zh) * 2017-08-23 2018-02-13 中国科学院软件研究所 基于高分辨率光学遥感图像的油罐检测和储量分析方法
CN110210453A (zh) * 2019-06-14 2019-09-06 中国资源卫星应用中心 一种基于遥感图像特征的油罐存储量确定方法及系统
CN110276796A (zh) * 2019-06-25 2019-09-24 北京四象爱数科技有限公司 基于高分辨sar图像的浮顶油罐储量估算方法
CN110389342A (zh) * 2019-09-02 2019-10-29 上海无线电设备研究所 一种基于近场竖直向sar成像的目标与环境耦合分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张金芳等: "卫星影像大数据情报分析与应用", 《大数据》 *
李国辉等: "川藏公路二郎山隧道抢险救援浅析", 《消防技术与产品信息》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124253A1 (de) 2020-09-17 2022-03-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstandsbestimmung von Öltanks durch Radarbildgebung eines Satelliten
WO2022058402A1 (de) * 2020-09-17 2022-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstandsbestimmung von öltanks durch radarbildgebung eines satelliten
DE102020124253B4 (de) 2020-09-17 2023-08-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstandsbestimmung von Öltanks durch Radarbildgebung eines Satelliten
CN117036982A (zh) * 2023-10-07 2023-11-10 山东省国土空间数据和遥感技术研究院(山东省海域动态监视监测中心) 海上养殖区的光学卫星图像处理方法和装置、设备和介质
CN117036982B (zh) * 2023-10-07 2024-01-09 山东省国土空间数据和遥感技术研究院(山东省海域动态监视监测中心) 海上养殖区的光学卫星图像处理方法和装置、设备和介质

Also Published As

Publication number Publication date
CN111540007B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US7307577B1 (en) Storm top detection
KR101258668B1 (ko) 한반도 통합형 기상 레이더 품질 관리 시스템 및 그 방법
KR101880616B1 (ko) 해상풍과 해무 위성정보를 이용한 해무 예측 방법
CN109471098B (zh) 利用fod雷达相位相干性信息的机场跑道异物检测方法
Power et al. Iceberg detection capabilities of RADARSAT synthetic aperture radar
CN101957449B (zh) 一种星载topsar模式下方位向模糊度的优化方法
CN102144173A (zh) 合成孔径雷达成像的海域中的目标检测
CN103489176A (zh) 一种对于严重几何畸变的sar图像进行同名点提取的方法
CN111540007B (zh) 一种利用sar图像估算油罐存储量的方法
CN115980756B (zh) 一种基于星载双频雷达的降水中水凝物种类识别方法
CN103065307A (zh) 非精确配准下sar/spot图像的区域融合检测方法
WO2010127140A2 (en) High-resolution wind measurements for offshore wind energy development
CN111337928B (zh) 一种雷达回波移动信息计算方法和装置
US7714766B2 (en) Method of processing a radar image
CN109085588B (zh) 基于Terra SAR-X高分辨率聚束模式数据电网铁塔倾斜的监测方法
Ryzhkov et al. New polarimetric radar algorithm for melting-layer detection and determination of its height
Tsatsoulis et al. Polar SAR data for operational sea ice mapping
CN113406639A (zh) 基于车载移动式雷达的fod检测方法、系统及介质
Lin et al. An ERS-1 synthetic aperture radar image of a tropical squall line compared with weather radar data
Askari et al. An automatic approach to ship detection in spaceborne synthetic aperture radar imagery: an assessment of ship detection capability using RADARSAT
Wang et al. An automatic thresholding method for water body detection from SAR image
CN115932762A (zh) 一种气象数值预测雷达基数据质量控制方法
Marghany et al. Fractal dimension algorithm for detecting oil spills using RADARSAT-1 SAR
Karvonen Tracking the motion of recognizable sea-ice objects from coastal radar image sequences
Song et al. Fine acquisition of vessel training data for machine learning from sentinel-1 SAR images accompanied by AIS imformation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant