CN111538316A - Performance-based fault diagnosis method and system for closed-loop control system actuators - Google Patents
Performance-based fault diagnosis method and system for closed-loop control system actuators Download PDFInfo
- Publication number
- CN111538316A CN111538316A CN202010433878.XA CN202010433878A CN111538316A CN 111538316 A CN111538316 A CN 111538316A CN 202010433878 A CN202010433878 A CN 202010433878A CN 111538316 A CN111538316 A CN 111538316A
- Authority
- CN
- China
- Prior art keywords
- fault
- performance residual
- domain performance
- residual error
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0262—Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及故障诊断技术领域,特别是涉及一种基于性能的闭环控制系统执行机构故障诊断方法及系统。The invention relates to the technical field of fault diagnosis, in particular to a performance-based method and system for fault diagnosis of an executive mechanism of a closed-loop control system.
背景技术Background technique
传统故障诊断方法一般是基于硬件冗余系统采用表决策略进行诊断,这种硬件冗余的主要问题是设备的维护费用高昂,并且需要额外的安装空间。为解决这个问题,提出了解析冗余的诊断方案,由多信号一致性检验技术生成残差信号,并通过分析残差来确定系统的故障的方法,即基于模型的故障诊断方法。常见的基于模型的故障检测与隔离技术(Fault detection and isolation,FDI)方法主要包括观测器方法、奇偶关系方法和参数估计方法。The traditional fault diagnosis method is generally based on the hardware redundancy system and adopts the voting strategy for diagnosis. The main problem of this kind of hardware redundancy is the high maintenance cost of the equipment and the need for additional installation space. In order to solve this problem, an analytical redundant diagnostic scheme is proposed. The residual signal is generated by the multi-signal consistency test technology, and the fault of the system is determined by analyzing the residual, that is, the model-based fault diagnosis method. Common model-based fault detection and isolation (FDI) methods mainly include observer method, parity relation method and parameter estimation method.
在现有的故障诊断技术中,多数是针对开环系统进行的故障诊断,并没有考虑控制系统闭环本身对故障诊断性能的影响。此外,多数的诊断方法是假设系统中的故障是加性故障,具有一定的局限性。然而,对于闭环反馈控制系统而言,由于闭环控制系统本身具备一定的鲁棒性和容错能力,即对系统的变化(加性或乘性变化)不敏感,具有更宽的稳定工作区域。因此,现有的诊断方法中利用开环信息进行故障诊断不能衡量故障发生后对闭环反馈控制系统性能带来哪些影响。如果无法获知故障对闭环系统性能上带来的影响,将会对系统的故障决策和容错控制带来不利影响。例如,在某些反馈控制系统中尽管执行机构发生很微小的故障后,但是从系统闭环性能方面来看带来很大的危害性。同样地,在某些情况下,尽管执行机构发生了看似较为严重的故障(例如执行机构的故障使得开环系统由稳定的系统变成了不稳定的系统),但是在反馈控制器本身的校正作用下,这些故障的影响将被削弱和抑制,甚至系统的闭环性能不会发生明显的降级,这种情况下,从安全运行角度来讲,此时的闭环控制系统是无需采取控制律重构等容错控制的措施,从而避免一些不必要的容错切换控制所带来的风险。因此,从闭环控制系统功能性层面的指标来进行故障诊断十分必要。Most of the existing fault diagnosis technologies are for the open-loop system, and do not consider the influence of the control system closed-loop itself on the fault diagnosis performance. In addition, most diagnostic methods assume that the faults in the system are additive faults, which have certain limitations. However, for the closed-loop feedback control system, because the closed-loop control system itself has a certain robustness and fault tolerance, that is, it is not sensitive to system changes (additive or multiplicative changes), and has a wider stable working area. Therefore, using open-loop information for fault diagnosis in the existing diagnostic methods cannot measure the impact of the fault on the performance of the closed-loop feedback control system. If the impact of the fault on the performance of the closed-loop system cannot be known, it will adversely affect the fault decision-making and fault-tolerant control of the system. For example, in some feedback control systems, although the actuator has a very small fault, it will bring great harm from the perspective of the system closed-loop performance. Similarly, in some cases, despite the seemingly serious failure of the actuator (for example, the failure of the actuator makes the open-loop system change from a stable system to an unstable system), the feedback controller itself Under the action of correction, the influence of these faults will be weakened and suppressed, and even the closed-loop performance of the system will not be significantly degraded. Fault-tolerant control measures such as configuration, so as to avoid the risks brought by some unnecessary fault-tolerant switching control. Therefore, it is necessary to carry out fault diagnosis from the indicators at the functional level of the closed-loop control system.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于性能的闭环控制系统执行机构故障诊断方法及系统,通过建立执行机构故障与闭环后控制系统性能变化之间的联系进行故障诊断,提高了控制系统故障诊断的可靠性和实用性。The purpose of the present invention is to provide a performance-based method and system for diagnosing faults of an actuator of a closed-loop control system. By establishing the connection between the fault of the actuator and the performance changes of the control system after the closed-loop, the fault diagnosis is performed, and the reliability of the fault diagnosis of the control system is improved. sex and practicality.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种基于性能的闭环控制系统执行机构故障诊断方法,包括:A performance-based fault diagnosis method for an actuator of a closed-loop control system, comprising:
获取实际控制系统的输入数据和输出数据;Obtain the input data and output data of the actual control system;
根据控制系统的工作原理建立无故障情况下控制系统模型的线性标称模型;According to the working principle of the control system, establish the linear nominal model of the control system model under no fault condition;
根据所述实际控制系统的输入数据和输出数据确定实际控制系统的辨识模型;Determine the identification model of the actual control system according to the input data and output data of the actual control system;
获取指令输入数据;Get command input data;
根据所述指令输入数据计算线性标称模型在闭环反馈下的输出,同时根据所述指令输入数据计算辨识模型在闭环反馈下的输出;Calculate the output of the linear nominal model under closed-loop feedback according to the instruction input data, and calculate the output of the identification model under closed-loop feedback according to the instruction input data;
根据所述线性标称模型在闭环反馈下的输出和所述辨识模型在闭环反馈下的输出的差值确定第一时域性能残差;所述第一时域性能残差为线性标称模型和辨识模型之间的时域性能残差;A first time-domain performance residual is determined according to the difference between the output of the linear nominal model under closed-loop feedback and the output of the identification model under closed-loop feedback; the first time-domain performance residual is a linear nominal model and the time-domain performance residuals between the identification models;
根据所述线性标称模型和所述辨识模型采用间隙度量方法确定第一频域性能残差和第一稳定域性能残差;所述第一频域性能残差为线性标称模型和辨识模型之间的频域性能残差,所述第一稳定域性能残差为线性标称模型和辨识模型之间的稳定域性能残差;According to the linear nominal model and the identification model, the gap measurement method is used to determine the first frequency domain performance residual and the first stability domain performance residual; the first frequency domain performance residual is the linear nominal model and the identification model. The frequency domain performance residual between the two, the first stability domain performance residual is the stability domain performance residual between the linear nominal model and the identification model;
根据所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行故障检测。The fault detection is performed according to the first time domain performance residual, the first frequency domain performance residual and the first stability domain performance residual.
可选的,所述根据所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行故障检测,具体包括:Optionally, the performing fault detection according to the first time-domain performance residual, the first frequency-domain performance residual, and the first stability-domain performance residual specifically includes:
分别对所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行归一化处理;respectively normalizing the first time-domain performance residual, the first frequency-domain performance residual, and the first stability-domain performance residual;
将归一化后的第一时域性能残差、归一化后的第一频域性能残差以及归一化后的第一稳定域性能残差形成三维复合性能残差空间中的点;所述三维复合性能残差空间的坐标系是以时域性能残差为x轴,频域性能残差为y轴,稳定域性能残差为z轴,所述坐标系内的点与原点形成复合性能残差矢量;The normalized first time-domain performance residual, the normalized first frequency-domain performance residual, and the normalized first stable-domain performance residual are formed into points in the three-dimensional composite performance residual space; The coordinate system of the three-dimensional composite performance residual space is that the time domain performance residual is the x-axis, the frequency domain performance residual is the y-axis, and the stability domain performance residual is the z-axis, and the points in the coordinate system form the origin. composite performance residual vector;
判断复合性能残差矢量长度与预设故障阈值的大小;若复合性能残差矢量长度小于预设故障阈值,实际控制系统执行机构未发生故障;否则,实际控制系统执行机构发生故障。Determine the size of the composite performance residual vector length and the preset fault threshold; if the composite performance residual vector length is less than the preset fault threshold, the actual control system actuator does not fail; otherwise, the actual control system actuator fails.
可选的,在所述根据所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行故障检测,之后还包括:Optionally, after performing the fault detection according to the first time-domain performance residual, the first frequency-domain performance residual, and the first stability-domain performance residual, the method further includes:
获取不同故障模式的表征参数;所述表征参数为表示故障的参数;Obtaining characterization parameters of different failure modes; the characterization parameters are parameters representing failures;
根据不同故障模式的表征参数分别建立故障情况下控制系统模型的线性故障模型;According to the characterization parameters of different failure modes, the linear failure models of the control system model under failure conditions are established respectively;
根据所述指令输入数据计算所述线性故障模型在闭环反馈下的输出;Calculate the output of the linear fault model under closed-loop feedback according to the instruction input data;
根据所述线性标称模型在闭环反馈下的输出和所述线性故障模型在闭环反馈下的输出的差值确定第二时域性能残差;所述第二时域性能残差为线性标称模型和线性故障模型之间的时域性能残差;A second time-domain performance residual is determined according to the difference between the output of the linear nominal model under closed-loop feedback and the output of the linear fault model under closed-loop feedback; the second time-domain performance residual is a linear nominal Time-domain performance residuals between the model and the linear fault model;
根据所述线性标称模型和所述线性故障模型采用间隙度量方法确定第二频域性能残差和第二稳定域性能残差;所述第二频域性能残差为线性标称模型和线性故障模型之间的频域性能残差,所述第二稳定域性能残差为线性标称模型和线性故障模型之间的稳定域性能残差;According to the linear nominal model and the linear fault model, the gap measurement method is used to determine the second frequency domain performance residual and the second stability domain performance residual; the second frequency domain performance residual is the linear nominal model and the linear Frequency domain performance residuals between fault models, the second stability domain performance residuals are stability domain performance residuals between the linear nominal model and the linear fault model;
根据所述第二时域性能残差、所述第二频域性能残差和所述第二稳定域性能残差进行故障类型和故障程度判断。The fault type and fault degree are judged according to the second time domain performance residual, the second frequency domain performance residual and the second stability domain performance residual.
可选的,所述根据所述第二时域性能残差、所述第二频域性能残差和所述第二稳定域性能残差进行故障类型和故障程度判断,具体包括:Optionally, the judgment of the fault type and fault degree according to the second time-domain performance residual, the second frequency-domain performance residual, and the second stability-domain performance residual specifically includes:
针对每一种故障类型,分别对所述第二时域性能残差、所述第二频域性能残差和所述第二稳定域性能残差进行归一化处理;For each fault type, the second time domain performance residual, the second frequency domain performance residual and the second stability domain performance residual are respectively normalized;
根据每一种故障类型归一化后的第二时域性能残差、归一化后的第二频域性能残差以及归一化后的第二稳定域性能残差建立执行机构故障空间库;According to the normalized second time domain performance residual, the normalized second frequency domain performance residual and the normalized second stable domain performance residual of each fault type, the actuator fault space library is established ;
根据复合性能残差矢量的方向在所述执行机构故障空间库中对故障类型和故障大小进行判断。The fault type and fault size are judged in the actuator fault space library according to the direction of the composite performance residual vector.
本发明还提供一种基于性能的闭环控制系统执行机构故障诊断系统,包括:The present invention also provides a performance-based closed-loop control system actuator fault diagnosis system, comprising:
实际控制系统数据获取模块,用于获取实际控制系统的输入数据和输出数据;The actual control system data acquisition module is used to obtain the input data and output data of the actual control system;
线性标称模型建立模块,用于根据控制系统的工作原理建立无故障情况下控制系统模型的线性标称模型;The linear nominal model establishment module is used to establish the linear nominal model of the control system model under no fault condition according to the working principle of the control system;
辨识模型建立模块,用于根据所述实际控制系统的输入数据和输出数据确定实际控制系统的辨识模型;an identification model establishment module, used for determining the identification model of the actual control system according to the input data and output data of the actual control system;
指令输入数据获取模块,用于获取指令输入数据;The command input data acquisition module is used to obtain the command input data;
第一输出计算模块,用于根据所述指令输入数据计算线性标称模型在闭环反馈下的输出,同时根据所述指令输入数据计算辨识模型在闭环反馈下的输出;a first output calculation module, configured to calculate the output of the linear nominal model under closed-loop feedback according to the instruction input data, and calculate the output of the identification model under closed-loop feedback according to the instruction input data;
第一时域性能残差确定模块,用于根据所述线性标称模型在闭环反馈下的输出和所述辨识模型在闭环反馈下的输出的差值确定第一时域性能残差;所述第一时域性能残差为线性标称模型和辨识模型之间的时域性能残差;a first time-domain performance residual determination module, configured to determine a first time-domain performance residual according to the difference between the output of the linear nominal model under closed-loop feedback and the output of the identification model under closed-loop feedback; the The first time-domain performance residual is the time-domain performance residual between the linear nominal model and the identification model;
第一间隙度量计算模块,用于根据所述线性标称模型和所述辨识模型采用间隙度量方法确定第一频域性能残差和第一稳定域性能残差;所述第一频域性能残差为线性标称模型和辨识模型之间的频域性能残差,所述第一稳定域性能残差为线性标称模型和辨识模型之间的稳定域性能残差;a first gap metric calculation module, configured to use a gap metric method to determine a first frequency domain performance residual and a first stability domain performance residual according to the linear nominal model and the identification model; the first frequency domain performance residual The difference is the frequency domain performance residual between the linear nominal model and the identification model, and the first stability domain performance residual is the stability domain performance residual between the linear nominal model and the identification model;
故障检测模块,用于根据所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行故障诊断。A fault detection module, configured to perform fault diagnosis according to the first time domain performance residual, the first frequency domain performance residual and the first stability domain performance residual.
可选的,所述故障检测模块,具体包括:Optionally, the fault detection module specifically includes:
第一归一化处理单元,用于分别对所述第一时域性能残差、所述第一频域性能残差和所述第一稳定域性能残差进行归一化处理;a first normalization processing unit, configured to perform normalization processing on the first time domain performance residual, the first frequency domain performance residual and the first stability domain performance residual respectively;
复合性能残差矢量生成单元,用于将归一化后的第一时域性能残差、归一化后的第一频域性能残差以及归一化后的第一稳定域性能残差形成三维复合性能残差空间中的点;所述三维复合性能残差空间的坐标系是以时域性能残差为x轴,频域性能残差为y轴,稳定域性能残差为z轴,所述坐标系内的点与原点形成复合性能残差矢量;The composite performance residual vector generating unit is used to form the normalized first time-domain performance residual, the normalized first frequency-domain performance residual, and the normalized first stable-domain performance residual. A point in the three-dimensional composite performance residual space; the coordinate system of the three-dimensional composite performance residual space takes the time domain performance residual as the x-axis, the frequency domain performance residual as the y-axis, and the stability domain performance residual as the z-axis, The point in the coordinate system and the origin form a composite performance residual vector;
故障检测单元,用于判断复合性能残差矢量长度与预设故障阈值的大小;若复合性能残差矢量长度小于预设故障阈值,实际控制系统执行机构未发生故障;否则,实际控制系统执行机构发生故障。The fault detection unit is used to judge the size of the composite performance residual vector length and the preset fault threshold; if the composite performance residual vector length is less than the preset fault threshold, the actuator of the actual control system has not failed; otherwise, the actuator of the actual control system malfunction.
可选的,所述闭环控制系统执行机构故障诊断系统,还包括:Optionally, the closed-loop control system actuator fault diagnosis system further includes:
表征参数获取模块,用于获取不同故障模式的表征参数;所述表征参数为表示故障的参数;a characterization parameter obtaining module, used to obtain characterization parameters of different failure modes; the characterization parameters are parameters representing failures;
线性故障模型建立模块,用于根据不同故障模式的表征参数分别建立故障情况下控制系统模型的线性故障模型;The linear fault model establishment module is used to establish the linear fault model of the control system model under the fault condition according to the characterization parameters of different fault modes;
第二输出计算模块,用于根据所述指令输入数据计算线性故障模型在闭环反馈下的输出;a second output calculation module, configured to calculate the output of the linear fault model under closed-loop feedback according to the instruction input data;
第二时域性能残差模块,用于根据所述线性标称模型在闭环反馈下的输出和所述线性故障模型在闭环反馈下的输出的差值确定第二时域性能残差;所述第二时域性能残差为线性标称模型和线性故障模型之间的时域性能残差;a second time-domain performance residual module, configured to determine a second time-domain performance residual according to the difference between the output of the linear nominal model under closed-loop feedback and the output of the linear fault model under closed-loop feedback; the The second time-domain performance residual is the time-domain performance residual between the linear nominal model and the linear fault model;
第二间隙度量计算模块,用于根据所述线性标称模型和所述线性故障模型采用间隙度量方法确定第二频域性能残差和第二稳定域性能残差;所述第二频域性能残差为线性标称模型和线性故障模型之间的频域性能残差,所述第二稳定域性能残差为线性标称模型和线性故障模型之间的稳定域性能残差;The second gap metric calculation module is configured to adopt the gap metric method according to the linear nominal model and the linear fault model to determine the second frequency domain performance residual and the second stability domain performance residual; the second frequency domain performance The residual is the frequency domain performance residual between the linear nominal model and the linear fault model, and the second stability domain performance residual is the stability domain performance residual between the linear nominal model and the linear fault model;
故障诊断模块,用于根据所述第二时域性能残差、所述第二频域性能残差和所述第二稳定域性能残差进行故障类型和故障程度判断。A fault diagnosis module, configured to judge the fault type and fault degree according to the second time domain performance residual, the second frequency domain performance residual and the second stability domain performance residual.
可选的,所述故障诊断模块,具体包括:Optionally, the fault diagnosis module specifically includes:
第二归一化处理单元,用于针对每一种故障类型,分别对所述第二时域性能残差、所述第二频域性能残差和所述第二稳定域性能残差进行归一化处理;A second normalization processing unit, configured to respectively normalize the second time domain performance residual, the second frequency domain performance residual and the second stability domain performance residual for each fault type unified treatment;
执行机构故障空间库建立单元,用于根据每一种故障类型归一化后的第二时域性能残差、归一化后的第二频域性能残差以及归一化后的第二稳定域性能残差建立执行机构故障空间库;The actuator fault space library establishment unit is used for the normalized second time domain performance residual, the normalized second frequency domain performance residual and the normalized second stable performance according to each fault type Domain performance residuals to establish actuator fault space library;
故障类型判断单元,用于根据复合性能残差矢量的方向在所述执行机构故障空间库中对故障类型和故障大小进行判断。The fault type judgment unit is used for judging the fault type and fault size in the actuator fault space library according to the direction of the composite performance residual vector.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提出了一种基于性能的闭环控制系统执行机构故障诊断方法及系统,根据实际控制系统的辨识模型和控制系统模型的标称模型确定标称模型和辨识模型之间的时域性能残差、频域性能残差和稳定域性能残差;通过建立执行机构故障与闭环后系统性能之间的联系进行故障诊断,提高了故障诊断的可靠性和实用性。The present invention proposes a performance-based fault diagnosis method and system for an actuator of a closed-loop control system. The time-domain performance residual between the nominal model and the identification model is determined according to the identification model of the actual control system and the nominal model of the control system model. , frequency domain performance residuals and stability domain performance residuals; fault diagnosis is carried out by establishing the connection between the actuator fault and the closed-loop system performance, which improves the reliability and practicability of fault diagnosis.
此外,本发明构建了一种基于多域(时域、频域和稳定域)信息的复合性能残差矢量,该矢量信息能够从实际控制系统性能层面全面评估加性和乘性故障发生后实际闭环控制系统的稳定性、快速性和准确性与标称模型之间的差异,并且利用残差矢量的长度信息和方向信息分别进行故障诊断和故障识别,避免了单域或少域信息在控制系统故障诊断方面的不足。In addition, the present invention constructs a composite performance residual vector based on multi-domain (time domain, frequency domain and stability domain) information, which can comprehensively evaluate the actual control system performance after the occurrence of additive and multiplicative faults. The difference between the stability, rapidity and accuracy of the closed-loop control system and the nominal model, and the length information and direction information of the residual vector are used for fault diagnosis and fault identification respectively, avoiding single-domain or few-domain information in control. Inadequate system troubleshooting.
本发明还将鲁棒控制中的间隙度量思想引入故障诊断领域,作为待诊断闭环控制系统的快速性残差和稳定性残差的量化基础,这种基于间隙度量的性能残差将控制系统执行机构的故障与闭环系统的性能定量地联系起来,能够有效评估故障的闭环危害度,为控制系统执行机构容错控制的决策提供了理论依据。The invention also introduces the idea of gap measurement in robust control into the field of fault diagnosis, as the quantification basis of the rapidity residual and stability residual of the closed-loop control system to be diagnosed, and the performance residual based on the gap measurement will make the control system perform The failure of the mechanism is quantitatively related to the performance of the closed-loop system, which can effectively evaluate the closed-loop criticality of the failure, and provide a theoretical basis for the decision-making of the fault-tolerant control of the control system executive mechanism.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例中基于性能的闭环控制系统执行机构故障诊断方法流程图;1 is a flowchart of a method for diagnosing faults of an executive mechanism of a closed-loop control system based on performance in an embodiment of the present invention;
图2为本发明实施例中基于多域复合性能残差的故障诊断示意图;2 is a schematic diagram of fault diagnosis based on multi-domain composite performance residuals in an embodiment of the present invention;
图3为本发明实施例中时域-频域-稳定域复合性能残差矢量空间示意图;3 is a schematic diagram of the time domain-frequency domain-stability domain composite performance residual vector space in an embodiment of the present invention;
图4为本发明实施例中基于性能的闭环控制系统执行机构故障诊断系统结构图;FIG. 4 is a structural diagram of a fault diagnosis system for an executive mechanism of a performance-based closed-loop control system in an embodiment of the present invention;
图5为本发明实施例中电液执行机构闭环控制系统原理图;5 is a schematic diagram of a closed-loop control system for an electro-hydraulic actuator in an embodiment of the present invention;
图6为本发明实施例中电液伺服阀故障诊断仿真结果图;Fig. 6 is the simulation result diagram of electro-hydraulic servo valve fault diagnosis in the embodiment of the present invention;
图7为本发明实施例中电液伺服阀性能残差矢量图。FIG. 7 is a vector diagram of the performance residuals of the electro-hydraulic servo valve in the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种基于性能的闭环控制系统执行机构故障诊断方法及系统,通过建立执行机构故障与闭环后控制系统性能变化之间的联系进行故障诊断,提高了控制系统故障诊断的可靠性和应用性。The purpose of the present invention is to provide a performance-based method and system for diagnosing faults of an actuator of a closed-loop control system. By establishing the connection between the fault of the actuator and the performance changes of the control system after the closed-loop, the fault diagnosis is performed, and the reliability of the fault diagnosis of the control system is improved. properties and applicability.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
本发明提供了一种基于性能的闭环控制系统执行机构故障诊断方法,图1为本发明实施例中基于性能的闭环控制系统执行机构故障诊断方法流程图,如图1所示,该方法包括:The present invention provides a performance-based fault diagnosis method for a closed-loop control system actuator. FIG. 1 is a flowchart of a performance-based closed-loop control system actuator fault diagnosis method in an embodiment of the present invention. As shown in FIG. 1 , the method includes:
步骤101:获取实际控制系统的输入数据和输出数据。Step 101: Acquire input data and output data of the actual control system.
步骤102:根据控制系统的工作原理建立无故障情况下控制系统模型的线性标称模型。Step 102: Establish a linear nominal model of the control system model under no fault condition according to the working principle of the control system.
如图2所示,建立用于描述单输入单输出控制系统的n阶非线性标称模型y=h(x,u),其中,x为控制系统的状态向量,x=[x1,x2,…,xn],u为控制系统的输入,y为控制系统的输出。As shown in Figure 2, an n-order nonlinear nominal model for describing a single-input single-output control system is established y=h(x, u), where x is the state vector of the control system, x=[x 1 , x 2 ,..., x n ], u is the input of the control system, and y is the output of the control system.
根据泰勒展开定理,对高阶非线性标称模型在第j个工作点进行模型线性化处理:According to the Taylor expansion theorem, for higher-order nonlinear nominal models at the jth working point Perform model linearization:
式中,gj(x,u)表示动态系统的状态向量的变化率,hj(x,u)表示动态系统的输出,表示第j个线性化的工作点,Δx表示在第j个工作点附近状态的微小增量,Δu表示在第j个工作点附近指令的微小增量。In the formula, g j (x, u) represents the rate of change of the state vector of the dynamic system, h j (x, u) represents the output of the dynamic system, Represents the jth linearized operating point, Δx represents the small increment of the state near the jth operating point, and Δu represents the commanded small increment near the jth operating point.
其中,in,
则得到所有工作点线性化标称模型: Then the linearized nominal model for all operating points is obtained:
Gj(s)=Cj(sI-Aj)-1Bj+Dj G j (s)=C j (sI-A j )- 1 B j +D j
采用Hankel奇异值法对线性标称模型Gj(s)在第j个工作点进行模型降阶处理。首先,采用下面公式计算系统矩阵Aj的Hankel奇异值:Using the Hankel singular value method for the linear nominal model G j (s) at the jth operating point Perform model reduction. First, use the following formula to calculate the Hankel singular value of the system matrix A j :
其中,λk,(k=1,2,…,n)为第k个特征值,Pj,Qj分别是满足如下关系的可控性和客观性格拉姆阵:Among them, λ k , (k=1,2,...,n) is the k-th eigenvalue, P j , Q j are the controllability and objective character Ram arrays that satisfy the following relations:
AjPj+Pj(Aj)T=-Bj(Bj)T A j P j +P j (A j ) T =-B j (B j ) T
(Aj)TQj+QjAj=-(Cj)TCj (A j ) T Q j +Q j A j =-(C j ) T C j
根据计算得到的Hankel奇异值σj|k,分别保留其中主要的奇异值,得到降阶的线性标称模型:According to the calculated Hankel singular values σ j | k , keep the main singular values respectively, and obtain the reduced-order linear nominal model:
步骤103:根据实际控制系统的输入数据和输出数据确定实际控制系统的辨识模型。Step 103: Determine the identification model of the actual control system according to the input data and output data of the actual control system.
在阶跃指令输入下,采集实际系统中控制器的指令输出数据和传感器的测量输出数据,然后对采集到的数据进行滤波清洗预处理,保存预处理后的数据用于进行执行机构开环控制系统模型的辨识;利用最小二乘法,通过极小化广义误差的平方和函数来确定系统模型的参数,进而得到控制系统的辨识模型 Under the step command input, the command output data of the controller and the measurement output data of the sensor in the actual system are collected, and then the collected data is filtered, cleaned and preprocessed, and the preprocessed data is saved for open-loop control of the actuator. Identification of the system model; using the least squares method to determine the parameters of the system model by minimizing the square sum function of the generalized error, and then obtain the identification model of the control system
步骤104:获取指令输入数据。Step 104: Obtain instruction input data.
步骤105:根据指令输入数据计算线性标称模型在闭环反馈下的输出,同时根据指令输入数据计算辨识模型在闭环反馈下的输出。Step 105: Calculate the output of the linear nominal model under the closed-loop feedback according to the instruction input data, and simultaneously calculate the output of the identification model under the closed-loop feedback according to the instruction input data.
步骤106:根据线性标称模型在闭环反馈下的输出和辨识模型在闭环反馈下的输出的差值确定线性标称模型和辨识模型之间的时域性能残差。Step 106: Determine a time-domain performance residual between the linear nominal model and the identification model according to the difference between the output of the linear nominal model under the closed-loop feedback and the output of the identification model under the closed-loop feedback.
在阶跃指令输入下,计算降阶的线性标称模型在闭环反馈下的输出ynominal(t),计算实际运行系统辨识模型在在同样的指令输入下闭环反馈的输出yfault(t),计算时域性能残差ey:Computes a reduced-order linear nominal model with a step command input Output y nominal (t) under closed-loop feedback to calculate the actual operating system identification model At the output y fault (t) of the closed-loop feedback under the same command input, calculate the time-domain performance residual e y :
ey=yfault(t)-ynominal(t)e y =y fault (t)-y nominal (t)
步骤107:根据线性标称模型和辨识模型采用间隙度量方法确定线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差。Step 107: According to the linear nominal model and the identification model, the gap metric method is used to determine the frequency domain performance residual and the stability domain performance residual between the linear nominal model and the identification model.
利用间隙度量公式计算线性标称模型和辨识得到的实际模型之间的频域性能残差δν:Calculation of Linear Nominal Model Using Gap Metric Formula and the actual model identified The frequency-domain performance residual between δ ν :
当反馈控制器K使系统G不稳定时,定义稳定性为指标为0。当反馈控制器使系统稳定时,定义如下的稳定性计算方法:When the feedback controller K makes the system G unstable, the stability is defined as the index of 0. When the feedback controller stabilizes the system, the following stability calculation method is defined:
利用下式计算线性标称模型和辨识得到的实际模型之间的稳定域性能残差ΔbK:Calculate the linear nominal model using and the actual model identified The stability domain performance residual Δb K between:
步骤108:根据线性标称模型和辨识模型之间的时域性能残差、线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差进行故障检测。Step 108: Perform fault detection according to the time-domain performance residuals between the linear nominal model and the identification model, the frequency-domain performance residuals and the stability-domain performance residuals between the linear nominal model and the identification model.
步骤108,具体包括:Step 108 specifically includes:
分别对线性标称模型和辨识模型之间的时域性能残差、线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差进行归一化处理。The time domain performance residuals between the linear nominal model and the identification model, the frequency domain performance residuals and the stability domain performance residuals between the linear nominal model and the identification model are normalized respectively.
将归一化后的第一时域性能残差、归一化后的第一频域性能残差以及归一化后的第一稳定域性能残差形成三维复合性能残差空间中的点。三维复合性能残差空间的坐标系是以时域性能残差为x轴,频域性能残差为y轴,稳定域性能残差为z轴,坐标系内的点与原点形成复合性能残差矢量。The normalized first time-domain performance residual, the normalized first frequency-domain performance residual, and the normalized first stable-domain performance residual are formed into points in the three-dimensional composite performance residual space. The coordinate system of the three-dimensional composite performance residual space takes the time domain performance residual as the x-axis, the frequency domain performance residual as the y-axis, and the stability domain performance residual as the z-axis. The points in the coordinate system and the origin form the composite performance residual. vector.
判断复合性能残差矢量长度与预设故障阈值的大小;若复合性能残差矢量长度小于预设故障阈值,控制系统执行机构未发生故障;否则,控制系统执行机构发生故障。Determine the size of the composite performance residual vector length and the preset fault threshold; if the composite performance residual vector length is less than the preset fault threshold, the control system actuator does not fail; otherwise, the control system actuator fails.
将三个性能残差指标ey、δν和ΔbK分别按照下式进行归一化处理:The three performance residual indicators e y , δ ν and Δb K are respectively normalized according to the following formulas:
式中,es为控制系统稳态的容许误差,es≥0;α为最大故障程度因子。In the formula, es is the allowable error in the steady state of the control system, es ≥ 0; α is the maximum failure degree factor.
式中,δt为控制系统性健康状态下快速性所对应的频域指标,0≤δt≤1,β为最大故障程度因子。In the formula, δ t is the frequency domain index corresponding to the rapidity of the control system in the healthy state, 0≤δ t ≤1, and β is the maximum failure degree factor.
式中,为标称模型的稳定性指标,为实际模型的稳定性指标,γ为最大故障程度因子。In the formula, for the nominal model the stability index, for the actual model the stability index, γ is the maximum failure degree factor.
将三个归一化的性能指标残差构成如下标准化的复合性能残差矢量H:The three normalized performance index residuals are formed into the following standardized composite performance residual vector H:
步骤109:获取不同故障模式的表征参数。表征参数为表示故障的参数。Step 109: Acquire characterization parameters of different failure modes. Characterization parameters are parameters that represent a fault.
步骤110:根据不同故障模式的表征参数分别建立故障情况下控制系统模型的线性故障模型。Step 110: Establish a linear fault model of the control system model under fault conditions according to the characteristic parameters of different fault modes.
结合控制系统执行机构的工作特点,总结其典型故障模式,并基于得到的高阶线性标称模型确定能够表征相应故障模式的系统参数,得到高阶非线性故障模型,通过改变表征故障的系统参数大小进行故障模拟。标称模型与故障模型的差别在于,故障模型中能够表征故障类型的参数取值大小一个是在正常值范围,一个是在非正常值范围。Combined with the working characteristics of the control system actuator, its typical failure modes are summarized, and the system parameters that can characterize the corresponding failure modes are determined based on the obtained high-order linear nominal model, and a high-order nonlinear fault model is obtained. By changing the system parameters that characterize the failure size for failure simulation. The difference between the nominal model and the fault model is that the parameter values that can characterize the fault type in the fault model are one in the normal value range and the other in the abnormal value range.
进一步地,结合反馈控制系统执行机构的工作特点,总结典型故障模式集合SF={F1,F2,…,Fm},并在线性标称模型中找到能够表征这些故障模式的系统参数Sρ={ρ1,ρ2,…,ρm},其中,ρi(i=1,2,…,m)代表第i个故障ρi所影响系统变化的参数,建立动态反馈控制系统的高阶非线性故障模型y=hρ(x,u),用于控制系统故障仿真获取数据。Further, combined with the working characteristics of the feedback control system actuator, summarize the typical failure mode set S F = {F 1 , F 2 ,..., F m }, and find the system parameters that can characterize these failure modes in the linear nominal model S ρ ={ρ 1 ,ρ 2 ,...,ρ m }, where ρ i (i=1,2,...,m) represents the parameters of the system change affected by the ith fault ρ i , and establishes a dynamic feedback control system The higher-order nonlinear fault model of y=h ρ (x, u), used to obtain data from control system fault simulation.
根据泰勒展开定理,对高阶非线性故障模型进行模型线性化处理:According to Taylor's expansion theorem, for higher-order nonlinear fault models Perform model linearization:
其中,in,
则得到所有工作点的线性故障模型: Then the linear fault model of all operating points is obtained:
采用Hankel奇异值法对线性故障模型在第j个工作点进行模型降阶处理。首先,采用下面公式计算的Hankel奇异值:Linear fault model using Hankel singular value method at the jth working point Perform model reduction. First, use the following formula to calculate The Hankel singular values of :
其中,λk,(k=1,2,…,n)为第k个特征值,分别是满足如下关系的可控性和客观性格拉姆阵:Among them, λ k , (k=1,2,...,n) is the kth eigenvalue, They are the controllability and objective character Ram arrays that satisfy the following relations:
根据计算得到的Hankel奇异值保留其中主要的奇异值,得到降阶的线性故障模型:According to the calculated Hankel singular values Retaining the main singular values, a reduced-order linear fault model is obtained:
步骤111:根据指令输入数据计算线性故障模型在闭环反馈下的输出。Step 111: Calculate the output of the linear fault model under closed-loop feedback according to the command input data.
步骤112:根据线性标称模型在闭环反馈下的输出和线性故障模型在闭环反馈下的输出的差值确定线性标称模型和线性故障模型之间的时域性能残差。Step 112: Determine a time domain performance residual between the linear nominal model and the linear fault model according to the difference between the output of the linear nominal model under closed-loop feedback and the output of the linear fault model under closed-loop feedback.
步骤113:根据线性标称模型和线性故障模型采用间隙度量方法确定线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差。Step 113: Determine the frequency domain performance residual and the stability domain performance residual between the linear nominal model and the linear fault model by using the gap metric method according to the linear nominal model and the linear fault model.
步骤114:根据线性标称模型和线性故障模型之间的时域性能残差、线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差进行故障类型和故障程度判断。Step 114: Judge the fault type and fault degree according to the time domain performance residual between the linear nominal model and the linear fault model, the frequency domain performance residual and the stability domain performance residual between the linear nominal model and the linear fault model .
步骤114,具体包括:Step 114 specifically includes:
针对每一种故障类型,分别对线性标称模型和线性故障模型之间的时域性能残差、线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差进行归一化处理。For each fault type, the time domain performance residuals between the linear nominal model and the linear fault model, the frequency domain performance residuals between the linear nominal model and the linear fault model, and the stability domain performance residuals are normalized separately. Unified processing.
根据每一种故障类型归一化后的线性标称模型和线性故障模型之间的时域性能残差、归一化后的线性标称模型和线性故障模型之间的频域性能残差以及归一化后的线性标称模型和线性故障模型之间的稳定域性能残差建立执行机构故障空间库。The time domain performance residuals between the normalized linear nominal model and the linear fault model, the frequency domain performance residuals between the normalized linear nominal model and the linear fault model for each fault type, and The stability domain performance residuals between the normalized linear nominal model and the linear fault model are used to build the actuator fault space library.
根据复合性能残差矢量在执行机构故障空间库中的方向对故障类型进行判断,根据复合性能残差矢量在执行机构故障空间库中的长度进行故障程度大小的判断。该矢量在三维空间中对应一个点,分别看做xyz坐标。健康原点和该点之间的有向连线的指向就是该矢量的方向,健康原点为未发生故障时的原点。The fault type is judged according to the direction of the composite performance residual vector in the actuator fault space library, and the fault degree is judged according to the length of the composite performance residual vector in the actuator fault space library. The vector corresponds to a point in the three-dimensional space, which are regarded as xyz coordinates respectively. The direction of the directed line between the healthy origin and this point is the direction of the vector, and the healthy origin is the origin when no fault occurs.
执行机构故障空间库是指通过试验或者仿真的手段模拟所有可能发生的、不同类型、不同程度大小的故障,然后分别计算出相应故障的多域性能残差。由于不同故障的多余性能残差矢量在三维坐标系中处在不同的空间区域,即具有残差矢量不同的方向性。基于这样一个提前建立的故障数据库,当实际系统中发生某一个故障后,计算它的残差矢量,通过该残差矢量在故障库中的方向来进行判断发生了什么类型的故障。故障空间库是一个多种故障的方向或者空间分布已知的集合。时域-频域-稳定域复合性能残差矢量空间示意图如图3所示。The actuator fault space library refers to simulating all possible faults of different types and sizes by means of tests or simulations, and then calculating the multi-domain performance residuals of the corresponding faults respectively. Due to the redundant performance of different faults, the residual vectors are located in different spatial regions in the three-dimensional coordinate system, that is, they have different directions of the residual vectors. Based on such a fault database established in advance, when a fault occurs in the actual system, its residual vector is calculated, and what type of fault has occurred is judged by the direction of the residual vector in the fault database. A fault space library is a collection of known directions or spatial distributions of various faults. The schematic diagram of the time domain-frequency domain-stability domain composite performance residual vector space is shown in Figure 3.
本发明还提供一种基于性能的闭环控制系统执行机构故障诊断系统,图4为本发明实施例中基于性能的闭环控制系统执行机构故障诊断系统结构图,如图4所示,该系统包括:The present invention also provides a performance-based closed-loop control system actuator fault diagnosis system. FIG. 4 is a structural diagram of the performance-based closed-loop control system actuator fault diagnosis system in an embodiment of the present invention. As shown in FIG. 4 , the system includes:
实际控制系统数据获取模块201,用于获取实际控制系统的输入数据和输出数据。The actual control system
线性标称模型建立模块202,根据控制系统的工作原理建立无故障情况下控制系统模型的线性标称模型。The linear nominal
辨识模型建立模块203,用于根据所述实际控制系统的输入数据和输出数据确定实际控制系统的辨识模型。The identification
指令输入数据获取模块204,用于获取指令输入数据。The instruction input
第一输出计算模块205,用于根据指令输入数据计算线性标称模型在闭环反馈下的输出,同时根据指令输入数据计算辨识模型在闭环反馈下的输出。The first
第一时域性能残差确定模块206,用于根据线性标称模型在闭环反馈下的输出和辨识模型在闭环反馈下的输出的差值确定线性标称模型和辨识模型之间的时域性能残差。The first time-domain performance
第一间隙度量计算模块207,用于根据线性标称模型和辨识模型采用间隙度量方法确定线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差。The first gap
故障检测模块208,用于根据线性标称模型和辨识模型之间的时域性能残差、线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差进行故障检测。The
故障检测模块208,具体包括:The
第一归一化处理单元,用于分别对线性标称模型和辨识模型之间的时域性能残差、线性标称模型和辨识模型之间的频域性能残差和稳定域性能残差进行归一化处理。The first normalization processing unit is used to respectively perform the time domain performance residual between the linear nominal model and the identification model, the frequency domain performance residual between the linear nominal model and the identification model, and the stability domain performance residual. Normalized processing.
复合性能残差矢量生成单元,用于将归一化后的第一时域性能残差、归一化后的第一频域性能残差以及归一化后的第一稳定域性能残差形成三维复合性能残差空间中的点。三维复合性能残差空间的坐标系是以时域性能残差为x轴,频域性能残差为y轴,稳定域性能残差为z轴,坐标系内的点与原点形成复合性能残差矢量。The composite performance residual vector generating unit is used to form the normalized first time-domain performance residual, the normalized first frequency-domain performance residual, and the normalized first stable-domain performance residual. A point in the 3D composite performance residual space. The coordinate system of the three-dimensional composite performance residual space takes the time domain performance residual as the x-axis, the frequency domain performance residual as the y-axis, and the stability domain performance residual as the z-axis. The points in the coordinate system and the origin form the composite performance residual. vector.
故障诊断单元,用于判断复合性能残差矢量长度与预设故障阈值的大小;若复合性能残差矢量长度小于预设故障阈值,控制系统执行机构未发生故障;否则,控制系统执行机构发生故障。The fault diagnosis unit is used to judge the size of the composite performance residual vector length and the preset fault threshold; if the composite performance residual vector length is less than the preset fault threshold, the control system actuator is not faulty; otherwise, the control system actuator is faulty .
表征参数获取模块209,用于获取不同故障模式的表征参数。表征参数为表示故障的参数。The characterization
线性故障模型建立模块210,用于根据不同故障模式的表征参数分别建立故障情况下控制系统模型的线性故障模型。The linear fault
第二输出计算模块211,用于根据指令输入数据计算线性故障模型在闭环反馈下的输出。The second
第二时域性能残差模块212,用于根据线性标称模型在闭环反馈下的输出和线性故障模型在闭环反馈下的输出的差值确定线性标称模型和线性故障模型之间的时域性能残差。The second time domain performance
第二间隙度量计算模块213,用于根据线性标称模型和线性故障模型采用间隙度量方法确定线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差。The second gap
故障诊断模块214,用于根据线性标称模型和线性故障模型之间的时域性能残差、线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差进行故障类型和故障程度判断。The
故障诊断模块214,具体包括:The
第二归一化处理单元,用于针对每一种故障类型,分别对线性标称模型和线性故障模型之间的时域性能残差、线性标称模型和线性故障模型之间的频域性能残差和稳定域性能残差进行归一化处理。The second normalization processing unit is used for, for each fault type, the time domain performance residual between the linear nominal model and the linear fault model, and the frequency domain performance between the linear nominal model and the linear fault model, respectively. Residuals and stability domain performance residuals are normalized.
执行机构故障空间库建立单元,用于根据每一种故障类型归一化后的线性标称模型和线性故障模型之间的时域性能残差、归一化后的线性标称模型和线性故障模型之间的频域性能残差以及归一化后的线性标称模型和线性故障模型之间的稳定域性能残差建立执行机构故障空间库。Actuator fault space library building unit for time-domain performance residuals between normalized linear nominal models and linear fault models, normalized linear nominal models and linear faults for each fault type The frequency domain performance residuals between the models and the stable domain performance residuals between the normalized linear nominal model and the linear fault model establish the actuator fault space library.
故障类型判断单元,用于根据复合性能残差矢量在执行机构故障空间库中的方向对故障类型进行判断,根据复合性能残差矢量在执行机构故障空间库中的长度进行故障程度大小的判断。The fault type judgment unit is used to judge the fault type according to the direction of the composite performance residual vector in the actuator fault space library, and judge the fault degree according to the length of the composite performance residual vector in the actuator fault space library.
对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
下面,以某航空装备燃油控制系统执行机构为诊断对象,通过仿真实例验证本发明所述方法的有效性。燃油控制系统主要包括电液伺服阀、计量活门、压差活门等元件组成,其中电液伺服阀和计量活门是执行机构的主要部件如图5所示。由于电液伺服阀阀芯位移通常很小,看作在零位工作点附近工作,选取状态向量其中,θ是伺服阀力矩马达的偏转角度,是伺服阀力矩马达的偏转的角加速度,P1是伺服阀阀芯左侧控制腔的压力,P2是伺服阀阀芯右侧控制腔的压力,P3是喷嘴后的压力,是伺服阀芯的速度,xs是伺服阀芯的位移,y是计量活门的输出位移。设力矩马达的控制输入电流为ie,系统的供油压力为Ps。In the following, taking the actuator of a certain aviation equipment fuel control system as the diagnosis object, the effectiveness of the method of the present invention is verified by a simulation example. The fuel control system mainly includes electro-hydraulic servo valve, metering valve, differential pressure valve and other components. The electro-hydraulic servo valve and metering valve are the main components of the actuator, as shown in Figure 5. Since the displacement of the spool of the electro-hydraulic servo valve is usually very small, it is regarded as working near the zero working point, and the state vector is selected. where θ is the deflection angle of the servo valve torque motor, is the angular acceleration of the deflection of the servo valve torque motor, P 1 is the pressure of the left control chamber of the servo valve spool, P 2 is the pressure of the right control chamber of the servo valve spool, P 3 is the pressure behind the nozzle, is the speed of the servo spool, x s is the displacement of the servo spool, and y is the output displacement of the metering valve. Let the control input current of the torque motor be i e , and the oil supply pressure of the system be P s .
步骤1、建立无故障情况下的燃油控制系统执行机构高阶非线性标称数学模型。由于模型参数个数较多,在此不在给出具体的参数化模型,直接代入具体数值后得到8阶非线性的标称模型:
步骤2、结合燃油控制系统执行机构的特点,其典型故障模式主要包括:力矩马达电磁性能退化、喷嘴污染堵塞故障、先导级的油滤污染堵塞以及反馈杆球头间隙磨损故障。Step 2. Combined with the characteristics of the fuel control system actuator, its typical failure modes mainly include: torque motor electromagnetic performance degradation, nozzle pollution blockage, pilot stage oil filter pollution blockage, and feedback rod ball head gap wear fault.
表征上述故障模式的系统参数分别为:电流-力矩增益系数、喷嘴有效直径、先导级控制压力和反馈杆球头间隙大小。通过改变仿真模型中这些参数的大小模拟不同故障的程度大小,进而得到故障后的非线性故障模型。The system parameters that characterize the above failure modes are: current-torque gain coefficient, effective diameter of nozzle, pilot stage control pressure and feedback rod ball head gap size. By changing the magnitude of these parameters in the simulation model, the degree of different faults is simulated, and the nonlinear fault model after the fault is obtained.
步骤3、对步骤1得到的8阶非线性标称模型在零位工作点进行模型线性化,结果如下:Step 3. Perform model linearization on the 8th-order nonlinear nominal model obtained in
B0=[1.1×106 0 0 0 0 0 0 0]T B 0 =[1.1×10 6 0 0 0 0 0 0 0] T
C0=[0 0 0 0 0 0 0 1],u=ie C 0 =[0 0 0 0 0 0 0 1], u= ie
上式中,A0、B0、C0是系统矩阵,A0、B0、C0是Aj、Bj、Cj在j=0时的情况,是在零位工作点进行的线性化得到的,u是系统的输入。In the above formula, A 0 , B 0 , and C 0 are system matrices, and A 0 , B 0 , and C 0 are the cases of A j , B j , and C j when j = 0, which is a linear operation performed at the zero working point. , u is the input of the system.
采用Hankel奇异值法对模型降阶处理,并写成传递函数形式,得到燃油计量系统简化的开环标称模型:The Hankel singular value method is used to reduce the order of the model and write it in the form of a transfer function to obtain a simplified open-loop nominal model of the fuel metering system:
步骤4、采用仿真的手段,在高阶非线性模型中分别注入上述四类故障,得到结果如图6(a)-(d)所示,图6(a)为电磁性能退化仿真结果图,图6(b)为喷嘴污染堵塞仿真结果图,图6(c)为先导油滤堵塞仿真结果图,图6(d)为球头间隙磨损仿真结果图。采集系统的输入输出数据并进行系统模型辨识,结果如表1所示。Step 4. By means of simulation, the above four types of faults are injected into the high-order nonlinear model respectively, and the results are shown in Figure 6(a)-(d). Figure 6(a) is the simulation result of electromagnetic performance degradation. Fig. 6(b) is the simulation result of nozzle pollution and clogging, Fig. 6(c) is the simulation result of pilot oil filter clogging, and Fig. 6(d) is the simulation result of ball head gap wear. The input and output data of the system are collected and the system model is identified. The results are shown in Table 1.
表1 电液伺服控制系统故障及相应模型辨识Table 1 Electro-hydraulic servo control system faults and corresponding model identification
步骤5、残差生成:根据步骤3得到的线性标称模型和步骤4测量的系统输出信息,计算时域指标的性能残差;根据公式计算步骤3得到的简化的线性标称模型和步骤4辨识得到的实际模型之间的频域性能残差和稳定域性能残差,计算结果如表2所示。Step 5. Residual generation: According to the linear nominal model obtained in step 3 and the system output information measured in step 4, calculate the performance residual of the time domain index; calculate the simplified linear nominal model obtained in step 3 and step 4 according to the formula The frequency domain performance residuals and the stability domain performance residuals between the identified actual models are shown in Table 2.
表2 不同故障模式下电液伺服控制系统的多域性能残差Table 2 Multi-domain performance residuals of electro-hydraulic servo control system under different failure modes
步骤6、根据燃油计量控制系统的控制要求指标分别确定时域性能、频域性能和稳定域性能所对应的最大故障程度因子α,β,γ,进而对步骤5中得到的三个性能残差进行归一化处理,得到不同故障下复合的性能残差向量如表3所示。Step 6. Determine the maximum failure degree factors α, β, γ corresponding to the time domain performance, frequency domain performance and stability domain performance according to the control requirement index of the fuel metering control system, and then calculate the three performance residuals obtained in step 5. After normalization, the composite performance residual vector under different faults is obtained as shown in Table 3.
根据某燃油控制系统的控制品质要求,稳态误差≤0.05mm,上升时间≤0.04s(对应),稳定裕度≤45°(对应)。设定稳态误差为0.2mm,上升时间为0.1s(对应δν=0.3336),稳定域残差为0.8375时分别对应最严重故障的性能指标,对应α=2,β=0.4,γ=0.7。According to the control quality requirements of a certain fuel control system, the steady-state error is less than or equal to 0.05mm, and the rise time is less than or equal to 0.04s (corresponding to ), stability margin≤45°(corresponding to ). When the steady-state error is set to 0.2mm, the rise time is 0.1s (corresponding to δ ν = 0.3336), and the residual error of the stability domain is 0.8375, respectively corresponding to the performance indicators of the most serious faults, corresponding to α=2, β=0.4, γ=0.7 .
表3 归一化的标准多域性能残差Table 3 Normalized standard multi-domain performance residuals
步骤7、通过实验或仿真手段对执行机构各个工作点进行典型故障模拟,并重复采用步骤5和步骤6的方法,得到不同故障下的残差向量,形成动态反馈控制系统执行机构故障空间库。Step 7. Perform typical fault simulations on each operating point of the actuator by means of experiments or simulations, and repeat the methods in steps 5 and 6 to obtain residual vectors under different faults, and form a dynamic feedback control system actuator fault space library.
步骤8、根据控制系统的性能要求,设置三个性能残差分量的故障阈值,根据。利用步骤6得到的复合的性能残差向量长度进行故障诊断,利用复合的性能残差向量的方向和步骤7得到的故障空间进行故障隔离。如图7所示,本实施例中注入的四种故障的残差向量分别为:Step 8. According to the performance requirements of the control system, set the fault thresholds of the three performance residual components, according to . The length of the composite performance residual vector obtained in step 6 is used for fault diagnosis, and the direction of the composite performance residual vector and the fault space obtained in step 7 are used for fault isolation. As shown in Figure 7, the residual vectors of the four types of faults injected in this embodiment are:
H1=[0.0000 0.3318 0.0000]T H 1 =[0.0000 0.3318 0.0000] T
H2=[-1.0000 0.0001 0.0010]T H 2 =[-1.0000 0.0001 0.0010] T
H3=[0.0000 0.2359 0.2381]T H 3 =[0.0000 0.2359 0.2381] T
H4=[-1.0000 0.8708 1.0000]T。H 4 =[−1.0000 0.8708 1.0000] T .
其中,H1为电磁性能退化故障的残差向量,H2为喷嘴污染堵塞故障的残差向量,H3为先导油滤堵塞故障的残差向量,H4为球头间隙磨损故障的残差向量。Among them, H 1 is the residual vector of the electromagnetic performance degradation fault, H 2 is the residual vector of the nozzle contamination and clogging fault, H 3 is the residual vector of the pilot oil filter clogging fault, and H 4 is the residual error of the ball head gap wear fault. vector.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010433878.XA CN111538316B (en) | 2020-05-21 | 2020-05-21 | Performance-based fault diagnosis method and system for actuating mechanism of closed-loop control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010433878.XA CN111538316B (en) | 2020-05-21 | 2020-05-21 | Performance-based fault diagnosis method and system for actuating mechanism of closed-loop control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111538316A true CN111538316A (en) | 2020-08-14 |
CN111538316B CN111538316B (en) | 2021-04-02 |
Family
ID=71980636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010433878.XA Active CN111538316B (en) | 2020-05-21 | 2020-05-21 | Performance-based fault diagnosis method and system for actuating mechanism of closed-loop control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111538316B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112415980A (en) * | 2020-11-04 | 2021-02-26 | 上海莘汭驱动技术有限公司 | Fault diagnosis method of control system based on direct current electric mechanism simulator |
CN112526979A (en) * | 2020-12-16 | 2021-03-19 | 中国兵器装备集团自动化研究所 | Serial communication interface diagnosis system and method of multiple redundancy architecture |
CN113780364A (en) * | 2021-08-18 | 2021-12-10 | 西安电子科技大学 | A Model and Data Joint-Driven SAR Image Target Recognition Method |
CN115933604A (en) * | 2022-12-20 | 2023-04-07 | 广东石油化工学院 | Fault detection and prediction control method based on data driving |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101004592A (en) * | 2007-01-25 | 2007-07-25 | 上海交通大学 | Control method of feed forward, feedback control system for interferential and time delayed stable system |
CN101776865A (en) * | 2010-01-20 | 2010-07-14 | 浙江师范大学 | Method for uniformly controlling mechanical system by utilizing differential inclusion |
CN102183699A (en) * | 2011-01-30 | 2011-09-14 | 浙江大学 | Method for model mismatching detection and positioning of multivariate predictive control system in chemical process |
US20120053704A1 (en) * | 2007-01-31 | 2012-03-01 | Honeywell International Inc. | Apparatus and method for automated closed-loop identification of an industrial process in a process control system |
US9500717B1 (en) * | 2014-05-06 | 2016-11-22 | The Florida State University Research Foundation, Inc. | Method for small-signal stability assessment of power systems using source side and load side series voltage injection perturbations |
CN106773648A (en) * | 2016-12-19 | 2017-05-31 | 华侨大学 | The Robust Guaranteed Cost design and parameter tuning method of a kind of Active Disturbance Rejection Control |
CN107168101A (en) * | 2017-06-07 | 2017-09-15 | 国网福建省电力有限公司 | Consider frequency modulation and the set speed adjustment system control parameters setting method of scleronomic constraint |
JP2020064439A (en) * | 2018-10-17 | 2020-04-23 | 富士電機株式会社 | Control model identification method, control model identification apparatus and program |
-
2020
- 2020-05-21 CN CN202010433878.XA patent/CN111538316B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101004592A (en) * | 2007-01-25 | 2007-07-25 | 上海交通大学 | Control method of feed forward, feedback control system for interferential and time delayed stable system |
US20120053704A1 (en) * | 2007-01-31 | 2012-03-01 | Honeywell International Inc. | Apparatus and method for automated closed-loop identification of an industrial process in a process control system |
CN101776865A (en) * | 2010-01-20 | 2010-07-14 | 浙江师范大学 | Method for uniformly controlling mechanical system by utilizing differential inclusion |
CN102183699A (en) * | 2011-01-30 | 2011-09-14 | 浙江大学 | Method for model mismatching detection and positioning of multivariate predictive control system in chemical process |
US9500717B1 (en) * | 2014-05-06 | 2016-11-22 | The Florida State University Research Foundation, Inc. | Method for small-signal stability assessment of power systems using source side and load side series voltage injection perturbations |
CN106773648A (en) * | 2016-12-19 | 2017-05-31 | 华侨大学 | The Robust Guaranteed Cost design and parameter tuning method of a kind of Active Disturbance Rejection Control |
CN107168101A (en) * | 2017-06-07 | 2017-09-15 | 国网福建省电力有限公司 | Consider frequency modulation and the set speed adjustment system control parameters setting method of scleronomic constraint |
JP2020064439A (en) * | 2018-10-17 | 2020-04-23 | 富士電機株式会社 | Control model identification method, control model identification apparatus and program |
Non-Patent Citations (1)
Title |
---|
窦立谦: "面向控制的迭代辨识与控制设计方法研究", 《中国博士学位论文全文数据库信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112415980A (en) * | 2020-11-04 | 2021-02-26 | 上海莘汭驱动技术有限公司 | Fault diagnosis method of control system based on direct current electric mechanism simulator |
CN112526979A (en) * | 2020-12-16 | 2021-03-19 | 中国兵器装备集团自动化研究所 | Serial communication interface diagnosis system and method of multiple redundancy architecture |
CN112526979B (en) * | 2020-12-16 | 2023-06-09 | 中国兵器装备集团自动化研究所 | Serial communication interface diagnosis system and method with multiple redundancy architecture |
CN113780364A (en) * | 2021-08-18 | 2021-12-10 | 西安电子科技大学 | A Model and Data Joint-Driven SAR Image Target Recognition Method |
CN115933604A (en) * | 2022-12-20 | 2023-04-07 | 广东石油化工学院 | Fault detection and prediction control method based on data driving |
CN115933604B (en) * | 2022-12-20 | 2023-11-07 | 广东石油化工学院 | Fault detection and prediction control method based on data driving |
Also Published As
Publication number | Publication date |
---|---|
CN111538316B (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111538316B (en) | Performance-based fault diagnosis method and system for actuating mechanism of closed-loop control system | |
CN103472820B (en) | Method for diagnosing propulsion system failure based on partial least squares algorithm | |
KR101021801B1 (en) | Control Plane Driver Failure Diagnosis of Unmanned Aerial Vehicle Using Adaptive Unknown Input Observer | |
CN101481019B (en) | Fault tolerant observing method of sensor for satellite attitude control system | |
CN107797543A (en) | A kind of aero-engine fuel regulator method for diagnosing faults | |
CN110083076B (en) | A hardware-in-the-loop simulation platform and simulation method for gas turbine pneumatic actuator faults | |
CN108227676A (en) | The online fault detect of valve-controlled cylinder electrohydraulic servo system, estimation and localization method | |
CN111780800B (en) | A sensor fault monitoring, isolation and reconstruction method and system | |
CN114282570A (en) | Fault tolerance method and fault tolerance system for sensor of aircraft engine | |
Luo et al. | Intelligent model-based diagnostics for vehicle health management | |
CN118377227A (en) | An adaptive fault detection and control method for linear parameter variation systems | |
CN111208802A (en) | Intelligent diagnosis method and system for front-end redundancy of control system, memory and controller | |
WO2020078141A1 (en) | Fault detection and isolation system and method | |
CN112947391B (en) | A Micro-fault Diagnosis Method for Flight Control System Actuators Based on TOMFIR Residuals | |
Chen et al. | Application of model-based LPV actuator fault estimation for an industrial benchmark | |
Fravolini et al. | Structural analysis approach for the generation of structured residuals for aircraft FDI | |
CN112749789A (en) | Aero-engine multiple fault diagnosis device based on self-association neural network | |
CN118034018A (en) | Sensor fault tolerance method for scramjet engine | |
CN112947357B (en) | Aircraft intermittent fault diagnosis method based on double observers | |
CN106682692B (en) | Construction method of hydraulic rudder loop fault diagnosis system based on SVR multi-model | |
CN116894475A (en) | A gas turbine status early warning method based on neural network | |
CN116382237A (en) | A sensor fault diagnosis method for non-similar redundant actuation system of multi-electric aircraft | |
CN114970188A (en) | Aircraft system safety analysis method based on dynamic model | |
Matute et al. | Decentralized most permissive observer architecture for brake leakage diagnosis in automotive systems | |
Di Rito et al. | Development and experimental validation of real-time executable models of primary fly-by-wire actuators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |