CN1115297C - Process for synthesizing titanium-silicon molecular sieve in microwave radiation field - Google Patents

Process for synthesizing titanium-silicon molecular sieve in microwave radiation field Download PDF

Info

Publication number
CN1115297C
CN1115297C CN99107790A CN99107790A CN1115297C CN 1115297 C CN1115297 C CN 1115297C CN 99107790 A CN99107790 A CN 99107790A CN 99107790 A CN99107790 A CN 99107790A CN 1115297 C CN1115297 C CN 1115297C
Authority
CN
China
Prior art keywords
accordance
silicon
source
titanium
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99107790A
Other languages
Chinese (zh)
Other versions
CN1275530A (en
Inventor
贺鹤明
景振华
陈亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petrochemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petrochemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN99107790A priority Critical patent/CN1115297C/en
Publication of CN1275530A publication Critical patent/CN1275530A/en
Application granted granted Critical
Publication of CN1115297C publication Critical patent/CN1115297C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention discloses a method for preparing a TS-1 molecular sieve. Reaction mixtures of silicon resources, titanium sources and alkali sources, which can be used for synthesizing an MFI structure titanium silicon molecular sieve, are placed in an autoclave and generated steam is released in microwave radiation field from 600 to 50000MHz, under pressure from 0.4 to 1.0MPa and in crystallization time from 15 hours to 3 days to make the volume of steam condensate is 60% to 85% of the total volume of water in charging materials. The method has the advantages of little environment pollution, and small grain size and high yield of prepared molecular sieves.

Description

The method of synthesis of titanium silicon molecular sieve in a kind of microwave radiation field
Present method is the preparation method about HTS, has the method for MFI structure titanium silicon molecular sieve (TS-1) about preparation in the microwave radiation field specifically.
The Application Areas of molecular sieve has greatly been opened up in the appearance of HTS, and exploitation has synthesized the TS-1 with MFI structure, the TS-2 of MEL structure and the HTS of β zeolite topological framework at present to people through years of researches.Make molecular sieve enter the catalyzed oxidation field from fractionation by adsorption and acid catalyzed reaction.TS-1/H particularly 2O 2Catalytic oxidation system, can be applicable to the oxidation of stable hydrocarbon, the reactions such as oxidation, alkene epoxidation, aromatic hydrocarbon hydroxylation, ammoxidation of cyclohexanone of alcohol, traditional relatively oxidizing process, the application of HTS, can make the reaction conditions gentleness, technology is simple and safe, and is environmentally friendly, and transformation efficiency is high and selectivity is good.
The synthetic method of HTS is a hydrothermal crystallization method, and the titanium source, silicon source, organic bases and the water that are about to definite composition mix, and carry out crystallization under certain temperature and pressure, and obtains through preparation processes such as separation, washing, dryings.
USP4410501 has at first disclosed the preparation method of the five-ring titanium-silicon molecular sieve TS-1 with MFI structure, this method is after by certain reaction thing proportioning silicon source, titanium source, organic bases being mixed, above-mentioned reaction mixture is put into autoclave, at 130--200 ℃ of hydrothermal crystallizing 6-30 days; Perhaps above-mentioned reaction mixture is at room temperature left standstill some hrs, be warming up to 80 ℃ stir some hrs after, in 175 ℃ of hydrothermal crystallizings 10 days, separate then, wash, dry and must product.Wherein the silicon source can be the tetraalkyl silicon ester, silica colloidal or alkalimetal silicate, and the titanium source is hydrolyzable titanium compound, preferred tetraethyl-titanic acid ester, the preferred TPAOH of organic bases (TPAOH).Wherein the mole compositing range of reaction mixture is:
The general range preferable range
SiO 2/TiO 2 5~200 35~65
OH-/SiO 2 0.1~1.0 0.03~0.6
H 2O/SiO 2 20~200 60~100
RN +/SiO 2 0.1~2.0 0.4~1.0
Zeolites, Vol 12, p943, reported the method for synthetic TS-1 molecular sieve in 1992, can make the framework of molecular sieve titanium content higher, this method is to substitute the tetraethyl-titanic acid ester with the slower tetrabutyl titanate ester of hydrolysis rate, with anhydrous isopropyl alcohol is cosolvent, and adopted two kinds of approach to synthesize TS-1, a kind of approach is with the hydrolysis in an amount of TPAOH (TPAOH) aqueous solution of tetraethyl orthosilicate ester, adds the aqueous isopropanol of tetrabutyl titanate ester then under violent stirring, stirred 1 hour down at 60 ℃, form clear soln, add an amount of distilled water again, in reactor 160 ℃ of following crystallization 1~2 day; Another kind of approach is earlier with tetraethyl silicane acid esters dilute acid hydrolysis, form settled solution, order adds the aqueous isopropanol and TPAOH (TPAOH) aqueous solution of tetrabutyl titanate ester again, form transparent titanium silicon gel, 60 ℃ were stirred 1 hour down, form the solution of slight haze, add an amount of distilled water again, in reactor 160 ℃ of following crystallization 1~2 day.The yield of two kinds of approach synthetic TS-1 is respectively 70~85% and 70~90%.
Product behind the HTS hydrothermal crystallizing also will pass through the multistep aftertreatment, and as separate (as filtration or centrifugal) with mother liquor, washing, drying and other steps just can obtain solid-state crystallization product, and step is numerous and diverse.Need to use a large amount of distilled water washs in such last handling process, the raw material that a lot of costlinesses are usually arranged in the washings, as template TPAOH (TPAOH), be mixed in the water and run off, will not cause environmental pollution if do not recycle, but if reclaim, again can be very low because of the relative concentration of various raw materials, make very difficulty of recycling.
General TS-1 molecular sieve crystallization under hydrothermal condition obtains, generally, use the heating of electrically heated or water vapor mostly, promptly in heat conducting mode, by reactor wall heat is passed to reaction mixture, just inevitably there is a temperature gradient explained in this, makes reaction mixture can not get even heating and influences the performance of product.
USP4778666 has disclosed the method that in microwave radiation field hydrothermal crystallizing prepares aluminosilicate molecular sieves.This method comprises (a) but zeolite precursor that contains crystallization and the thermal conduction solvent that can respond to microwave energy is provided; (b) mixture of above-mentioned zeolite precursor and thermal conduction solvent is positioned over crystallization in the microwave radiation field of certain frequency.
The purpose of this invention is to provide that a kind of zeolite crystal size is little, yield is high, and the few method for preparing the TS-1 molecular sieve of preparation process environmental pollution.
Method provided by the invention is, can synthesize silicon source, the titanium source of TS-1, the reaction mixture of alkali source, be positioned in the autoclave, in the microwave radiation field of 600~50000MHz frequency, keep under reaction system 0.4~1MPa pressure, in 15 hours~3 days the crystallization time, the steam that discharge to produce, the volume that makes steam condensate be water in feeding intake cumulative volume 60%~85%.
The reaction mixture of said synthetic TS-1 can be prepared according to the method for prior art in the synthetic method of TS-1 molecular sieve provided by the present invention, the method that discloses among for example foregoing USP4410501, Zeolites, 1992, Vol 12, reported method among the p943, and institute's reported method in other documents.
Said silicon source is selected from silica gel, silicon sol or tetraalkyl silicon ester, preferred tetraalkyl silicon ester, more preferably tetraethyl silicane acid esters.
Said titanium source is the compound of hydrolyzable titanium, as TiCl 4, TiOCl 2And tetraalkyl titanate, preferred tetraalkyl titanate, more preferably tetraethyl-titanic acid ester or tetrabutyl titanate ester.
Said alkali source is an organic bases, is selected from fat amine compound, alcamine compound, quaternary amine alkali compounds or two or more mixture among them, preferred quaternary amine alkali compounds.Said quaternary amine alkali compounds is the alkyl quaternary amine bases compound that contains 1~4 carbon atom, wherein preferred TPAOH.
In the method provided by the invention, in order to reduce the loss of microwave energy as far as possible, said autoclave can be glass, pottery or macromolecule engineering material preferably by the material manufacturing that does not absorb or seldom absorb microwave energy, preferred macromolecule engineering material, more preferably polyether-ether-ketone.
Preferred 900~the 4500MHz of the microwave frequency of said microwave radiation field.
In method provided by the invention, the vapor pressure that is produced should remain 0.4~1.0MPa, discharges excessive steam by valve, and by condensation it is reclaimed.The discharging modes of steam can be intermittently, be that certain interval of time discharges once, it also can be successive, the opportunity of discharged steam and time length and no requirement (NR), can be in the crystallization initial stage, also can carry out after for some time in crystallization, be preferably in crystallization and begin after inductive phase to carry out, the volume that makes steam condensate be feed intake in water cumulative volume 60%~85%, preferred 65%~80% o'clock, stop discharged steam, the average release rate of steam is to be determined by the phlegma volume of need released vapour and crystallization time.
Method provided by the invention has following advantage:
1, major part is outside the water vapour in the steam of Pai Chuing, and also having small portion is that template tetrapropyl oxyammonia (TPAOH) part is decomposed Tri-n-Propylamine and the propyl alcohol that forms, and they can and reclaim by the fractionation plant condensate fractionation, have reduced the pollution to environment.
2, because the microwave heating energy distribution is even, avoided the problem of the heating inequality that thermograde causes in the conventional hydrothermal crystallization method, thereby the gained molecular sieve crystallinity is good, grain-size is less, the synthetic product has littler particle size, for example adopting the crystal size of the TS-1 molecular sieve of ordinary method preparation is 0.30~0.40 μ m, is 0.10~0.25 μ m and adopt the crystal size of the TS-1 molecular sieve of present method preparation.
3, the liquid phase in the reaction system is evaporated discharge, solid-to-liquid ratio was very little when crystallization was finished, thereby it is easier that mother liquor separation and template are reclaimed, and avoided the loss of material in the post-processing step, improved the yield of molecular sieve, its actual recovery reaches more than 90% of theoretical yield.
4, the direct provocative reaction mixture of the microwave in microwave radiation field molecule has increased internal energy of molecular, thereby has accelerated the molecular sieve crystallization rate; Because the crystallization system is concentrated, the reactant relative concentration increases gradually, has improved the utilising efficiency of template, has shortened crystallization time simultaneously.
The granularity of TS-1 sample is measured by the JEM-2000FX-II transmission electron microscope (TEM) of NEC company.
Figure C9910779000061
Fig. 1 is the standard x optical diffraction spectrogram of the HTS with MFI structure of the last record of Microporous Materials Vol 22 (1998) p637.
Transmission electron microscope (TEM) photo of the TS-1 of the method that provides according to embodiment among the USP4410501 1 and method provided by the invention preparation is provided for Fig. 2 a and 2b.
Fig. 3 a and 3b are respectively according to Zeolites, and Vol 12, p943, transmission electron microscope (TEM) photo of the TS-1 of the method for record and method provided by the invention preparation on 1992.
Following embodiment will the present invention is further illustrated, but protection scope of the present invention is not subjected to the restriction of these embodiment.
In each of the embodiments described below, used TPAOH is the aqueous solution of 20 (weight) %, is Japanese Fluka company product; The tetraethyl silicane acid esters is a chemical pure, SiO 2〉=28%, Tianjin chemical reagent factory product; Tetraethyl-titanic acid ester and tetrabutyl titanate ester are chemical pure, Great Wall, Beijing chemical reagent factory product.
Comparative Examples 1
This Comparative Examples prepares TS-1 for the method that provides according to embodiment among the USP4410501 1.
Get the 20ml TPAOH and be dissolved in the 40ml bi-distilled water, under 0~5 ℃, slowly splash in the 23ml tetraethyl silicane acid esters, drip off the back and stir 20min, splash into 0.68ml tetraethyl-titanic acid ester, drip off the back and stirred 1 hour.Slowly be warming up to 80 ℃, stirring heating 5 hours adds the 50ml bi-distilled water.With above-mentioned reaction mixture band teflon-lined autoclave, be warmed up to 175 ℃, crystallization time is 10 days.After crystallization is finished, reactant is taken out filtration, washing, drying, 540 ℃ of following roastings 6 hours.The yield of products obtained therefrom is 84%.
The x-ray diffraction spectra of product conforms to Fig. 1.
Transmission electron microscope photo is seen Fig. 2 a, and from Fig. 2 a as can be known, the granularity of prepared TS-1 is about 0.30~0.40 μ m.
Example 1~3
The effect of method enforcement of the present invention is adopted in these example explanations according to the reaction mixture of USP4410501 method preparation.
Get the 20ml TPAOH and be dissolved in the 40ml bi-distilled water, under 0~5 ℃, slowly splash in the 23ml tetraethyl silicane acid esters, drip off the back and stir 20min, splash into 0.68ml tetraethyl-titanic acid ester, drip off the back and stirred 1 hour.Slowly be warming up to 80 ℃, stirring heating 5 hours adds the 50ml bi-distilled water.But above-mentioned reaction mixture is put in the autoclave by the polyether-ether-ketone preparation of microwave heating system (SH9402, Research Institute of Petro-Chemical Engineering make) of automatic voltage measurement and pressure control function, set certain microwave frequency and 0.8MPa system pressure.By the valve released vapour, vapor condensation reclaims to calculate the volume of phlegma, the V-bar of sustained release steam.After crystallization is finished, reactant is taken out, filtration, washing, drying, 540 ℃ of following roastings got sample in 6 hours.Reaction conditions and product yield see Table 1.
The x-ray diffraction spectra of product conforms to Fig. 1.
Wherein the transmission electron microscope photo of the TS-1 of example 3 preparations is seen Fig. 2 b, and from Fig. 2 b as can be known, its granularity is about 0.10~0.25 μ m, less than 0.30~0.40 μ m of conventional method preparation.
Table 1
Embodiment Microwave frequency (MHz) The average release rate (ml/h) of steam Crystallization time (h) The percentage ratio of the cumulative volume of water during the phlegma volume accounts for and feeds intake Product yield (%)
1 2450 4.6 15 65% 94
2 2450 3.3 24 75% 96
3 910 1.7 48 80% 96
Comparative Examples 2
This Comparative Examples is according to Zeolites, and Vol 12, p943, and the method for record prepares TS-1 on 1992.
Get 20ml TPAOH (TPAOH) and be dissolved in the 40ml bi-distilled water, under 5~10 ℃ condition, slowly splash in the 35ml tetraethyl silicane acid esters, drip off back stirring 20min and stir into uniform sol shape liquid; Get 1.4ml tetrabutyl titanate ester again, be dissolved in the 5ml Virahol, under 5~10 ℃ of stirrings, slowly splash into the mixing solutions of 10ml TPAOH and 40ml water, drip off the back and stir hydrolysis 10min, obtain the mixed solution of homogeneous transparent, it is splashed in the colloidal sol shape liquid that makes previously, dropwise the back and continue to stir 30min.Slowly be warming up to 80 ℃, stirring heating 3 hours is removed the alcohols that hydrolysis produces, and adds the 40ml bi-distilled water and replenishes moisture evaporated, the consisting of of prepared reaction mixture: SiO 2: 0.03TiO 2: 0.15TPAOH: 50H 2O.Above-mentioned reaction mixture is moved into band teflon-lined autoclave, be warmed up to 170 ℃.Crystallization 48 hours after crystallization is finished, is taken out reactant, filtration, washing, drying, 540 ℃ of following roastings 6 hours.The yield of product be 80%.Transmission electron microscope photo is seen Fig. 3 a, and from Fig. 3 a as can be known, the granularity of prepared TS-1 is about 0.30~0.40 μ m.
Example 4~6
These example explanations are according to Zeolites, and Vol 12, p943, the effect that the reaction mixture of 1992 methods preparation adopts method of the present invention to implement.
Get the 20ml TPAOH and be dissolved in the 40ml bi-distilled water, under 5~10 ℃ condition, slowly splash in the 35ml tetraethyl silicane acid esters, drip off back stirring 20min and stir into uniform sol shape liquid; Get 1.4ml tetrabutyl titanate ester again, be dissolved in the 5ml Virahol, under 5~10 ℃ of stirrings, slowly splash into the mixing solutions of 10ml TPAOH and 40ml water, drip off the back and stir hydrolysis 10min, obtain the mixed solution of homogeneous transparent, it is splashed in the colloidal sol shape liquid that makes previously, dropwise the back and continue to stir 30min.Slowly be warming up to 80 ℃, stirring heating 3 hours is removed the alcohols that hydrolysis produces, and adds the 40ml bi-distilled water and replenishes moisture evaporated.But in the autoclave of making by polyether-ether-ketone in the microwave heating system (SH9402, Research Institute of Petro-Chemical Engineering makes) of above-mentioned reaction mixture immigration automatic voltage measurement and pressure control, set certain microwave frequency and 0.8MPa system pressure.By the valve released vapour, according to the phlegma volume that vapor condensation reclaims, control the speed of different released vapours, after crystallization is finished, with the reactant taking-up, filtration, washing, drying, 540 ℃ of following roastings 6 hours.
The x-ray diffraction spectra of product conforms to Fig. 1.
Wherein the transmission electron microscope photo of the TS-1 of example 5 preparations is seen Fig. 3 b, and from Fig. 3 b as can be known, its granularity is about 0.10~0.25 μ m, less than 0.30~0.40 μ m of conventional method preparation.
Table 2
Embodiment Microwave frequency (MHz) The average release rate (ml/h) of steam Crystallization time (h) The percentage ratio of the cumulative volume of water during the phlegma volume accounts for and feeds intake Product yield (%)
4 910 7.6 15 65% 94
5 2450 4.9 24 75% 95
6 2450 2.5 48 80% 96

Claims (13)

1, a kind of preparation method with titanium-silicon molecular sieve TS-1 of MFI structure, it is reaction mixture with silicon source, titanium source, alkali source, be positioned over crystallization in the autoclave, it is characterized in that this reaction is in the microwave radiation field of 600~50000MHz, under pressure 0.4~1.0MPa, in 15 hours~3 days crystallization times, the steam that discharge to produce, the volume that makes steam condensate are to carry out under 60%~85% the situation of cumulative volume of water in feeding intake.
2, in accordance with the method for claim 1, wherein said microwave radiation field frequencies range is 900~4500MHz.
3, in accordance with the method for claim 1, the volume of wherein said steam condensate be feed intake in water cumulative volume 65%~80%.
4, in accordance with the method for claim 1, wherein said silicon source is selected from silica gel, silicon sol or tetraalkyl silicon ester.
5, in accordance with the method for claim 4, wherein said silicon source is the tetraalkyl silicon ester.
6, in accordance with the method for claim 5, wherein said silicon source is the tetraethyl silicane acid esters.
7, in accordance with the method for claim 1, wherein said titanium source is selected from TiCl 4, TiOCl 2Or tetraalkyl titanate.
8, in accordance with the method for claim 7, wherein said titanium source is a tetraalkyl titanate.
9, in accordance with the method for claim 8, wherein said titanium source is tetraethyl-titanic acid ester or tetrabutyl titanate ester.
10, in accordance with the method for claim 1, wherein said alkali source is selected from fat amine compound, alcamine compound, quaternary amine alkali compounds or two or more mixture among them.
11, in accordance with the method for claim 10, wherein said alkali source is the quaternary amine alkali compounds.
12, in accordance with the method for claim 11, wherein said quaternary amine alkali compounds is the alkyl quaternary amine bases compound that contains 1~4 carbon atom.
13, in accordance with the method for claim 12, wherein said alkyl quaternary amine bases compound is a TPAOH.
CN99107790A 1999-05-28 1999-05-28 Process for synthesizing titanium-silicon molecular sieve in microwave radiation field Expired - Fee Related CN1115297C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN99107790A CN1115297C (en) 1999-05-28 1999-05-28 Process for synthesizing titanium-silicon molecular sieve in microwave radiation field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN99107790A CN1115297C (en) 1999-05-28 1999-05-28 Process for synthesizing titanium-silicon molecular sieve in microwave radiation field

Publications (2)

Publication Number Publication Date
CN1275530A CN1275530A (en) 2000-12-06
CN1115297C true CN1115297C (en) 2003-07-23

Family

ID=5272939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99107790A Expired - Fee Related CN1115297C (en) 1999-05-28 1999-05-28 Process for synthesizing titanium-silicon molecular sieve in microwave radiation field

Country Status (1)

Country Link
CN (1) CN1115297C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387349B1 (en) * 2001-03-26 2002-05-14 Council Of Scientific And Industrial Research Process for the microwave induced preparation of crystalline microporous titanium silicalite
CN102502690A (en) 2011-10-31 2012-06-20 大连理工大学 Method for modifying TS (Titanium silicalite)-1 based on mixed liquor of quaternary ammonium salt and inorganic base
CN109721064B (en) * 2017-10-31 2020-10-27 中国石油化工股份有限公司 Method for producing titanium silicalite molecular sieve, titanium silicalite molecular sieve produced by method and ammoximation reaction method
CN115650249B (en) * 2022-09-19 2024-01-05 中建安装集团有限公司 Method for preparing high-performance TS-1 titanium silicalite molecular sieve at low cost

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410501A (en) * 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
US4778666A (en) * 1986-12-04 1988-10-18 Mobil Oil Corporation Crystallization method employing microwave radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410501A (en) * 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
US4778666A (en) * 1986-12-04 1988-10-18 Mobil Oil Corporation Crystallization method employing microwave radiation

Also Published As

Publication number Publication date
CN1275530A (en) 2000-12-06

Similar Documents

Publication Publication Date Title
CN1132699C (en) Titanium-silicon molecular sieve and its preparing method
CN101134575B (en) Method for preparing TS-1 molecular sieve
CN101291877A (en) Preparation of titanosilicate zeolite ts-1
CN105776244B (en) A method of TS-1 molecular sieves are synthesized by aerosol processing/spray drying process assisted Solid-state
CN114950543B (en) Preparation method and application of titanium-silicon molecular sieve catalyst
CN1107027C (en) Process for preparation of titanium-silicon molecular sieve
CN1789125A (en) Small crystal grain molecular sieve preparation method
CN111253425B (en) Synthesis method of 1, 3-bis [2- (3, 4-epoxycyclohexyl) ethyl ] tetramethyldisiloxane
CN1115297C (en) Process for synthesizing titanium-silicon molecular sieve in microwave radiation field
CN1089273C (en) Process for synthesizing Ti-Si molecular sieve
CN1119202C (en) Process for preparing Fe-Si Molecular sieve
CN106082259A (en) There is overlength catalytic life HTS and low cost preparation method thereof
CN1076724C (en) Method for hydroxylation of phenol
CN1177758C (en) Method for the production of a titanium-containing zeolite
US11434140B2 (en) Hierarchical zeolites and preparation method therefor
CN112408419A (en) Preparation method of hierarchical porous ZSM-5 nano zeolite
CN1089274C (en) Process for preparing Ti-Si molecular sieve
CN1040970C (en) Synthesis of Ti-Si ultra macroporous molecular sieve
CN113694960B (en) ZrCu-MOR zeolite for synthesizing 5-ethoxymethyl furfural and preparation method thereof
CN103818921A (en) Method for preparing TS-1 molecular sieve by using composite template
CN1342609A (en) Process for preparing high-purity nm or submicron alumina particles in losse form
CN1651334A (en) Gas solid phase preparation method of high performance titanium silicon zeolite
CN1436726A (en) Prepn process of superfine zeolite powder
CN112429747B (en) Preparation method for rapidly synthesizing titanium silicalite TS-1 with high titanium content under normal pressure by circularly using crystallization mother liquor
CN1226187C (en) Titanium silicon molecular sieve and synthetic method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1068229

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030723

Termination date: 20100528