CN111525641B - Micro-nano Satellite Pulse Power Supply System Based on Digital Control - Google Patents
Micro-nano Satellite Pulse Power Supply System Based on Digital Control Download PDFInfo
- Publication number
- CN111525641B CN111525641B CN202010336710.7A CN202010336710A CN111525641B CN 111525641 B CN111525641 B CN 111525641B CN 202010336710 A CN202010336710 A CN 202010336710A CN 111525641 B CN111525641 B CN 111525641B
- Authority
- CN
- China
- Prior art keywords
- module
- resistor
- voltage
- pole
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 118
- 238000007600 charging Methods 0.000 claims abstract description 29
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- 238000004146 energy storage Methods 0.000 claims abstract description 16
- 238000010277 constant-current charging Methods 0.000 claims abstract description 10
- 238000010280 constant potential charging Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/50—Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星电源系统技术领域,特别是一种基于数字控制的微纳卫星脉冲功率电源系统。The invention belongs to the technical field of satellite power supply systems, in particular to a micro-nano satellite pulse power supply system based on digital control.
背景技术Background technique
随着微纳卫星技术的发展,微纳卫星对电源系统又提出了许多大功率需求,包括微纳卫星烧线解锁装置、姿态调整时大力矩动量轮的驱动、电推进控制系统、以及整星的热供应等。而对于微纳卫星来说,储能单元以锂电池为主,如当负载功率发生脉动性变化时,锂电池所产生的峰值输出电流会较大,较大的峰值输出电流会对端电压造成严重影响,同时长时间处于大功率输出状态,势必会缩短电源系统的寿命,也直接影响着微纳卫星的在轨寿命。With the development of micro-nano satellite technology, the micro-nano satellite has put forward many high-power requirements for the power system, including the micro-nano satellite burning wire unlocking device, the drive of the high-torque momentum wheel during attitude adjustment, the electric propulsion control system, and the whole satellite. heat supply, etc. For micro-nano satellites, the energy storage unit is mainly lithium batteries. For example, when the load power changes pulsatingly, the peak output current generated by the lithium battery will be larger, and the larger peak output current will cause the terminal voltage. Serious impact, and at the same time in the high-power output state for a long time, will inevitably shorten the life of the power system, and also directly affect the on-orbit life of the micro-nano satellite.
超级电容器是以静电场储能为主的一类新型物理储能装置,其具有功率密度高、寿命长、可快速充放电、使用温度范围宽等优异特性,有利于电源系统的轻质小型化设计,适用于提供脉冲电流的应用场景。在锂电池输出端并联超级电容,降低了功率输出单元搭载脉动负载时的输出电流峰值,能够有效抑制锂电池的电压跌落,提高锂电池的动态响应能力以及放电效益。Supercapacitors are a new type of physical energy storage device mainly based on electrostatic field energy storage. They have excellent characteristics such as high power density, long life, fast charge and discharge, and wide operating temperature range, which are conducive to the lightweight and miniaturization of power supply systems. Designed for applications where pulsed current is supplied. The super capacitor is connected in parallel at the output end of the lithium battery, which reduces the peak output current when the power output unit is equipped with a pulsating load, can effectively suppress the voltage drop of the lithium battery, and improve the dynamic response capability and discharge efficiency of the lithium battery.
关于超级电容在微纳卫星电源系统中的应用已有部分学者展开相应研究。例如,公开号为CN106602694A的中国专利公开的基于超级电容的微纳卫星电源系统,管理单元基于最大功率点跟踪算法控制能量输模块向超级电容充电,超级电容通过母线与星上载荷电连接,旨在提高电源系统的功率密度。但是该专利的主要工作放在能量的输入管理,能量的输出管理工作涉及较少;超级电容可产生瞬时大电流的特性并未得到充分利用。赵岩在其论文《航天器新型功率电源系统设计》中设计了一种新型功率电源系统,超级电容与蓄电池组联合供电输出,对于实现航天器功率电源的轻质小型化具有一定的借鉴意义。然而,该新型功率电源系统的主要工作为超级电容与蓄电池联合输出的时序设计,并未涉及对超级电容充电的能量输入管理。Some scholars have carried out corresponding research on the application of supercapacitors in micro-nano satellite power systems. For example, the Chinese Patent Publication No. CN106602694A discloses a supercapacitor-based micro-nano satellite power supply system, the management unit controls the energy transmission module to charge the supercapacitor based on the maximum power point tracking algorithm, and the supercapacitor is electrically connected to the load on the satellite through the bus bar. in increasing the power density of the power system. However, the main work of this patent is on the input management of energy, and the output management of energy involves less work; the characteristics of supercapacitors that can generate instantaneous large current have not been fully utilized. Zhao Yan designed a new type of power supply system in his paper "Design of New Power Supply System for Spacecraft". The super capacitor and battery pack combined power supply output, which has certain reference significance for realizing the lightweight and miniaturization of spacecraft power supply. However, the main work of the new power supply system is the timing design of the joint output of the supercapacitor and the battery, and does not involve the management of energy input for charging the supercapacitor.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种带负载能力强、损耗率低、可移植性好的基于数字控制的微纳卫星脉冲功率电源系统。The purpose of the present invention is to provide a micro-nano satellite pulse power supply system based on digital control with strong load capacity, low loss rate and good portability.
实现本发明目的的技术解决方案为:一种基于数字控制的微纳卫星脉冲功率电源系统,所述系统包括能量输入单元、主控单元、超级电容模组、功率输出单元,其中能量输入单元包括锂聚合物电池、输入调节模块,主控单元包括模拟量采集模块、控制模块,超级电容模组包括超级电容,功率输出单元包括输入选择模块、配电模块、脉冲输出模块和恒功率输出模块;The technical solution to achieve the purpose of the present invention is: a micro-nano satellite pulse power supply system based on digital control, the system includes an energy input unit, a main control unit, a super capacitor module, and a power output unit, wherein the energy input unit includes Lithium polymer battery, input adjustment module, main control unit includes analog quantity acquisition module, control module, super capacitor module includes super capacitor, power output unit includes input selection module, power distribution module, pulse output module and constant power output module;
所述能量输入单元中:In the energy input unit:
锂聚合物电池,用于为整星负载和超级电容供电;Lithium polymer battery for powering the whole star load and super capacitor;
输入调节模块,用于接收控制模块的控制信号,调节二次母线电压,实现对超级电容的充电控制和保护;将母线电压、电流信号发送至模拟量采集模块;The input adjustment module is used to receive the control signal of the control module, adjust the voltage of the secondary bus, and realize the charging control and protection of the super capacitor; send the bus voltage and current signals to the analog acquisition module;
所述超级电容模组用于系统能量存储;将超级电容温度信号发送至模拟量采集模块;将电压信号发送至输入选择模块与配电模块,分别作为供电选择开关和配电开关的控制信号;The supercapacitor module is used for system energy storage; the supercapacitor temperature signal is sent to the analog quantity acquisition module; the voltage signal is sent to the input selection module and the power distribution module, respectively, as the control signal of the power supply selection switch and the power distribution switch;
所述主控单元中:In the main control unit:
模拟量采集模块,用于检测母线及系统输出端电压、电流值;同时测量超级电容温度值;并将数据反馈给控制模块;The analog quantity acquisition module is used to detect the voltage and current value of the bus and the system output terminal; at the same time, measure the temperature value of the super capacitor; and feed the data back to the control module;
控制模块,用于接收并处理模拟量采集模块的反馈数据;输出PWM信号至输入调节模块,实现超级电容充电的智能控制;输出PWM信号至恒功率输出模块,实现能量的恒功率输出的控制;发送使能指令至脉冲输出模块,控制系统脉冲输出;The control module is used to receive and process the feedback data of the analog acquisition module; output the PWM signal to the input adjustment module to realize the intelligent control of supercapacitor charging; output the PWM signal to the constant power output module to realize the control of the constant power output of energy; Send the enable command to the pulse output module to control the system pulse output;
所述功率输出单元中:In the power output unit:
输入选择模块,与锂聚合物电池电连接;用于接收超级电容模组发出的电压信号,当超级电容母线电压低于设定值时由锂电池直接向负载输出能量;The input selection module is electrically connected to the lithium polymer battery; it is used to receive the voltage signal sent by the super capacitor module. When the super capacitor bus voltage is lower than the set value, the lithium battery directly outputs energy to the load;
配电模块,与超级电容模组和输入选择模块电连接,提供标准电压输出,为各平台负载提供工作电压;接收超级电容模组的母线电压控制信号,母线电压低于或高于设定范围时切断电容输出,切换至锂电池输出模式;The power distribution module is electrically connected to the supercapacitor module and the input selection module, provides standard voltage output, and provides working voltage for each platform load; receives the busbar voltage control signal of the supercapacitor module, and the busbar voltage is lower than or higher than the set range. When the capacitor output is cut off, it switches to the lithium battery output mode;
脉冲输出模块,与超级电容模组电连接;用于接收控制模块的使能信号,向脉冲型负载提供能量;The pulse output module is electrically connected to the supercapacitor module; it is used to receive the enabling signal of the control module and provide energy to the pulsed load;
恒功率输出模块,与超级电容模组电连接;用于接收控制模块的PWM信号,调节输出电压,向恒功率负载提供能量。The constant power output module is electrically connected with the super capacitor module; it is used to receive the PWM signal of the control module, adjust the output voltage, and provide energy to the constant power load.
进一步地,所述主控单元和输入调节模块监测超级电容母线电压,当电压小于设定值时为恒流充电模式,当电压大于设定值时切换为恒压涓流充电模式。Further, the main control unit and the input adjustment module monitor the super capacitor bus voltage, and when the voltage is less than the set value, it is in the constant current charging mode, and when the voltage is greater than the set value, it switches to the constant voltage trickle charging mode.
进一步地,所述主控单元基于PID算法实现对超级电容恒压恒流充电控制。Further, the main control unit realizes the constant voltage and constant current charging control of the super capacitor based on the PID algorithm.
进一步地,所述配电模块采用窗口比较器控制供电开关,使超级电容母线电压在设定阈值内变化,实现系统输出的低压锁存与过压保护。Further, the power distribution module uses a window comparator to control the power supply switch, so that the supercapacitor bus voltage changes within a set threshold, so as to realize low-voltage latching and over-voltage protection of the system output.
进一步地,所述脉冲输出模块采用施密特触发器控制供电开关,脉冲输出模块接收到控制模块的使能指令后,超级电容模组持续放电,直至母线电压低于设定的下限阈值为止。Further, the pulse output module uses a Schmitt trigger to control the power supply switch. After the pulse output module receives the enabling command from the control module, the super capacitor module continues to discharge until the bus voltage is lower than the set lower threshold.
进一步地,所述输入调节模块采用Sepic拓扑的输入调节电路,具体包括第一电感L1、第二电感L2、第二电阻R2、第八电阻R8、第一电容C1、第二电容C2、第一二极管D1和第五NMOS管Q5;V_IN通过第一电感L1连接第一电容C1正极和第五NMOS 管Q5的D极;第五NMOS管Q5的S极通过第八电阻R8接地;第五NMOS管Q5的 G极作为PWM信号输入端;第一电容C1的负极和第一二极管D1的正极通过第二电感 L2接地;第一二极管D1负极连接第二电容C2的正极,并通过第二电阻R2连接到超级电容正极V_CAP;第二电容C2的负极接地。Further, the input adjustment module adopts a Sepic topology input adjustment circuit, which specifically includes a first inductor L1, a second inductor L2, a second resistor R2, an eighth resistor R8, a first capacitor C1, a second capacitor C2, a first The diode D1 and the fifth NMOS transistor Q5; V_IN connects the anode of the first capacitor C1 and the D pole of the fifth NMOS transistor Q5 through the first inductor L1; the S pole of the fifth NMOS transistor Q5 is grounded through the eighth resistor R8; The G pole of the NMOS transistor Q5 is used as the PWM signal input terminal; the cathode of the first capacitor C1 and the anode of the first diode D1 are grounded through the second inductor L2; the cathode of the first diode D1 is connected to the anode of the second capacitor C2, and Connected to the positive electrode V_CAP of the super capacitor through the second resistor R2; the negative electrode of the second capacitor C2 is grounded.
进一步地,所述配电模块采用的配电控制电路,具体包括第一电阻R1、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第九电阻R9、第一PMOS 管Q1、第二NMOS管Q2和第一集成MAX9018芯片U1;第三电阻R3、第六电阻R6 和第九电阻R9顺次串联,第九电阻R9另一端接地;超级电容正极V_CAP通过第三电阻R3连接至第一集成MAX9018芯片U1的3号引脚;第一集成MAX9018芯片U1的 6号引脚通过第九电阻R9接地;第一集成MAX9018芯片U1的2号引脚和5号引脚相连、1号引脚和7号引脚相连;VCC通过第一电阻R1连接至第一集成MAX9018芯片 U1的1号引脚和7号引脚;第一PMOS管Q1的S极和第二NMOS管Q2的D极相连;超级电容正极V_CAP连接至第一PMOS管Q1的S极和第二NMOS管Q2的D极;第二NMOS管Q2的S极接地;第二NMOS管Q2的G极通过第七电阻R7接地;恒压输出使能端Voltage_EN通过第五电阻R5连接至第二NMOS管Q2的G极;恒压输出端 Voltage_OUT连接至第一PMOS管Q1的D极。Further, the power distribution control circuit adopted by the power distribution module specifically includes a first resistor R1, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, and a ninth resistor. R9, the first PMOS transistor Q1, the second NMOS transistor Q2 and the first integrated MAX9018 chip U1; the third resistor R3, the sixth resistor R6 and the ninth resistor R9 are connected in series in sequence, and the other end of the ninth resistor R9 is grounded; the positive electrode of the super capacitor V_CAP is connected to the No. 3 pin of the first integrated MAX9018 chip U1 through the third resistor R3; the No. 6 pin of the first integrated MAX9018 chip U1 is grounded through the ninth resistor R9; the No. 2 pin of the first integrated MAX9018 chip U1 and The 5th pin is connected, the 1st pin and the 7th pin are connected; VCC is connected to the 1st pin and the 7th pin of the first integrated MAX9018 chip U1 through the first resistor R1; the S pole of the first PMOS transistor Q1 It is connected to the D pole of the second NMOS transistor Q2; the positive pole V_CAP of the super capacitor is connected to the S pole of the first PMOS transistor Q1 and the D pole of the second NMOS transistor Q2; the S pole of the second NMOS transistor Q2 is grounded; the second NMOS transistor Q2 The G pole is grounded through the seventh resistor R7; the constant voltage output enable terminal Voltage_EN is connected to the G pole of the second NMOS transistor Q2 through the fifth resistor R5; the constant voltage output terminal Voltage_OUT is connected to the D pole of the first PMOS transistor Q1.
进一步地,所述脉冲输出模块采用施密特触发器电路,具体包括第十电阻R10、第十一电阻R11、第十三电阻R13、第十四电阻R14、第十六电阻R16、第十七电阻R17、第三集成MAX9017芯片U3、第三PMOS管Q3和第四NMOS管Q4;超级电容正极 V_CAP通过第十三电阻R13连接至第三集成MA9017芯片U3的3号引脚,通过第十一电阻R11连接至第三集成MA9017芯片U3的1号引脚;第三集成MA9017芯片U3 的1号引脚通过第十四电阻R14接地;第三集成MA9017芯片U3的1号引脚连接至脉冲输出使能端Pulse_EN;超级电容正极连接至第三PMOS管Q3的S极,通过第十电阻 R10连接至第三PMOS管Q3的G极;第三PMOS管Q3的G极和第四NMOS管Q4 的D极连接;第四PMOS管S极接地;第四PMOS管G极通过第十七电阻R17接地;脉冲输出使能端Pulse_EN通过第十六电阻R16连接至第四NMOS管Q4的G极。Further, the pulse output module adopts a Schmitt trigger circuit, which specifically includes a tenth resistor R10, an eleventh resistor R11, a thirteenth resistor R13, a fourteenth resistor R14, a sixteenth resistor R16, and a seventeenth resistor R16. Resistor R17, the third integrated MAX9017 chip U3, the third PMOS transistor Q3 and the fourth NMOS transistor Q4; the positive electrode V_CAP of the supercapacitor is connected to
进一步地,所述恒功率输出模块采用Sepic拓扑结构的恒功率输出调节电路,具体包括第三电感L3、第四电感L4、第十二电阻R12、第十五电阻R15、第三电容C3、第四电容C4、第五电容C5、第二二极管D2和第六NMOS管Q6;超级电容正极V_CAP 通过第三电感L3连接第三电容C3正极和第六NMOS管Q6的D极,同时连接至第四电容C4正极;第四电容C4负极接地;第六NMOS管Q6的S极通过第十五电阻R15 接地;第六NMOS管Q6的G极作为PWM信号输入端;第三电容C3的负极和第二二极管D2的正极通过第四电感L4接地;第二二极管D2负极连接第五电容C5的正极,并通过第十二电阻R12连接到恒功率输出端Power_OUT;第五电容C5的负极接地。Further, the constant power output module adopts a constant power output adjustment circuit with a Sepic topology, which specifically includes a third inductor L3, a fourth inductor L4, a twelfth resistor R12, a fifteenth resistor R15, a third capacitor C3, and a third capacitor C3. The four capacitors C4, the fifth capacitor C5, the second diode D2 and the sixth NMOS transistor Q6; the positive electrode V_CAP of the super capacitor is connected to the positive electrode of the third capacitor C3 and the D electrode of the sixth NMOS transistor Q6 through the third inductor L3, and is connected to the The positive pole of the fourth capacitor C4; the negative pole of the fourth capacitor C4 is grounded; the S pole of the sixth NMOS transistor Q6 is grounded through the fifteenth resistor R15; the G pole of the sixth NMOS transistor Q6 is used as the PWM signal input terminal; the negative pole of the third capacitor C3 and The anode of the second diode D2 is grounded through the fourth inductor L4; the cathode of the second diode D2 is connected to the anode of the fifth capacitor C5, and is connected to the constant power output terminal Power_OUT through the twelfth resistor R12; Negative ground.
本发明与现有技术相比,其显著优点为:(1)超级电容作为向外输出能量的主要储能装置,大幅提高了电源系统整体功率密度,增强其带负载能力;(2)锂聚合物电池作为电源系统的第二储能装置,降低其放电深度,可有效减小其损耗率,明显延长微纳卫星的在轨寿命;(3)为不同类型负载分配不同输出控制模块,有利于系统能量的分配管理,同时提高了电源系统的可移植性。Compared with the prior art, the present invention has the following significant advantages: (1) as the main energy storage device for external energy output, the super capacitor greatly improves the overall power density of the power supply system and enhances its load capacity; (2) lithium polymer As the second energy storage device of the power supply system, the physical battery can reduce the depth of discharge, which can effectively reduce its loss rate and significantly prolong the on-orbit life of the micro-nano satellite; (3) Distributing different output control modules for different types of loads is beneficial to System energy distribution management, while improving the portability of the power system.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
图1为本发明基于数字控制的微纳卫星脉冲功率电源系统的原理框图。FIG. 1 is a schematic block diagram of a micro-nano satellite pulse power supply system based on digital control of the present invention.
图2为本发明实施例提供的超级电容充电过程中端电压和充电电流的变化示意图,其中(a)为端电压变化示意图,(b)为充电电流变化示意图。2 is a schematic diagram of changes in terminal voltage and charging current during charging of a supercapacitor according to an embodiment of the present invention, wherein (a) is a schematic diagram of terminal voltage changes, and (b) is a schematic diagram of charging current changes.
图3为本发明实施例提供的系统第一、二储能装置的输出时序示意图。FIG. 3 is a schematic diagram of an output timing sequence of the first and second energy storage devices of the system according to an embodiment of the present invention.
图4为本发明实施例提供的一种输入调节电路示意图。FIG. 4 is a schematic diagram of an input adjustment circuit according to an embodiment of the present invention.
图5为本发明实施例提供的一种配电控制电路示意图。FIG. 5 is a schematic diagram of a power distribution control circuit according to an embodiment of the present invention.
图6为本发明实施例提供的一种脉冲输出控制电路的示意图。FIG. 6 is a schematic diagram of a pulse output control circuit according to an embodiment of the present invention.
图7为本发明实施例提供的一种恒功率输出电路的示意图。FIG. 7 is a schematic diagram of a constant power output circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
结合图1,其示出本发明实施例提供的一种基于数字控制的微纳卫星脉冲功率电源系统的结构框图,该电源系统包括能量输入单元1、主控单元2、超级电容模组3、功率输出单元4,其中能量输入单元1包括锂聚合物电池1-1、输入调节模块1-2,主控单元 2包括模拟量采集模块2-1、控制模块2-2,超级电容模组3包括超级电容,功率输出单元4包括输入选择模块4-1、配电模块4-2、脉冲输出模块4-3和恒功率输出模块4-4。1, it shows a structural block diagram of a digital control-based micro-nano satellite pulse power supply system provided by an embodiment of the present invention. The power supply system includes an
能量输入单元1包括锂聚合物电池1-1和输入调节模块1-2。The
锂聚合电池作为系统第二储能装置,与输入调节模块1-2电连接,用于为超级电容和整星负载提供电能。As the second energy storage device of the system, the lithium polymer battery is electrically connected to the input adjustment module 1-2, and is used to provide electric energy for the super capacitor and the whole satellite load.
输入调节模块1-2用于接收控制模块2-2的控制信号,调节二次母线电压,控制超级电容的充电过程,实现对超级电容的充电控制和保护,同时将充电过程中的母线电流、电压信息反馈给主控单元2。超级电容作为一种储能装置,其端电压在充电过程中不断升高,为保证充电速度,要求输入调节单元输出电压要在较大的范围内变化,因此应优选Buck-Boost、Cuk、Sepic等升降压DC/DC拓扑结构电路。图4示出了一种应用Sepic 拓扑的输入调节电路。The input adjustment module 1-2 is used to receive the control signal of the control module 2-2, adjust the voltage of the secondary bus, control the charging process of the super capacitor, realize the charging control and protection of the super capacitor, and at the same time, the bus current in the charging process, The voltage information is fed back to the
超级电容模组3作为电源系统的第一储能装置,具有功率密度大、放电次数多、放电深度大等优点,具有可瞬时大电流放电的特性,可明显提高系统的功率密度,增强系统带负载能力。超级电容模组3将超级电容温度信号发送至模拟量采集模块2-1;并将电压信号发送至输入选择模块4-1与配电模块4-2,分别作为供电选择开关和配电开关的控制信号。As the first energy storage device of the power system, the
结合图2,在一种优选的实施方式中,为保证超级电容的充电速度,延长超级电容的使用寿命,使用二段式充电方式——“先恒流,后恒压”。输入调节模块1-2的输出电压可由控制模块2-2发出的PWM信号占空比调节。为消除超级电容充电初期“尖峰电流”的不良影响,在保证充电速度的条件下,采用恒流充电模式进行充电,超级电容端电压线性增加;为保证超级电容的循环寿命,当超级电容端电压接近额定电压时切换至恒压涓流充电模式,充电电流呈指数衰减,防止超级电容过充。2, in a preferred embodiment, in order to ensure the charging speed of the supercapacitor and prolong the service life of the supercapacitor, a two-stage charging method is used—“first constant current, then constant voltage”. The output voltage of the input adjustment module 1-2 can be adjusted by the duty cycle of the PWM signal sent by the control module 2-2. In order to eliminate the adverse effect of "peak current" in the early stage of supercapacitor charging, under the condition of ensuring the charging speed, the constant current charging mode is used for charging, and the supercapacitor terminal voltage increases linearly; in order to ensure the cycle life of the supercapacitor, when the supercapacitor terminal voltage is When it is close to the rated voltage, it switches to the constant voltage trickle charging mode, and the charging current decays exponentially to prevent the supercapacitor from being overcharged.
主控单元2包括模拟量采集模块2-1和控制模块2-2。The
模拟量采集模块2-1用于实时采集超级电容充电及恒功率输出过程中母线及系统输出端的电流、电压值,并将采集数据反馈给控制模块2-2;还用于监测超级电容的温度。模拟量数据采集是系统形成闭环反馈控制的基础。The analog quantity acquisition module 2-1 is used for real-time acquisition of the current and voltage values of the bus and the system output during the charging and constant power output of the supercapacitor, and feedback the collected data to the control module 2-2; it is also used to monitor the temperature of the supercapacitor . Analog data acquisition is the basis for the system to form closed-loop feedback control.
控制模块2-2用于处理模拟量采集模块2-1发送的反馈数据,并产生PWM信号作用于输入调节模块1-2,实现超级电容充电的智能控制;输出PWM信号至恒功率输出模块4-4,实现能量的恒功率输出的控制,采用数字控制的方法控制超级电容的充电过程和恒功率输出过程;还用于产生使能指令作用于脉冲输出模块4-3,控制系统对脉冲型负载的能量供应。The control module 2-2 is used to process the feedback data sent by the analog acquisition module 2-1, and generate a PWM signal to act on the input adjustment module 1-2 to realize the intelligent control of super capacitor charging; output the PWM signal to the constant power output module 4 -4, to realize the control of constant power output of energy, using digital control method to control the charging process and constant power output process of supercapacitor; it is also used to generate an enabling command to act on the pulse output module 4-3, and the control system can control the pulse type load energy supply.
在一种优选的实施方式中,控制模块2-2基于PID算法对超级电容的充电过程进行控制。在恒流充电阶段,模拟量采集模块2-1采集输入调节模块1-2的输出电流,反馈给主控模块,输出模块调节输出的PWM信号的占空比,调节输入调节模块1-2的输出电压以控制输出电流的大小;在恒压涓流充电中,模拟量采集模块2-1采集超级电容端电压,相同地,主控模块根据反馈值调节PWM信号占空比以保证输入调节模块1-2恒压输出。In a preferred embodiment, the control module 2-2 controls the charging process of the super capacitor based on the PID algorithm. In the constant current charging stage, the analog quantity acquisition module 2-1 collects the output current of the input adjustment module 1-2 and feeds it back to the main control module. The output module adjusts the duty cycle of the output PWM signal and adjusts the output current of the input adjustment module 1-2. The output voltage is used to control the output current; in constant voltage trickle charging, the analog acquisition module 2-1 collects the terminal voltage of the super capacitor. Similarly, the main control module adjusts the duty cycle of the PWM signal according to the feedback value to ensure that the input adjustment module 1-2 constant voltage output.
功率输出单元4包括输入选择模块4-1、配电模块4-2、脉冲输出模块4-3、恒功率输出模块4-4。The
输入选择模块4-1,与锂聚合物电池1-1电连接;用于接收超级电容模组3发出的电压信号,控制锂电池直接向平台负载输出能量,当超级电容母线电压低于设定值时由锂电池直接向负载输出能量。超级电容模组3作为电源系统的第一储能装置,在欠压锁存和过压保护状态下无法向负载提供能量,为保证平台负载正常供电,在超级电容模组 3一路断开时应由锂聚合物电池1-1直接向外输出能量。The input selection module 4-1 is electrically connected to the lithium polymer battery 1-1; it is used to receive the voltage signal sent by the
配电模块4-2,与超级电容模组3和输入选择模块4-1电连接,提供标准电压输出,为各平台负载提供工作电压;接收超级电容模组3的母线电压控制信号,母线电压低于或高于设定范围时切断电容输出,切换至锂电池输出模式。配电模块4-2串接在超级电容和和平台负载之间,用作系统恒压输出的控制开关,同时向负载提供恒定电压,保证平台负载稳定、安全工作。模块可分为开关部分和稳压电路两部分,开关部分采用窗口比较器用作开关控制电路,当超级电容端电压小于下限阈值或高于上限阈值时,切断超级电容输出,实现电容输出的欠压锁存和过压保护,保证平台负载可以稳定、安全工作,图5给出了一种配电控制电路实施例;稳压电路可以采用电源集成IC输出固定电压,可选择输出3.3V、5V、12V等标准电压。The power distribution module 4-2 is electrically connected to the
脉冲输出模块4-3,与超级电容模组3电连接;用于接收控制模块2-2的使能信号,向脉冲型负载提供能量。脉冲输出模块4-3串接在超级电容和脉冲型负载之间,用作系统脉冲输出的控制开关,利用超级电容大功率密度的特性,可满足火工品等脉冲型负载的“瞬时大电流”需求。为避免超级电容过度放电,对平台其他负载造成影响,要为超级电容脉冲输出设置放电门限。在脉冲输出模块4-3接收到控制模块2-2的使能指令后,当超级电容端电压V_CAP大于设置值U1时系统开始输出,超级电容端电压V_CAP随着放电过程的进行逐渐降低,V_CAP小于设置值U2(U2<U1)时,系统停止输出。为实现系统在设置门限内进行脉冲输出,本实施例提供一种施密特触发器电路作为脉冲输出控制电路,如图6示出。The pulse output module 4-3 is electrically connected to the
恒功率输出模块4-4,与超级电容模组3电连接;用于接收控制模块2-2的PWM信号,调节输出电压,向恒功率负载提供能量。恒功率输出模块4-4用于直接对功率型负载输出能量。为提高硬件电路的可移植型,要求其输出功率可根据负载需要进行调节,因此要求用作恒功率输出的DC/DC电路输出电压可根据需要调节,应采用分立式原件搭建DC/DC转换电路;为使可调节输出功率的范围最大化,应优先选用Buck-boost、 Cuk、Sepic等拓扑的电路结构。图7示出了一种应用Sepic拓扑结构的一种恒功率输出调节电路。The constant power output module 4-4 is electrically connected to the
进一步地,所述主控单元2和输入调节模块1-2监测超级电容母线电压,当电压小于设定值时为恒流充电模式,当电压大于设定值时切换为恒压涓流充电模式。所述主控单元2基于PID算法实现对超级电容恒压恒流充电控制。所述配电模块4-2采用窗口比较器控制供电开关,使超级电容母线电压在设定阈值内变化,实现系统输出的低压锁存与过压保护。所述脉冲输出模块4-3采用施密特触发器控制供电开关,脉冲输出模块4-3 接收到控制模块2-2的使能指令后,超级电容模组3持续放电,直至母线电压低于设定的下限阈值为止。Further, the
结合图3,在一种优选的实施方式中,V1、V2分别为超级电容输出欠压锁存和过压保护的阈值V1<V2,当V1<V_CAP<V2时,系统由超级电容向平台负载供电;当 V_CAP<V1或V_CAP>V2时由锂聚合物电池1-1直接向平台负载输出能量,保证系统可以持续为平台负载供电。Referring to FIG. 3 , in a preferred embodiment, V 1 and V 2 are the thresholds for under-voltage lockout and over-voltage protection of the supercapacitor output, respectively, V 1 <V 2 . When V 1 <V_CAP<V 2 , the system The super capacitor supplies power to the platform load; when V_CAP<V 1 or V_CAP>V 2 , the lithium polymer battery 1-1 directly outputs energy to the platform load, ensuring that the system can continuously supply power to the platform load.
进一步地,在其中一个实施例中,结合图4,上述输入调节电路包括第一电感L1、第二电感L2、第二电阻R2、第八电阻R8、第一电容C1、第二电容C2、第一二极管 D1和第五NMOS管Q5;V_IN通过第一电感L1连接第一电容C1正极和第五NMOS 管Q5的D极;第五NMOS管Q5的S极通过第八电阻R8接地;第五NMOS管Q5的 G极作为PWM信号输入端;第一电容C1的负极和第一二极管D1的正极通过第二电感 L2接地;第一二极管D1负极连接第二电容C2的正极,并通过第二电阻R2连接到超级电容正极V_CAP;第二电容C2的负极接地。Further, in one embodiment, referring to FIG. 4 , the above-mentioned input adjustment circuit includes a first inductor L1, a second inductor L2, a second resistor R2, an eighth resistor R8, a first capacitor C1, a second capacitor C2, a first A diode D1 and the fifth NMOS transistor Q5; V_IN connects the anode of the first capacitor C1 and the D pole of the fifth NMOS transistor Q5 through the first inductor L1; the S pole of the fifth NMOS transistor Q5 is grounded through the eighth resistor R8; The G pole of the five NMOS transistors Q5 is used as the PWM signal input terminal; the cathode of the first capacitor C1 and the anode of the first diode D1 are grounded through the second inductor L2; the cathode of the first diode D1 is connected to the anode of the second capacitor C2, And connected to the positive electrode V_CAP of the super capacitor through the second resistor R2; the negative electrode of the second capacitor C2 is grounded.
进一步地,在其中一个实施例中,结合图5,上述配电控制电路包括第一电阻R1、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第九电阻R9、第一PMOS管Q1、第二NMOS管Q2和第一集成MAX9018芯片U1;第三电阻R3、第六电阻R6和第九电阻R9串联,第九电阻R9接地;超级电容正极V_CAP通过第三电阻R3连接至第一集成MAX9018芯片U1的3号引脚;第一集成MAX9018芯片U1 的6号引脚通过第九电阻R9接地;第一集成MAX9018芯片U1的2号引脚和5号引脚相连、1号引脚和7号引脚相连;VCC通过第一电阻R1连接至第一集成MAX9018芯片U1的1号引脚和7号引脚;第一PMOS管Q1的S极和第二NMOS管Q2的D极相连;超级电容正极V_CAP连接至第一PMOS管Q1的S极和第二NMOS管Q2的D极;第二NMOS管Q2的S极接地;第二NMOS管Q2的G极通过第七电阻R7接地;恒压输出使能端Voltage_EN通过第五电阻R5连接至第二NMOS管Q2的G极;恒压输出端 Voltage_OUT连接至第一PMOS管Q1的D极。Further, in one embodiment, with reference to FIG. 5 , the above-mentioned power distribution control circuit includes a first resistor R1, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, The ninth resistor R9, the first PMOS transistor Q1, the second NMOS transistor Q2 and the first integrated MAX9018 chip U1; the third resistor R3, the sixth resistor R6 and the ninth resistor R9 are connected in series, and the ninth resistor R9 is grounded; the positive electrode of the super capacitor V_CAP Connect to pin 3 of the first integrated MAX9018 chip U1 through a third resistor R3; pin 6 of the first integrated MAX9018 chip U1 is grounded through a ninth resistor R9; pins 2 and 5 of the first integrated MAX9018 chip U1 The No. 1 pin is connected to the No. 1 pin and the No. 7 pin is connected; VCC is connected to the No. 1 pin and No. 7 pin of the first integrated MAX9018 chip U1 through the first resistor R1; the S pole of the first PMOS transistor Q1 and The D pole of the second NMOS transistor Q2 is connected; the supercapacitor positive pole V_CAP is connected to the S pole of the first PMOS transistor Q1 and the D pole of the second NMOS transistor Q2; the S pole of the second NMOS transistor Q2 is grounded; The G pole is grounded through the seventh resistor R7; the constant voltage output enable terminal Voltage_EN is connected to the G pole of the second NMOS transistor Q2 through the fifth resistor R5; the constant voltage output terminal Voltage_OUT is connected to the D pole of the first PMOS transistor Q1.
进一步地,在其中一个实施例中,结合图6,上述脉冲输出控制电路包括第十电阻R10、第十一电阻R11、第十三电阻R13、第十四电阻R14、第十六电阻R16、第十七电阻R17、第三集成MAX9017芯片U3、第三PMOS管Q3和第四NMOS管Q4;超级电容正极V_CAP通过第十三电阻R13连接至第三集成MA9017芯片U3的3号引脚,通过第十一电阻R11连接至第三集成MA9017芯片U3的1号引脚;第三集成MA9017 芯片U3的1号引脚通过第十四电阻R14接地;第三集成MA9017芯片U3的1号引脚连接至脉冲输出使能端Pulse_EN;超级电容正极连接至第三PMOS管Q3的S极,通过第十电阻R10连接至第三PMOS管Q3的G极;第三PMOS管Q3的G极和第四NMOS 管Q4的D极连接;第四PMOS管S极接地;第四PMOS管G极通过第十七电阻R17 接地;脉冲输出使能端Pulse_EN通过第十六电阻R16连接至第四NMOS管Q4的G极。Further, in one embodiment, referring to FIG. 6 , the above-mentioned pulse output control circuit includes a tenth resistor R10 , an eleventh resistor R11 , a thirteenth resistor R13 , a fourteenth resistor R14 , a sixteenth resistor R16 , and a thirteenth resistor R13 . The seventeenth resistor R17, the third integrated MAX9017 chip U3, the third PMOS transistor Q3 and the fourth NMOS transistor Q4; the positive electrode V_CAP of the super capacitor is connected to the No. 3 pin of the third integrated MA9017 chip U3 through the thirteenth resistor R13, and the The eleventh resistor R11 is connected to the No. 1 pin of the third integrated MA9017 chip U3; the No. 1 pin of the third integrated MA9017 chip U3 is grounded through the fourteenth resistor R14; the No. 1 pin of the third integrated MA9017 chip U3 is connected to Pulse output enable terminal Pulse_EN; the positive pole of the super capacitor is connected to the S pole of the third PMOS transistor Q3, and is connected to the G pole of the third PMOS transistor Q3 through the tenth resistor R10; the G pole of the third PMOS transistor Q3 and the fourth NMOS transistor The D pole of Q4 is connected; the S pole of the fourth PMOS transistor is grounded; the G pole of the fourth PMOS transistor is grounded through the seventeenth resistor R17; the pulse output enable terminal Pulse_EN is connected to the G pole of the fourth NMOS transistor Q4 through the sixteenth resistor R16 .
进一步地,在其中一个实施例中,结合图7,上述恒功率输出电路包括第三电感L3、第四电感L4、第十二电阻R12、第十五电阻R15、第三电容C3、第四电容C4、第五电容C5、第二二极管D2和第六NMOS管Q6;超级电容正极V_CAP通过第三电感L3 连接第三电容C3正极和第六NMOS管Q6的D极,同时连接至第四电容C4正极;第四电容C4负极接地;第六NMOS管Q6的S极通过第十五电阻R15接地;第六NMOS 管Q6的G极作为PWM信号输入端;第三电容C3的负极和第二二极管D2的正极通过第四电感L4接地;第二二极管D2负极连接第五电容C5的正极,并通过第十二电阻R12连接到恒功率输出端Power_OUT;第五电容C5的负极接地。Further, in one embodiment, referring to FIG. 7 , the above-mentioned constant power output circuit includes a third inductor L3, a fourth inductor L4, a twelfth resistor R12, a fifteenth resistor R15, a third capacitor C3, and a fourth capacitor C4, the fifth capacitor C5, the second diode D2 and the sixth NMOS transistor Q6; the anode V_CAP of the super capacitor is connected to the anode of the third capacitor C3 and the D pole of the sixth NMOS transistor Q6 through the third inductor L3, and is connected to the fourth The positive pole of the capacitor C4; the negative pole of the fourth capacitor C4 is grounded; the S pole of the sixth NMOS transistor Q6 is grounded through the fifteenth resistor R15; the G pole of the sixth NMOS transistor Q6 is used as the PWM signal input terminal; the negative pole of the third capacitor C3 and the second pole The anode of the diode D2 is grounded through the fourth inductor L4; the cathode of the second diode D2 is connected to the anode of the fifth capacitor C5, and is connected to the constant power output terminal Power_OUT through the twelfth resistor R12; the cathode of the fifth capacitor C5 is grounded .
综上,本发明提供的基于数字控制的微纳卫星脉冲功率电源系统以超级电容作为向负载输出能量的主要储能装置,锂聚合物电池作为电源系统的第二储能装置,可提高电源系统的功率密度,可明显延长微纳卫星的在轨寿命;根据负载类型不同,分配不同管理单元,提高了电源系统的可移植性。To sum up, the micro-nano satellite pulse power power supply system based on digital control provided by the present invention uses the super capacitor as the main energy storage device for outputting energy to the load, and the lithium polymer battery as the second energy storage device of the power supply system, which can improve the power supply system. It can significantly extend the on-orbit life of micro-nano satellites; according to different load types, different management units are allocated to improve the portability of the power system.
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010336710.7A CN111525641B (en) | 2020-04-26 | 2020-04-26 | Micro-nano Satellite Pulse Power Supply System Based on Digital Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010336710.7A CN111525641B (en) | 2020-04-26 | 2020-04-26 | Micro-nano Satellite Pulse Power Supply System Based on Digital Control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111525641A CN111525641A (en) | 2020-08-11 |
CN111525641B true CN111525641B (en) | 2022-10-21 |
Family
ID=71904317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010336710.7A Active CN111525641B (en) | 2020-04-26 | 2020-04-26 | Micro-nano Satellite Pulse Power Supply System Based on Digital Control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111525641B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113036863A (en) * | 2021-03-17 | 2021-06-25 | 深圳友讯达科技股份有限公司 | Charging and discharging management module, charging and discharging device and electronic product of super capacitor bank |
CN114257075A (en) * | 2021-12-16 | 2022-03-29 | 山东航天电子技术研究所 | Overvoltage protection and energy buffer circuit for satellite robot joint |
CN114221427B (en) * | 2021-12-23 | 2024-07-23 | 海华电子企业(中国)有限公司 | Emergency power supply based on super capacitor energy storage and control method thereof |
CN114785624A (en) * | 2022-05-16 | 2022-07-22 | 深圳市特发信息股份有限公司 | Local area network communication system and power self-supply mutual supply method thereof |
CN119536107B (en) * | 2025-01-23 | 2025-04-29 | 贵州航天林泉电机有限公司 | Micro-nano satellite load controller circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106100096A (en) * | 2016-06-23 | 2016-11-09 | 航天东方红卫星有限公司 | A kind of micro-nano satellite low-voltage high-efficiency power-supply system |
CN106602694A (en) * | 2017-01-06 | 2017-04-26 | 上海微小卫星工程中心 | Micro-nano satellite power system based on super capacitor |
-
2020
- 2020-04-26 CN CN202010336710.7A patent/CN111525641B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106100096A (en) * | 2016-06-23 | 2016-11-09 | 航天东方红卫星有限公司 | A kind of micro-nano satellite low-voltage high-efficiency power-supply system |
CN106602694A (en) * | 2017-01-06 | 2017-04-26 | 上海微小卫星工程中心 | Micro-nano satellite power system based on super capacitor |
Also Published As
Publication number | Publication date |
---|---|
CN111525641A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111525641B (en) | Micro-nano Satellite Pulse Power Supply System Based on Digital Control | |
CN103326419B (en) | The combined accumulation energy uninterrupted power supply device of solar energy power taking | |
CN104300663B (en) | A kind of skin Nano satellite power supply using MPPT maximum power point tracking technology | |
CN108321786A (en) | A kind of cube star integration power-supply system | |
CN106356975A (en) | Microsatellite energy system | |
CN111049250A (en) | An "H" configuration energy harvesting and storage system for wireless sensor nodes | |
CN114884116B (en) | Power supply circuit, new energy control system and energy coordination method | |
CN110138217B (en) | A three-port DC-DC converter and its control method | |
CN101951033A (en) | Device and method for intelligently supplying power to node based on wireless sensor network | |
US9306452B2 (en) | Multiple power path management with micro-energy harvesting | |
CN107181295A (en) | A kind of space integration battery discharging on-off circuit | |
CN203261111U (en) | Super capacitor and storage battery hybrid energy storage photovoltaic system based on bidirectional Buck converter | |
CN103997086A (en) | Super capacitor type battery power supply system for amplifier | |
CN106100026B (en) | A kind of satellite power supply nickel-cadmium storage battery charging regulator | |
CN110277826A (en) | Solar power supply circuit and power supply method for small load equipment | |
CN115021387A (en) | Power-down maintaining circuit and power-down maintaining control method | |
CN108899987A (en) | A kind of solar charging electric control circuit with MPPT function | |
CN105990788B (en) | Pulse VCSEL laser drive circuit based on USB power supply | |
CN113791663B (en) | High-power spacecraft power supply system based on solar cell array maximum power point tracking technology | |
CN214590649U (en) | A battery management system | |
CN112039181B (en) | Laser energy transmission power supply system | |
US10840710B2 (en) | Device capable of achieving fast charge and fast discharge of a vehicle emergency starting power source | |
CN203589785U (en) | Constant current charging and energy storing power supply device | |
CN215071712U (en) | A dynamic power path management system for wireless sensor nodes | |
CN218301004U (en) | Super capacitor-based continuous power supply circuit after power failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Liao Wenhe Inventor after: Zhang Xiang Inventor after: Zhou Hang Inventor after: Wang Zhonghui Inventor after: Li Jingguang Inventor before: Zhou Hang Inventor before: Liao Wenhe Inventor before: Zhang Xiang Inventor before: Wang Zhonghui Inventor before: Li Jingguang |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |